BTE Publication Summary

Short Term Forecasting of Transport and Communications Activity

Working Paper

This Paper provides a description of the short-term forecasting models used in the Bureauís quarterly publication - Transport and Communications Indicators. For domestic freight, four models cover intercapital road freight, non-bulk government rail freight, bulk government rail freight and domestic air freight. Urban freight activity is not covered. For overseas trade there are also four models: bulk export tonnages, non-bulk import tonnages, air freight exports and air freight imports.

Bureau of Transport and Communications Economics

WORKING PAPER 2

SHORT-TERM FORECASTING OF TRANSPORT AND COMMUNICATIONS ACTIVITY

©Commonwealth of Australia 1991 ISSN 1036-739X ISBN 0 642 16295 6

This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without written permission from the Australian Government Publishing Service. Requests and inquiries concerning reproduction and rights should be addressed to the Manager, AGPS Press, Australian Government Publishing Service, GPO Box 84, Canberra, ACT 2601.

This publication is available free of charge from the Manager, Information Services, Bureau of Transport and Communications Economics, GPO Box 501, Canberra, ACT 2601.

Printed by the Department of Transport and Communications, Canberra

FOREWORD

The Bureau of Transport and Communications Economics includes in its quarterly publication *Transport and Communications Indicators* short-term projections of selected activity variables.

In this paper, a brief description of the models now in use to compile these projections is presented. By their very nature, these models are preliminary in character. They are presented as a guide to the current state of the modelling.

The work was undertaken by Dr D. Gargett, Mr D. Cosgrove, Ms F. Talbot, Mr P. Viney, Ms V. Donda and Mr D. Mitchell.

M. R. CRONIN Research Leader

Bureau of Transport and Communications Economics Canberra June 1991

iii

CONTENTS

~

`__'

			Page
FOREWORI	0		iii
ABSTRACI	Ľ	· · ·	xi
SUMMARY			xiii
CHAPTER	1	INTRODUCTION	1
CHAPTER	2	DOMESTIC FREIGHT	3
		Intercapital road freight	3
		Non-bulk government rail freight	7
		Bulk government rail freight	10
		Domestic air freight	13
CHAPTER	3	OVERSEAS TRADE	17
		Bulk exports	18
		Non-bulk imports	18
		Air freight exports	24
		Air freight imports	27
CHAPTER	4	MOTOR VEHICLES	31
		Petrol sales	31
		New automobile sales	32
CHAPTER	5	AVIATION PASSENGERS	37
		International Australian departures	38
		International foreign arrivals	41
		Domestic airline passengers	43
CHAPTER	6	RAIL PASSENGERS	51
		Interstate rail passenger movements	51

v

		Page
CHAPTER 7	TELECOMMUNICATIONS	57
	OTC calls	57
	Telecom trunk calls	61
CHAPTER 8	URBAN PUBLIC TRANSPORT	63
CHAPTER 9	CONCLUDING REMARKS	71
APPENDIX I	DATA	73
APPENDIX II	VARIABLE CONSTRUCTION METHODOLOGY	. 85
APPENDIX III	VARIABLE MNEMONICS AND SOURCES	89
REFERENCES		97
ADDERITATIONS		99

vi

FIGURES

~

. سرب^ہ

-- s

~

5....

۱.__

~=

 \sim

Ļ

2.1	Intercapital road freight and fit	Page 6
2.2	Non-bulk government rail freight and fit	9
2.3	Bulk government rail freight and fit	12
2.4	Scheduled domestic airline air freight and fit	14
3.1	Trade by mode in dollars, 1988-89	19
3.2	Trade by mode in tonnes, 1988-89	20
3.3	Bulk export tonnages and fit	22
3.4	Non-bulk import tonnages and fit	23
3.5	Air freight exports and fit	26
3.6	Air freight imports and fit	29
4.1	Retail petrol sales and fit	33
4.2	New automobile sales and fit	34
5.1	International airline Australian departures and fit	40
5.2	International airline foreign arrivals and fit	44
5.3	Australian domestic passengers and fit	47
5.4	Australian domestic revenue passenger-kilometres and fit	48

vii

		Page
6.1	Interstate rail passengers and fit	54
7.1	International both-way calls and fit	59
7.2	Domestic trunk calls and fit	60
8.1	Urban public transport passengers: Sydney, Melbourne and Brisbane 1890-1990	64
8.2	Number of cars and station wagons on register, Australia: 1929-1989	66
8.3	Australian urban public transport passengers and fit	68

TABLES

~

5

•.....

١.,

-

_

_

			Page
2.1	freight	r intercapital road	5
2.2	Estimated equation for freight	r government non-bulk rail	8
2.3	Estimated equation for freight	r government bulk rail	11
2.4	Estimated equation for airline air freight	scheduled domestic	15
3.1	Estimated equation for	r bulk export tonnages	18
3.2	Estimated equation for	r non-bulk import tonnages	21
3.3	Estimated equation for freight exports	r the volume of air	25
3.4	Estimated equation for freight imports	r the volume of air	28
4.1	Estimated equation for	r petrol sales	32
4.2	Estimated equation for	r new automobile sales	35
5.1	Estimated equation for Australian departures	r international airline	39
5.2	Estimated equation for	r foreign arrivals	42
5.3	Estimated equation for	r Australian passengers on network	46

ix

		Page
5.4	Estimated equation for revenue passenger- kilometres flown by Australians on the domestic airline network	49
6.1	Estimated equation for the number of interstate rail passenger movements	52
7.1	Estimated equation of international both-way telephone calls	58
7.2	Estimated equation of the number of domestic domestic trunk calls	62
8.1	The urban passenger transport task, 1970-71 to 1987-88	63
8.2	Estimated equation for Australia-level urban public transport	67

х

ABSTRACT

This paper provides a description of the short-term forecasting models used in the Bureau's quarterly publication *Transport and Communications Indicators*.

For domestic freight, four models cover intercapital road freight, non-bulk government rail freight, bulk government rail freight and domestic air freight. Urban freight activity is not covered. For overseas trade there are also four models: bulk export tonnages, non-bulk import tonnages, air freight exports and air freight imports.

In the motor vehicle area, sales of petrol and of new automobiles are modelled.

There are three models of aviation passenger activity: domestic airline activity, international airline foreign arrivals and international airline departures by Australians.

A single model covers interstate rail passengers. In the telecommunications area, two models covered the areas of OTC calls and Telecom trunk calls. The final model in the set is for urban public transport demand.

SUMMARY

The Bureau of Transport and Communications Economics recently started producing five to seven quarter ahead forecasts of transport and communications activity from a suite of short-term forecasting models.

These models were developed to enable projections to be presented in the Bureau's quarterly publication *Transport and Communications Indicators*. After requests from users of the publication, it became obvious there was a need to document the models underlying the short-term forecasts.

It has been found possible to create a suite of forecasting models that cover many areas within the transport and communications sector. The models have been designed to be simple, with a minimum of disaggregation. This has been done in accordance with a conscious strategy aimed at extending coverage widely over the sector.

The resulting models are simple demand equations that have proved useful in the Bureau of Transport and Communications Economics forecasting activities. Activity levels in the various areas were specified to be a function of national income and price factors applicable to the mode. The equations thus 'translate' exogenous forecasts of the latter two variables into forecasts of transport activity.

In the area of domestic freight, four models were constructed covering intercapital road freight, non-bulk government rail freight, bulk government rail freight and domestic air freight. Urban freight activity is not covered. In the overseas trade area there were also four models. These covered bulk export tonnages, non-bulk import tonnages, air freight exports and air freight imports.

In the motor vehicle area, sales of petrol and of new automobiles were modelled.

Three models of aviation passenger activity were constructed. These were domestic airline activity, international airline foreign arrivals and international airline departures by Australians.

A single model covered interstate rail passengers, while in the telecommunications area, two models covered the areas of OTC calls and Telecom trunk calls. The final model in the set is for urban public transport demand.

In general, the models fitted the data extremely well. The average model explained about 95 per cent of the variation in activity, with turning points well predicted.

The Bureau of Transport and Communications Economics plans to maintain, develop and use these models for forecasting purposes. In addition, modelling is being extended to other areas of transport and communications activity. Models developed in the future will be the subject of further Working Papers.

CHAPTER 1 INTRODUCTION

The BTCE recently started producing five- to sevenquarter-ahead forecasts of transport and communications activity from these models. The forecasts have been used to make its *Transport and Communications Indicators* publication both analytical and forward-looking.

The models are the subject of ongoing development and maintenance activity and are presented as preliminary models only. They have been deliberately designed to be simple, with a minimum degree of disaggregation. This has been done as part of a conscious strategy aimed at allowing a small staff adequate time to refine, maintain and develop models which would give as wide as possible a coverage of the sector.

The simplicity in design extends to the choice of explanatory variables. In the basic model aimed at, activity is explained by a combination of national income and price factors applicable to the mode and competitive modes. Only if the basic model failed to provide an adequate explanation, were further mode-specific factors The aim was to keep investigated. the number of explanators in the total set to a minimum, and therefore the labour input by staff in obtaining forecasts also to a minimum. BTCE staff assemble data for many of the series used (from State authorities, transport companies, etc.). These data series reside in the Transport and Communications Indicators Database, which must also be updated regularly.

Thus, given the heavy workload for a small staff, the design aim has been simplicity. This means an avoidance of disaggregation and, wherever possible, a standardisation and commonality among explanators. These

considerations should be borne in mind when examining the specifics of the equations.

The following chapters present the details of the models constructed, starting with those in the domestic freight area.

CHAPTER 2 DOMESTIC FREIGHT

The four models developed in the domestic freight area all involve the non-urban freight task. The intercapital road freight model looks at trucking between the major mainland state capitals. Non-bulk government rail freight involves mostly intrastate non-bulk traffic. Bulk government rail freight measures the movement of such things as wheat and coal from inland areas to coastal terminals for export. Finally domestic air freight is dominated by movement between major urban centres.

The major areas of the domestic freight task not covered by these four models are urban and intrastate trucking and the private railways (such as the iron ore railways in Western Australia).

INTERCAPITAL ROAD FREIGHT

Movements of freight by road between the various capital cities in Australia are quite important in terms of tonnage. However, there have been few previous attempts at modelling them because of data difficulties. In the present paper the method used to overcome these difficulties is described in detail in appendix II.

It is estimated that road freight between the five major mainland capitals rose from about 1000 million tonnes per quarter in 1971-72 to about 2500 million tonnes per quarter in 1987-88. This represents a compound growth rate of about 4.7 per cent per year. By contrast, real growth in the economy over the same period averaged about 3.0 per cent per year.

During the same period since 1971-72 real road freight rates have approximately halved, with the carrying capacity of an

average truck increasing and travel time decreasing with better highways. The road freight industry has benefited from an increasing demand for door-to-door flexibility and speed in shipments, and has been increasing its modal share of traffic over this period at the expense of rail and coastal shipping.

Intercapital road freight equation

The dependent variable in this equation represents millions of tonnes of road freight both ways between Sydney-Brisbane, Sydney-Melbourne, Sydney-Adelaide, Melbourne-Brisbane, Melbourne-Adelaide, and the eastern States to Perth. The estimates are based on Australian Bureau of Statistics (ABS) partial survey data which is then inflated by a constant adjustment factor to account for that proportion of the traffic the ABS survey does not cover (see appendix II for details).

The main independent variable is the log of real non-farm gross domestic product at constant 1984-85 prices (ln RGNF85).

In addition, there are two sets of seasonal dummies. One set covers the period 1971 quarter 3 to 1979 quarter 2, and another the period 1982 quarter 3 to 1988 quarter 4. These two periods represent data sourced from an early experimental ABS survey of freight forwarders and the current survey respectively. It was felt that due to differences in data coverage, there were likely to be different patterns of seasonality in the two data sets.

All data used in the equation is listed in appendix I, and the variable mnemonics are listed in appendix III. The form of the equation was double-log, and due to a suggestion of autocorrelation, estimation was by the Cochrane-Orcutt iterative technique with a value for Rho of 0.57. The details of the estimated equation are given in table 2.1.

Variable	<i>Estimated</i> coefficient	t statistic
Constant	-8.4615	-9.3
ln RGNF85	1.4891	17.6
DT1	-0.1581	-10.4
DT2	-0.0804	-4.7
DT3	0.0061	0.4
DT11	-0.0872	-5.1
DT21	-0.0442	-2.3
DT31	-0.0264	-1.6

TABLE 2.1 ESTIMATED EQUATION FOR INTERCAPITAL ROAD FREIGHT

Dependent variable - ln TFRT. Estimation method - Cochrane-Orcutt, Rho = 0.57. Adjusted R^2 - 0.98. Durbin-Watson statistic - 1.83. Estimation period - 1971Q3 to 1979Q2 and 1982Q3 to 1988Q4.

Note For an explanation of variable mnemonics, see appendix III.

The fit of estimated and actual values is shown in figure 2.1. The fit is extremely close with an adjusted R^2 of 0.98 using only income as a major variable.

The elasticity of the income variable (1.4891) indicates that intercapital road freight tonnages grew with increasing national income, but they grew 46 per cent more quickly.¹ If one simply takes growth rates from 1971-72 to 1987-88 of 4.7 per cent for road freight and 3.0 per cent for the economy a ratio of 1.57 is achieved. This is similar to the result obtained from the econometric estimation.

Road (own-price) and rail (cross-price) freight rate variables were tried in the estimation but were insignificant, and so were dropped. The problem from an econometric point of view is termed multicollinearity, which prevents an adequate 'disentangling' of the separate effects

Coefficients are presented to four decimal places of accuracy. This is because all of the models fitted in this paper are double-log models, which require such accuracy.

Figure 2.1 Intercapital road freight and fit

σ

of price and income. These difficulties in estimation do not mean that the expected price effects would not be evident if, for instance, major changes in relative modal efficiencies were to emerge from micro-economic reform. For example, improvements in the cost or transit times of rail or sea relative to road, or increases in road cost recovery, could lead to changes in road freight tonnage that would not be predicted by the simple model based on income.

elasticity (1.4891) The high income might not be indefinitely sustainable. The income variable might well be picking up the effect of some technological diffusion or infrastructure development that will not persist in the long In addition, there might be a need in longer-term run. forecasting of the industry, to move to a corridor by corridor break-up to catch the effect of diverging longerterm regional economic activity trends.

However, for use in short-run forecasting the model is quite useful. Figure 2.1 presents the results of rolling fourquarter-ahead forecasts done by the BTCE. These are compared to estimates based on truck counts at Marulan, and to the ABS 'actual' data for March 1989 to December 1989. The comparison shows good agreement between the estimates from truck counts (in the past able to predict 95 per cent of the variation in the actual series) and the four-quarterahead BTCE forecasts. However, the ABS 'actual' data diverges markedly for the first three quarters of 1989, before returning to closer agreement in the December quarter. This raises the possibility of some unknown shift in the coverage of the ABS survey of freight forwarders in the three low quarters.

The four-quarter forecasting powers of the equation (measured against the truck movement estimates) is shown by a Theil coefficient of 0.02.

NON-BULK GOVERNMENT RAIL FREIGHT

Non-bulk freight currently constitutes only about 15 per cent of freight carried on the government rail systems.

Furthermore, of the total non-bulk task, only about a quarter of it involves shipping goods between the major State capitals. Thus for the government rail systems, the non-bulk freight task is small in terms of tonnages, and focused on intrastate traffic.

Non-bulk government rail freight equation

The dependent variable in this equation is the log of nonbulk government rail freight tonnages (ln NBULKRF). As can be seen from figure 2.2, the basic movement in non-bulk rail freight is a slow upward movement, interrupted by recessions such as that of 1982-83. In the model, this movement in tonnages was found to be best replicated by combining a high weighting on income with a negative time trend (TIME). Thus the high coefficients on the income (ln RGNF85) variables in table 2.2 should not be read in isolation as elasticities.

Variable	Estimated coefficient	t statistic
Constant	-28.3918	-8.2
ln RGNF85	1.2354	2.5
ln RGNF85(-1)	1.9688	3.7
ln RGNF85(-4)	1.1015	3.3
TIME	-0.0371	-15.2
ln RINTER(-1)	-2.4542	-7.6
ln RROADPR	0.6628	3.3
RDISPDUM	-0.1754	-6.2
D1	-0.2157	-13.8
D2	-0.1409	-8.9
D3	-0.0175	1.1

TABLE 2.2 ESTIMATED EQUATION FOR GOVERNMENT NON-BULK RAIL FREIGHT

Dependent variable - ln NBULKRF. Estimation method - ordinary least squares. Adjusted R^2 - 0.94. Durbin-Watson statistic - 2.38. Estimation period - 1977Q4 to 1988Q4.

(

ſ

£

ŕ

ť

<

Ζ.

:

Ē

Figure 2.2 Non-bulk government rail freight and fit

9

(_`i

ŕ

(

There are two freight rate variables in the equation. The real interstate non-bulk freight rate (ln RINTER), lagged one quarter, has an elasticity of -2.4542, while the real subcontractors road freight rate (ln RROADPR) has an elasticity of 0.6628. There is also a disputes variable (RDISPDUM) which captures the negative effects on traffic of several large rail disputes. A set of seasonal dummies (D1 to D3) completes the model.

The fit of the equation is good (adjusted R^2 equal to 0.94) with good tracking ability (see figure 2.2) and no evidence of autocorrelation. The fit without the disputes dummy declines to an adjusted R^2 of 0.85. The four-quarter-ahead rolling forecasts for 1988-89 are shown in figure 2.2. They fit the data quite well with a Theil coefficient of 0.05. All variables are listed in appendix I and constructed variables are discussed in appendix II.

BULK GOVERNMENT RAIL FREIGHT

Movements of grain and coal generally are well over 75 per cent of all government bulk rail freight. As such, the bulk traffic on the government rail systems is closely tied to the volume of these exports from Australia. Moreover, as the raw materials must pass over the railways before they are exported, the volume of predicted exports should be a good predictor of bulk rail traffic. This is the approach that has been adopted in the present equation.

Bulk government rail freight equation

The dependent variable in this equation is bulk government rail freight tonnages (BULKRF). The major explanator is the tonnage of coal and grain exports (RAILEXP). The coefficient is less than 1.0 (0.6652) because there is also a time trend in the equation (see table 2.3). This formulation allows the time trend to catch the effects of the small volume of other bulk exports carried on government railways as well as the volume of domestic bulk traffics carried.

Variable	Estimated	t statistic
Constant	11 207 020	10.7
RAILEXP	0.6652	8.9
TIME	155 193	4.5
DB01	247 259	0.3
DB02	1 058 530	1.4
DB03	677 475	0.9
DB11	-1 976 952	-2.9
DB12	-275 305	-0.4
DB13	-1 226 260	1.8

TABLE 2.3 ESTIMATED EQUATION FOR GOVERNMENT BULK RAIL FREIGHT

Dependent variable - BULKRF.

Estimation method - ordinary least squares. Adjusted R^2 - 0.9577. Durbin-Watson statistic - 1.79. Estimation period - 1977Q1 to 1990Q1.

The link between bulk rail freight and grain exports should, if anything, become more direct in the future. This is because, with the advent of grain haulage deregulation, the major rail systems have developed the practice of tendering at discounted rates for the total carriage of the crop.

The other influences in the model are two sets of seasonal dummies to catch the differing seasonal patterns before and after the start of calendar year 1983.

The fit of the equation is good, with an adjusted R^2 of 0.96. The Durbin-Watson statistic does not indicate that serial correlation is a problem, and the tracking of the equation is good (see figure 2.3). Four-quarter-ahead rolling forecasts are also shown in figure 2.3. The value of the Theil coefficient is 0.03. A forecast bias in the upward direction came about through an overestimate of export volume growth. As the fit of the equation shows, when one uses the actual export volumes for 1988-89, the equation continues to 'postdict' well.

All variables are listed in appendix I.

Figure 2.3 Bulk government rail freight and fit

DOMESTIC AIR FREIGHT

Air freight represents a very small component (in tonnage terms) of the total freight task in Australia. However, the share is estimated to be substantially higher on a value basis due to the high average unit value associated with air freight (BTE 1987). The substantially lower transit times in air transport attract a variety of perishable, high value, low bulk goods for which delivery time is of Air freight moves by one of three paramount importance. - scheduled airline services (freight only means or passengers and freight mixed), commuter services or charter services. Charter services were estimated to account for about 6 per cent of total tonnages in 1981-82 (Gawan-Taylor 1984), and commuter services about 3 per cent in the same The model presented below is of freight moved on year. scheduled airline services.

Domestic air freight equation

The dependent variable in this equation is the log of scheduled airline freight tonnages (ln DOMAFR).

From table 2.4 it can be seen that there are three main explanatory variables. The first is the log of real nonfarm gross domestic product (ln RGNF85). Air freight seems somewhat inelastic with respect to income changes. The second is a dummy variable (AFDUM) equal to 1 from 1982Q2 to 1985Q3 which compensates for an unexplained increase in air freight during this period. This might be due to shifts in market share between the scheduled and charter sectors of the industry. The third variable is a dummy variable to account for periods of airline disputes (ADDUM).

Finally there are two sets of dummies: (DA10 to DA30) to account for seasonal variation before the start of 1985; and (DA11 to DA31) thereafter.

The fit of this equation is satisfactory (adjusted R^2 equal to 0.86), and the tracking suffers somewhat (see figure

Figure 2.4 Scheduled domestic airline air freight and fit

 $\vec{\varsigma}$

14

(,

Variable	<i>Estimated</i> coefficient	t statistic
Constant	2.5023	2.2
ln RGNF85	0.7400	7.0
AFDUM	0.0883	4.6
ADDUM	-0.0571	-1.4
DA10	-0.1442	-8.5
DA20	-0.0895	-4.8
DA30	0.0022	-0.1
DA11	-0.1904	-8,6
DA21	-0.1347	-5.2
DA31	-0.1008	-4.2

TABLE 2.4 ESTIMATED EQUATION FOR SCHEDULED DOMESTIC AIRLINE AIR FREIGHT

Dependent variable - ln DOMAFR.

23

-

Estimation method - Cochrane-Orcutt, Rho = 0.39. Adjusted R^2 - 0.87. Durbin-Watson statistic - 2.02. Estimation period - 1977Q1 to 1989Q1.

2.4). Due to a suggestion of autocorrelation, the equation was estimated by a Cochrane-Orcutt iterative technique with Rho equal to 0.39. No forecast history is yet available with this model. The adjusted R^2 without the dummies AFDUM and ADDUM is 0.74.

CHAPTER 3 OVERSEAS TRADE

Australia is particularly dependent on overseas trade given its situation as a raw material supplier isolated from the major industrial nations. Australia's development has depended on a succession of export commodities - wool, wheat, meat, iron and coal. Similarly, a major portion of the equipment for its industries has been supplied by the industrial nations of the world.

Shipping remains the dominant carrier for both exports and imports. The modal split between sea and air, whether expressed in terms of value or volume, overwhelmingly favours sea (figure 3.1).

The relatively high value per unit of air freight means that air carries a considerably larger value of Australia's imports and exports (between 10 and 20 per cent) than volume (less than 1 per cent).

By value, the largest categories of exports, as at September 1988, were coal (11.6 per cent) and wool (10.7 per cent). Imports are more diverse, but the main component is manufactured goods. Australia's imports of resource based products are small, given our rich resource endowment.

Figure 3.2 shows that there is a large imbalance in tonnage terms between exports and imports. Furthermore, as different types of ships are generally used for exports (bulk ships) and imports (liner ships), there are frequently back-haul problems with Australian shipping.

The following chapter discusses four models of overseas trade. Bulk exports and non-bulk imports are modelled on a tonnage basis. Two separate models are then presented for inward and outward air freight tonnages.

BULK EXPORTS

The equation for bulk exports is basically a direct translation equation. It translates tonnages (and forecasts of tonnages) of seven major bulk exports (EXPQ) into a prediction of total bulk export tonnages. The seven major commodities used are iron, coal, alumina, oil/petroleum products, grain, sugar and meat.

As can be seen from table 3.1, the translation is almost direct with a coefficient on the log of EXPQ (the total of the seven commodities) of 1.0278.

Variable	<i>Estimated coefficient</i>	t statistic	
Constant	3760.0	2.4	
EXPQ	1.0278	29.9	

TABLE 3.1 ESTIMATED EQUATION FOR BULK EXPORT TONNAGES

Dependent variable - BULKOUT. Estimation method - ordinary least squares. Adjusted R^2 - 0.95. Durbin-Watson statistic - 1.96. Estimation period - 1977Q1 to 1989Q2.

The BTCE uses the equation to translate outside forecasts of individual commodity exports into consistent forecasts of total bulk exports (partly derived from ABARE data). The fit is good (adjusted R^2 of 0.95) and there is no evidence of autocorrelation (Durbin Watson statistic equal to 1.96). A forecast history is not available for the equation. The fit of actual and predicted is shown in figure 3.3.

NON-BULK IMPORTS

Most of Australia's non-bulk imports are final consumption manufactures: cars, whitegoods, electrical appliances, and capital equipment. Indeed, these items make up over 65 per

ſ

ł

\$

Ç

Ĉ

Figure 3.1 Trade by mode in dollars, 1988-89

19

ſ

í

1 .

',

Figure 3.2 Trade by mode in tonnes, 1988-89

(Ć

cent of the value of Australia's annual import bill. In recent times expenditure on imports has been above export earnings. This has mainly been due to a surge in imports late in 1988 accompanying exceptionally strong growth in the Australian economy.

Non-bulk imports equation

The dependent variable in this equation is the log of nonbulk import tonnages (ln NBULKIN).

The first main explanator is the log of constant (1984-85) dollar gross national expenditure (ln RGNE85). The coefficient on this variable (2.2462) indicates that there is about a 2 to 1 relationship between percentage changes in tonnages and in income (see table 3.2).

The second major explanator is the log of the real trade weighted exchange rate (ln RTWI). This variable has a very low elasticity (0.1558). An additional explanator is a time trend, which corrects for the declining long-term trend in the weight to volume ratio of our imports.

Variable	Estimated coefficient	t statistic	
Constant	-17.4072	-2.8	
ln RGNE85	2.2462	3.7	
ln RTWI	0.1558	0.8	
TIME	-0.0088	-1.5	
IMPDUM	-0.2053	-3.8	
D1	-0.0773	-2.6	
D2	-0.0570	-1.9	
D3	-0.0471	-1.7	

TABLE 3.2 ESTIMATED EQUATION FOR NON-BULK IMPORT TONNAGES

Dependent variable - ln NBULKIN. Estimation method - Cochrane-Orcutt, Rho = 0.33. Adjusted R^2 - 0.82. Durbin-Watson statistic - 1.96. Estimation period - 1979Q3 to 1989Q3.

Figure 3.3 Bulk export tonnages and fit

f

ſ

1 -

{

ţ.

, r^{*}

Figure 3.4 Non-bulk import tonnages and fit

23

()

(

A dummy variable (IMPDUM) captures sharp drops in the tonnage figures due to strikes in two quarters - 1980Q1 and 1983Q1. Seasonal dummy variables (D1 to D3) are included to adjust for seasonal variation in import tonnages that differs from the seasonal variation in the value series.

All data used is listed in appendix I and the variable mnemonics are contained in appendix III.

The fit of the equation is only fair (adjusted R^2 of 0.82) and there is no evidence of autocorrelation. As shown in figure 3.4, the tracking is also fair. No forecast history is available for this model. The adjusted R^2 without the dummy IMPDUM is 0.75.

AIR FREIGHT EXPORTS

The type of goods typically carried by air are high value, small volume and possibly perishable in nature. The time taken for the item to reach the hands of the purchaser is an important consideration. A portion of this freight carriage is undertaken by charter flights but a considerable amount of freight movement is carried on scheduled passenger services. Over the last decade the volume of air freight exports has shown a fairly strong rate of growth.

The bulk of Australian air freight exports are to New Zealand (50 per cent of total volume). The model currently maintained by the BTCE relates air freight exports to the strength of overseas gross domestic product, particularly New Zealand, and cost elements.

Air freight exports equation

The dependent variable in the air freight exports equation is the log of the volume of outward air freight tonnages (ln EXTON).

The equation consists of three main explanatory variables (see table 3.3). The first is the log of foreign gross domestic product, weighted by export share (ln AVGDP). The
Variable	Estimated	t statistic
Constant	12.4800	13.6
ln AVGDP	5.5562	15.5
ln RTWI	-0.4463	-2.2
DEL3	-0.0237	-2.9
D1	-0.0562	-0.2
D2	-0.0371	-1.4
D3	-0.1119	-4.8

TABLE 3.3 ESTIMATED EQUATION FOR THE VOLUME OF AIR FREIGHT EXPORTS

Dependent variable - ln EXTON. Estimation method - Cochrane-Orcutt, Rho = 0.42. Adjusted R^2 - 0.98. Durbin Watson statistic - 2.01. Estimation period - 1977Q3 to 1988Q3.

estimated coefficient (5.5562) reveals that air freight exports have a highly elastic response to changes in the level of foreign income.

The second major explanatory variable is the log of the real trade weighted index of the exchange rate (ln RTWI). As is the case in the previous trade models, the responsiveness of air freight exports to changes in the exchange rate is relatively inelastic (-0.4463).

The third major explanatory variable is the three quarter average of the four quarter change in Australian real nonfarm gross domestic product (DEL3). The coefficient (-0.0237) indicates that higher levels of growth in the Australian economy accompany lower levels of air freight exports.

The equation also includes a set of seasonal dummy variables (D1 to D3).

The form of the equation is double-log and estimation is by the Cochrane-Orcutt iterative technique. The final value of Rho is equal to 0.51. The fit of predicted to actual is

Figure 3.5 Air freight exports and fit

quite good (see figure 3.5). The adjusted R^2 statistic indicates that about 98 per cent of the variation in air freight exports is accounted for by the explanatory variables and seasonality.

The four-quarter-ahead rolling forecasts are also shown in figure 3.5. The Theil coefficient for the period 1988Q4 to 1989Q3 has a value of 0.04.

All data used is listed in appendix I, variable mnemonics are contained in appendix III, and the construction of the AVGDP variable is explained in appendix II.

AIR FREIGHT IMPORTS

Air freight imports are only a small proportion of the total volume of imports. The largest volumes of our air freight imports are from New Zealand, North America, and Western Europe. Over the last decade inward air freight volumes have fluctuated between 100 and 150 thousand tonnes per year.

The model presented below relates inward air freight volumes to Australian income levels and the prevailing freight rates.

Air freight imports equation

The dependent variable in the air freight imports equation is the log of the volume, by weight, of inward air freight (ln IMTON).

The equation consists of three main independent variables and a set of seasonal dummy variables (see table 3.4).

The first major explanator is the log of Australian seasonally adjusted gross national expenditure (ln RGNE85). The estimated coefficient (2.5974) suggests that a change in domestic spending will cause a much more than proportionate change in the level of inward air freight tonnages.

Variable	<i>Estimated</i> <i>coefficient</i>	t statistic
Constant	-20.3160	-13.4
ln RGNE85	2.5974	22.9
ln RTWI	0.5689	6.9
ln RIFRATE	-0.1020	-6.9
D1	-0.1679	-7.8
D2	-0.1169	-5.3
D3	-0.0552	-2.6

TABLE 3.4 ESTIMATED EQUATION FOR THE VOLUME OF AIR FREIGHT IMPORTS

Dependent variable - ln IMTON. Estimation method - ordinary least squares. Adjusted R^2 - 0.96. Durbin-Watson statistic - 1.56. Estimation period - 1983Q1 to 1989Q3.

The second explanator is the log of the real trade weighted index of the exchange rate (ln RTWI). The coefficient on this variable (0.5689) suggests air imports are relatively inelastic with regard to changes in the exchange rate.

The third major explanatory variable is the air freight rate. The air freight rate used in this version of the equation is the real rate for air freight from New Zealand to Australia, converted into Australian dollar values (ln RIFRATE). The New Zealand freight rate is used because, for trade in air freight, New Zealand is our major trading partner. The coefficient of this variable (-0.1020) shows that air freight volumes are very inelastic with respect to changes in rates.

A set of seasonal dummy variables (D1 to D3) is also included in the equation.

The form of the equation is double-log and estimation is by ordinary least squares. The measure of the goodness of fit indicates that the equation predicts 96 per cent of the variation in air freight imports. The fit of predicted to actual is shown in figure 3.6. There is no forecast history for this equation.

(

(

Ç

Figure 3.6 Air freight imports and fit

29

Ê

(

ć.

All data used is listed in appendix I and the variable mnemonics are contained in appendix III.

The relatively inelastic demand for air imports with respect to price indicates the different nature of air freight. Air freight tends to be for relatively small, urgent delivery cargo, for which price is a secondary consideration.

Air freight imports are largely dependent upon Australian spending, a 2.5 to 1 relationship existing between changes in national expenditure and changes in air freight imports.

CHAPTER 4 MOTOR VEHICLES

The two models developed in this area look at indicators of the use and purchase of motor vehicles. As one of the mainstays of the journey to work in urban areas of Australia, the motor vehicle holds a key place in the life of the country. There are somewhat over 7 million cars and station wagons on register in Australia as against almost 12 million persons of driving age in the Australian population.

PETROL SALES

Sales of petrol are perhaps the best ongoing indicator of the usage of motor vehicles. Over the years the trend has been to increasing fuel efficiency, but fluctuations in total sales are a good short-run indicator of variations in vehicle usage by Australians.

Petrol sales equation

The dependent variable is the log of Australian petrol sales (ln PETROL).

There are two main explanatory variables (see table 4.1). The first is the log of real non-farm gross domestic product (ln RGNF85). The low coefficient on this variable (0.4517) suggests that petrol sales have a fairly dampened positive response to income changes.

The second main explanator is the log of the real petrol price index (deflated by the consumer price index). The coefficient on this variable (-0.1110) suggests that price has even less of an effect than income in the short term. It must be remembered, however, that simple reduced form equations such as this will seriously underestimate the actual long-term elasticities. The long term is defined as

Variable	<i>Estimated</i> coefficient	t statistic
Constant	4.7029	13.7
ln RGNF85	0.4157	18.7
ln RPPI	-0.1110	-4.0
D1	-0.0463	-7.6
D2	-0.0248	-4.2
D3	-0.0272	-4.6

TABLE 4.1 ESTIMATED EQUATION FOR PETROL SALES

Dependent variable - ln PETROL. Estimation method - ordinary least squares. Adjusted R^2 - 0.92. Durbin-Watson statistic - 2.36. Estimation period - 1979Q2 to 1988Q4.

that period of time in which the vehicle fleet itself is able to be modified in the light of price signals.

The last explanator is a set of seasonal dummies (D1 to D3).

The fit of the equation (adjusted R^2 equal to 0.92) and its tracking (see figure 4.1) are good. There is no evidence of autocorrelation.

NEW AUTOMOBILE SALES

The automobile industry (as represented by sales) grew quickly during the post-war period. But in common with many industries in Australia and worldwide, its growth slowed markedly during the 1970s. This maturity phase corresponded to the marked slowdown in economic growth of the Australian and world economies after 1975. After ten years of relative stability of sales, there was a pronounced fall in sales after the 1985 devaluation of the Australian dollar (see figure 4.2). This 30 per cent fall in registrations was largely due to a devaluation-induced real price rise of similar magnitude.

Figure 4.1 Retail petrol sales and fit

ω

Ē

í

Figure 4.2 New automobile sales and fit

During 1988 there was a recovery in sales, led by booming economic growth and by an appreciation in the value of the Australian dollar. During 1990 sales have been plateauing as the economy slows.

New automobile sales equation

The dependent variable in this equation is the log of the quarterly registrations of new cars, station wagons, panel vans and utilities (ln REGO). This somewhat wider definition of 'automobile' was chosen to avoid the problem of a tendency in the past few years for motorists to switch between cars and light commercial vehicles in some areas of the market.

There are two main explanatory variables (see table 4.2). The first is the log of real gross national expenditure (ln RGNE85). The coefficient of this variable (1.8358)

	Estimated	
Variable	coefficient	t statistic
Constant	-1.6716	-1.4
ln RGNE85	1.8358	14.0
ln RPRICE	-1.4288	-15.8
DUM85	0.1004	4.2
DUM851	0.0522	1.1
DC1	-0.0337	-1.5
DC2	0.0760	3.6
DC3	0.0562	2.7
DC1	-0.0863	-3.4
DC12	-0.0328	-1.3
DC13	0.0022	0.1

TABLE 4.2 ESTIMATED EQUATION FOR NEW AUTOMOBILE SALES

Dependent variable - ln REGO. Estimation method - ordinary least squares. Adjusted R^2 - 0.95. Durbin-Watson statistic - 1.59. Estimation period - 1981Q1 to 1990Q2. suggests that the reaction of automobile sales to income is somewhat more than 1 to 1.

The second main explanator is a price variable, the log of the real price of new imported automobiles (ln RPRICE). The price of imports is used because the majority of imports are in the small car category. It is the small car sales (mostly private) that have proved to be variable, while the larger car fleet sales have held more steady. The coefficient of this variable (-1.4288) also suggests a greater than 1 to 1 response in sales to changes in price.

The other explanators are a one-quarter dummy variable active only during the first quarter of 1985 (DUM851), a dummy active for all 1985 (DUM85) and two sets of seasonal dummies. The first set of seasonal dummies (DC1 to DC3) is active up to the beginning of calendar 1987 and the second set (DC11 to DC13) thereafter.

The fit of the equation is satisfactory (adjusted R^2 equal to 0.95), with no evidence of autocorrelation (see figure 4.2). This equation is a re-estimate of one done several years ago by the BTCE. The adjusted R^2 without the dummies DUM85 and DUM851 is 0.87.

The old equation, along with several other approaches to modelling the demand for new automobiles, has been reviewed by the Automotive Industry Council (AIC 1988).

The AIC in its review criticised the extensive use of dummies in the model. However, as was seen above, the dummies contributed little to the overall fit (although they satisfactorily adjust for the 1985 period). The AIC did acknowledge that the model was valuable in 'underpinning the major conclusions reached in the working party's report; that is, the major influences on demand are price and income related' (AIC 1988).

CHAPTER 5 AVIATION PASSENGERS

Australian air passenger activity has generally exhibited a positive growth trend over the last ten years. In more recent times the rate of growth in activity has increased The Bicentennial year of 1988 is perhaps markedly. unrepresentative, but the previous year will give an indication of recent trends. In 1987, international air passenger activity increased 15 per cent, with Australian departures growing 5 per cent to 1 622 300 and foreign arrivals growth a massive 25 per cent to 1 784 900. In the same year, domestic air passenger movements grew 6 per cent to 13 095 600.

Of particular note has been the exponential growth in the number of Japanese arrivals since 1985. In 1987, Japanese arrivals numbered 215 600, an increase of 48 per cent on the 1986 figure which in turn was an increase of 35 per cent on 1985 arrivals. As a result, Japan became the third major source country (behind New Zealand and the United States) of foreign arrivals to Australia, contributing more than 12 per cent of the 1987 total. Moreover, the potential for further substantial growth remains high, since Australia is a destination for only about 6 per cent of Japanese intercontinental departures.

In general, the major long-term influence on the growth of air travel comes from growing levels of income. Further influences are fares and, for international travel, the level of our exchange rate (which influences the ground costs of travel in Australia and overseas). With passenger travel by ship being negligible, international air travel has no competing mode. Domestic air travel, however, competes with car, bus and train. Thus some proxy for the price of competing modes is needed in a demand formulation for domestic air travel.

The following sections discuss the international air travel models (for Australian departures and foreign arrivals) and the domestic air travel model.

INTERNATIONAL AUSTRALIAN DEPARTURES

Travel overseas continues its popularity with Australians. The number of Australians taking trips overseas has grown at a 5 per cent annual rate over the last ten years. Even a large depreciation of the Australian dollar, experienced in 1985, has only served to slow the growth, not stop it.

There are three main categories of travel: short-term (less than 12 months stay), long-term movements, and permanent movements. In 1987, permanent and long-term departures were 6 per cent of total Australian departures.

The modelling below is done on the short-term Australian departure category.

Australian departures equation

The dependent variable for this equation is the log of the number of Australian citizens and residents who made a short-term outbound movement through Australian Customs (ln TOUTPAS).

There were three main explanatory variables (see table 5.1). The income variable was the log of real gross national expenditure (ln RGNE85). The coefficient on this variable (1.0257) suggests that overseas travel by Australians varies proportionately to income changes.

The fare variable was the log of a weighted average of real outbound overseas air fares (ln RAGGOFAR). Its coefficient (-0.2990) suggests that overseas travel by Australians is relatively unresponsive to the average level of fares.

The log of the real trade-weighted index of the exchange rate (ln RTWI) lagged three quarters was used to measure the relative cost to Australian tourists of overseas stays.

	Estimated	
Variable	coefficient	t statistic
Constant	0.9394	0.4
ln RGNE85	1.0257	5.1
ln RAGGOFAR	-0.2990	-2.7
ln RTWI(-3)	0.2142	2.7
BIDUM	-0.0362	-1.7
D1	-0.1735	-11.1
D2	0.0355	2.1
D3	0.0656	4.1

TABLE 5.1 ESTIMATED EQUATION FOR INTERNATIONAL AIRLINE AUSTRALIAN DEPARTURES

Dependent variable - ln TOUTPAS. Estimation method - ordinary least squares. Adjusted R^2 - 0.97. Durbin-Watson statistic - 1.9. Estimation period - 1982Q1 to 1990Q1.

Again, the coefficient (0.2142) on overseas travel is much less responsive to cost variations than income variations. On the other hand, fluctuations in cost elements can be much more severe than income fluctuations, resulting in important short-run variations in the amount of travel.

Also included as an explanator was a dummy variable to catch the effect of expected abnormally low levels of demand over the course of the Bicentennial year (BIDUM).

Finally, a set of seasonal dummy variables (D1 to D3) was included to capture the seasonal variation in Australian overseas air travel.

The fit of the equation was excellent (adjusted R^2 of 0.97), as was the tracking (see figure 5.1). There was no evidence of autocorrelation. The four-quarter-ahead forecasting record is good, with a Theil statistic of 0.03. The adjusted R^2 without the dummy BIDUM was 0.96.

INTERNATIONAL FOREIGN ARRIVALS

Foreign tourism to Australia was, in the three years to 1988, the fastest growing sector of the aviation market, with growth averaging between 20 and 30 per cent per year.

There are many effects within Australia of such growth. The most direct effect is the positive impact on the domestic tourism and hospitality industries. There is also a flowon of foreign arrivals from international to domestic airlines. However, this flow-on is not limited solely to the airlines. It also extends to rail, bus and most other domestic passenger transport sectors.

Of great significance, from a macro-economic perspective, will be the increasingly positive contribution to Australia's balance of payments which flows from the growing excess of foreign arrivals over Australian departures. Prior to 1987 the prevailing trend had been for Australian departures to outnumber foreign arrivals. However in that year the trend was reversed and this reversed trend should become further entrenched over the 1990s.

Foreign arrivals equation

The dependent variable for this model (In TOTINPAS) was taken as the log of the quarterly number of foreign shortterm visitors (that is, visitors whose expected stay was to be for a period of less than 12 months) who made an inbound movement through Australian Customs.

The income variable (ln G7GDP) was the log of the sum of real gross domestic product across the group of seven major OECD economies (the United States, Japan, Germany, France, Italy, the United Kingdom and Canada). Its coefficient (2.7862) suggests that overseas tourism to Australia is highly responsive to changes in overseas income levels (see table 5.2). This high degree of income sensitivity probably results from the combination of two factors brought into play by any increase in real income. These are:

Variable	<i>Estimated</i> coefficient	t statistic
Constant	2.5604	1.1
ln G7GDP	2.7862	7.9
ln RAGGINFA(-4)	-0.3336	-1.9
ln RTWI(-4)	-0.4361	-1.9
BIDUM	0.1588	2.9
D1	-0.1843	-7.9
D2	-0.3945	-14.4
D3 :	-0.2951	-13.5

TABLE 5.2 ESTIMATED EQUATION FOR FOREIGN ARRIVALS

Dependent variable - ln TOTINPAS. Estimation method - Cochrane-Orcutt, Rho = 0.53. Adjusted R^2 - 0.97. Durbin-Watson statistic - 2.0. Estimation period - 1978Q1 to 1989Q2.

the increased affordability of international travel, and

the relatively greater increase in the affordability of long-haul travel in comparison to short-haul (that is, intra-continental) travel.

In other words, because for most international travellers Australia is a long-haul option among a choice of short-and long-haul journeys, international travel to Australia falls into the category of being a 'super-luxury' good. In contrast, Australian departures overseas exhibit a much lower income sensitivity due mainly to the lack of choice between short- and long-haul destinations.

Two cost variables were also employed. The variable In RAGGINFA(-4) was the log of the weighted average of real inbound overseas airfares, lagged four quarters. The lag is included to capture the long lead time foreign tourists have when planning to visit Australia. Its coefficient (-0.3336) suggests that foreign tourism is relatively nonresponsive to fare changes. Similarly the coefficient

(-0.4361) on the log of the real trade weighted exchange rate lagged four quarters - ln RTWI(-4) - suggests that tourism to Australia is also relatively inelastic with regard to this second cost item.

The last explanators in this equation were a dummy variable for the Bicentennial year (BIDUM) and a set of seasonal dummy variables (D1 to D3).

Because of evidence of autocorrelation, this equation was estimated with a Cochrane-Orcutt technique (Rho equal to 0.53). The fit was good (adjusted R^2 of 0.97) and the tracking excellent (see figure 5.2). The four-quarterahead forecasting record is also good, with a Theil coefficient of 0.02 and a major turning point accurately predicted. The adjusted R^2 without the dummy BIDUM was 0.96.

DOMESTIC AIRLINE PASSENGERS

Domestic airline travel has been a growth industry in the last twenty years. The only serious threat to growth in the industry came in the early 1980s when rapidly increasing fuel prices lifted fares during the 1982-83 recession. The combined effect was that airline passenger numbers did not regain their 1981 levels until 1985. Unfortunately for the airlines the trough in passenger numbers during the recession came just as they were re-equipping their fleets.

Since 1985, growth has been rapid again, helped along in no small part by the boom in overseas tourism to Australia. The flow-on from international tourism has helped to lift growth rates in domestic airline passenger movements to around 10 per cent in 1988.

The growth in revenue passenger-kilometres (RPK) is consistently higher than that for passenger movements, as trips are getting longer with rising income levels. Accordingly, the income elasticity in the RPK model is expected to be higher.

Figure 5.2 International airline foreign arrivals and fit

Models have been estimated for both domestic airline passengers and domestic airline revenue passengerkilometres. The explanatory variables in both equations are identical, the main explanators being income, air fare level, and the price of petrol. The inclusion of quality of service variables such as flight frequency, although desirable in a complex modelling of the industry, was not possible given resources available. Some work within the BTCE on more complex models is being pursued.

Domestic airline passengers equations

The approach taken to modelling in this area was first to separate out an estimate of the 'foreign component' on domestic airlines. These were foreign tourists using the Australian domestic network. Thus if one subtracts from total passengers on the domestic network (DOMPAS) an estimate of the foreign component (DOMPAS1), an estimate is derived of the number of Australians travelling on the domestic network (DOMPAS2).

The number of foreign tourists travelling on the domestic network was represented by the identity:

$$DOMPAS1 = 0.75 * TOTINPAS$$

where 0.75 is an estimate of the average number of domestic air passenger movements generated by each short-term foreign arrival and TOTINPAS is the number of such arrivals. The 0.75 estimate was made on the basis of information contained in the Bureau of Tourism Research's International Visitors Survey.

Taking this foreign component away from total domestic network traffic gave the estimate of the number of Australians on the domestic network. This was then modelled as responding to domestic economic influences.

In order to estimate the number of domestic revenue passenger-kilometres (RPK) travelled by Australians on the domestic network, a similar approach was used. The estimate

Variable	Estimated coefficient	t statistic
Constant	4.6220	4.0
ln RGNF85	1.0341	9.1
ln RMEDIUM	-0.6440	-7.3
ln RPPI	0.2256	3.7
STRIKE	0.0704	-1.7
CGDUM	0.0583	2.3
EXDU	0.0414	3.4
DA10	-0.0163	-1.0
DA20	-0.0001	-0.0
DA30	0.0969	5.7
DA11	-0.0143	-0.7
DA21	-0.0147	-0.7
DA31	0.0960	4.0

TABLE 5.3 ESTIMATED EQUATION FOR AUSTRALIAN PASSENGERS ON THE DOMESTIC AIRLINE NETWORK

Dependent variable - ln DOMPAS2. Estimation method - ordinary least squares. Adjusted R^2 - 0.86. Durbin-Watson statistic - 1.9. Estimation period - 1977Q4 to 1989Q2.

of the foreign component of passengers (DOMPAS1) was multiplied by the average kilometre distance travelled by all passengers on the domestic network. This gave an estimate of the foreign RPK component (DOMRPK1) which when subtracted from total RPK (DOMRPK) gave the estimate of RPK by Australians on the domestic network (DOMRPK2).

The dependent variables for the two domestic equations were thus the log of Australian passengers on the domestic network (ln DOMPAS2) and the log of RPK by Australians on the domestic network (ln DOMRPK2).

For both models (see tables 5.3 and 5.4), the list of explanatory variables was identical. The income variable was represented by the log of real seasonally adjusted non-farm gross domestic product (ln RGNF85).

(

•(

(

Ĺ

(

(

í

(

(1

ţ

Figure 5.3 Australian domestic passengers and fit

and fit

Variable	Estimated equation	t statistic
Constant	-0.7868	-0.7
ln RGNF85	1.4488	12.8
ln RMEDIUM	-0.4491	-5.2
ln RPPI	0.2192	3.6
STRIKE	-0.0902	-2.2
CGDUM	0.0783	3.1
EXDUM	0.0387	3.2
DA10	-0.0134	-0.8
DA20	-0.0087	-0.5
DA30	0.1080	6.4
DA11	-0.0189	-0.9
DA21	-0.0330	-1.6
DA31	0.1049	4.4

TABLE 5.4 ESTIMATED EQUATION FOR REVENUE PASSENGER-KILOMETRES FLOWN BY AUSTRALIANS ON THE DOMESTIC AIRLINE NETWORK

Dependent variable - ln DOMRPK2. Estimation method - ordinary least squares. Adjusted R^2 - 0.95. Durbin-Watson statistic - 1.9. Estimation period - 1977Q4 to 1989Q2.

Two price variables were employed. First, ln RMEDIUM was the log of the real medium-distance air fare. (For use in forecasting post-deregulation, the level of this variable has been lowered in an ad hoc fashion, to simulate the fall in average yield, an unknown variable.) Second, ln RPPI was the log of the real petrol price index (deflation done by the consumer price index). It was used as a proxy measure of the relative competitiveness of land-based transport alternatives. An administrative variation of air fares in 1981 substantially reduced possible multicollinearity with fuel prices.

A strike dummy (STRIKE) set at 1 for the third quarter of 1985 was included to capture the effects on demand of a strike in the industry during that period.

A Commonwealth Games dummy (CGDUM) was set at 1 for the first two quarters of 1982. It was included to capture the

effects on demand of the Commonwealth Games in Brisbane. An Expo dummy (EXDUM) was also included to catch the effect of increased demand during the Bicentennial and especially during Expo in the September quarter of 1988.

Seasonal dummy variables (up to and including 1985 DA10 equal to 1 in the March quarter, DA20 equal to 1 in the June quarter, DA30 equal to 1 in the September quarter; after 1985 DA11 equal to 1 in the March quarter, DA21 equal to 1 in the June quarter, DA31 equal to 1 in the September quarter) were included to capture the effects of seasonal variations in demand over the course of a given set of years. The change in seasonality may well be related to the change from a three- to a four-semester school term during the mid 1980s.

The results of the estimations (see tables 5.3 and 5.4) indicated that air passenger movements and RPK were income elastic, with the coefficient on income for passengers (1.0341) less than that for RPK (1.4488). This difference reflects the fact that rising income levels generate not only more trips, but longer trips as well.

Both models suggested that the short-term own-price elasticities are low (-0.6440 and -0.4491), as are the cross-price elasticities against the price of petrol (0.2256 and 0.2192), respectively.

The fit of both equations is good (adjusted R^2 of 0.86 for passengers and 0.95 for RPK). Tracking and prediction of turning points are also good (see figures 5.3 and 5.4). There was no evidence of autocorrelation problems. For passengers, the adjusted R^2 fell to 0.79 without the three dummies STRIKE, CGDUM and EXDUM. For RPK, the fit fell to 0.91 without the dummies.

CHAPTER 6 RAIL PASSENGERS

Railways play only a minor role in the passenger transport task of the country. Although urban rail still forms an important part of transport systems in the major capital centres, the reliance on rail, for both urban and non-urban transit, is diminishing. Today, railways account for only 1.6 per cent of household expenditure on transport. The decline in rail transport share is mainly due to the motor car, which now accounts for over 90 per cent of the modal passenger-kilometre share of urban and non-urban passenger transport.

The BTCE has only one model of passenger rail transport, namely, interstate rail passenger movements. This is described below.

INTERSTATE RAIL PASSENGER MOVEMENTS

Interstate rail passenger movements are now largely made up of tourists, both domestic and foreign. The quicker services available by air, and cheaper more convenient road services have made it more profitable for business to substitute away from rail travel. Growth in interstate rail travel was interrupted in the early 1980s when deregulation of interstate coach services led to large declines in real coach fares relative to rail. In the late 1980s growth has resumed, albeit from a lower base.

Rail passenger services are the largest loss making activities of the rail industry. However, these losses arise largely from the provision of urban and country (intrastate) services. Interstate rail services, in contrast with urban and country rail, have a better cost recovery record.

Interstate rail passenger movements equation

The dependent variable in this equation is the log of the total number of interstate rail passenger movements in Australia (ln ERPAS). An interstate rail passenger movement is defined to be a movement departing from one State system and terminating in another.

The equation consists of three main explanatory variables (income, rail fares and bus fares) and a set of dummy variables (see table 6.1).

The first explanatory variable is the log of real, seasonally adjusted gross national expenditure at 1984-85 prices (ln RGNE85). The coefficient on income is 0.82367, which suggests that despite the slump in interstate rail patronage in the early 1980s (when bus competition intensified), rail travel retains a fairly elastic response

Variable	Estimated coefficient	t statistic
Constant	4.33507	3.6
ln RGNE85	0.82367	7.2
ln RERFAR	-0.10319	-1.0
ln RBUSFAR	0.30596	4.7
BIDUM	0.08271	3.5
CGDUM	0.09668	3.4
DISPDUM	-0.10467	-3.9
DUM7980	-0.08930	-4.3
D1	-0.04170	-2.9
D2	-0.09235	-6.0
D'3	-0.06050	-4.0

TABLE 6.1 ESTIMATED EQUATION FOR THE NUMBER OF INTERSTATE RAIL PASSENGER MOVEMENTS

Dependent variable - ln ERPAS. Estimation method - ordinary least squares. Adjusted R^2 - 0.8261. Durbin-Watson statistic - 1.6. Estimation period - 1978Q3 to 1989Q1.

to income. This bodes well for the longer-term trend in patronage.

The second main explanatory variable is the log of the representative rail fare, deflated by the consumer price index (ln RERFAR). The coefficient (-0.10319) is quite small and the relatively large error term suggests that the own-price effect on rail travel is not very significant.

The third independent variable is the log of the representative bus (coach) fare, deflated by the consumer price index (ln RBUSFAR). The estimated coefficient (0.30596) is also small, although the summary statistics indicate that it has a significant impact on the number of interstate rail passengers, especially given the large falls in real bus fares of the early 1980s.

The first dummy variable (BIDUM), equal to 1 in the March to September quarters of 1988 and 0 elsewhere, is used to adjust for increased interstate rail patronage during the Bicentennial year. The second dummy (CGDUM), equal to 1 in the March and June quarters of 1982 and 0 elsewhere, is included to compensate for the increase in rail travel during the Brisbane Commonwealth Games. Also in the equation is a dummy variable to account for industrial action (DISPDUM), equal to 1 in the September quarter of 1983, 1 in the March quarter of 1985, and 0 elsewhere. Finally, the dummy variable DUM7980, included for passenger rail, is equal to 1 in the four quarters of the 1979-80 financial year and 0 elsewhere, to account for the unusually low traffic levels of that financial year. The remaining variables (D1 to D3) are seasonal dummies.

The equation was estimated by the method of ordinary least squares. The fit of predicted to actual is only fair (see figure 6.1) with an adjusted R^2 value of 0.83. The model picks the general trend and the timing of the major turning points. The forecast history is good, with a Theil statistic of 0.03 and a major downturn adequately predicted (see figure 6.1). The adjusted R^2 fell to 0.55 without the four dummies BIDUM, CGDUM, DISPDUM and DUM7980. If the

Figure 6.1 Interstate rail passengers and fit

quarters when the first three dummies were active were dropped from the sample estimation period (as being a prior regarded as atypical), the R^2 drops to 0.63.

All data used is listed in appendix I and variable mnemonics are in appendix III.

CHAPTER 7 TELECOMMUNICATIONS

The telecommunications sector is one of the most dynamic service industries in the economy. New and cheaper technologies have led to a greater availability and importance of telecommunications activity. Banking and financial services, retailing, and tourism, which together account for almost 30 per cent of annual gross domestic product, are heavily reliant upon telecommunications services and equipment.

The Bureau currently maintains two models of telecommunications activity. The OTC calls equation models the number of both-way (that is, inward and outward) international telephone calls. The Telecom trunk calls equation models the number of domestic trunk calls.

OTC CALLS

Advancing technology and decreasing costs has increased the importance of telecommunications to international economic activity. Since 1983 the number of both-way international telephone calls has been increasing at a compound rate of over 30 per cent per year. It is expected that growth in overseas telecommunications demand, fuelled especially by strong business demand, will continue to be strong.

OTC calls equation

The dependent variable in this equation is the log of the number of both-way international calls (ln OTC).

One of the two major explanatory variables used in the equation (see table 7.1) is the log of OECD real gross domestic product (ln OECDGDP). The estimated elasticity

Variable	Estimated coefficient	t statistic
Constant	-43.9172	-5.3
ln OECDGDP	6.7866	7.7
ln ROTCCH	-1.0139	-3.8
OTCDUM	-0.0533	-2.4
D1	-0.0638	-6.0
D2	-0.0391	-3.2
D3	-0.0283	-2.8

TABLE 7.1 ESTIMATED EQUATION OF INTERNATIONAL BOTH-WAY TELEPHONE CALLS

Dependent variable - ln OTC. Estimation method - Cochrane-Orcutt, Rho = 0.76. Adjusted R^2 - 0.998. Durbin-Watson statistic - 1.45. Estimation period - 198302 to 199001.

(6.7866) indicates that the number of international calls is highly responsive to changes in income levels.

The second major explanatory variable is the log of real OTC call charges (ln ROTCCH). The elasticity on this variable (-1.0139) suggests there is a one-to-one relationship between percentage changes in real OTC charges and percentage changes in OTC traffic.

The equation contains a dummy variable (OTCDUM), to account for the effects of industrial action in the December quarter of 1988. A set of seasonal dummies is also included in the estimating equation.

The form of the equation is double log and estimation is by the Cochrane-Orcutt iIterative technique (Rho equal to 0.76), due to a suggestion of autocorrelation in the equation. The fit of predicted to actual values is shown in figure 7.1. The resultant summary statistics reveal that the equation fits the data almost perfectly (adjusted R^2 equal to 0.998). In addition, the four-quarter-ahead forecasting experience is good, with a Theil statistic of

(

. (

(

· (

(

ſ

Figure 7.1 International both-way calls and fit

59

(

Ľ,

Ę

(·

{

Ć

Figure 7.2 Domestic trunk calls and fit

0.008. The forecast record is shown in figure 7.1. If the dummy OTCDUM is dropped from the equation, the adjusted R^2 is 0.99.

All data used is listed in appendix I and variable mnemonics in appendix III.

TELECOM TRUNK CALLS

The high rate of growth in telecommunications activity over the past decade is reflected in the high rate of growth in the number of trunk calls in that period. Since 1981 the number of trunk calls has been growing at a rate of 10 per cent compounding yearly. It is expected that domestic telecommunications activity will continue to increase in the future.

Telecom trunk calls equation

The dependent variable in this equation is the log of the number of domestic trunk telephone calls (TRUNK).

There are two main explanatory variables in the equation (see table 7.2). The first is the log of seasonally adjusted real non-farm gross domestic product (ln RGNF85). The elasticity (1.9309) shows that, like international calls, domestic trunk calls are highly responsive to changes in income.

The second major explanatory variable is the log of the real Telecom tariff rate (ln RTEL), lagged one quarter. The estimated elasticity (-0.9298) reveals that there is a significant price effect, a 1 per cent rise in the real tariff rate producing a fall in the number of trunk calls of an almost equal proportion. A set of seasonal dummies is also included in the estimating equation.

The form of the estimated equation is double-log and estimation is by ordinary least squares. The fit of predicted to actual is shown in figure 7.2. The summary statistics show that the data fits the equation quite
Variable	<i>Estimated</i> coefficient	t statistic	
Constant	-15.5656	-11.29	
ln RGNF85	1.9309	14.70	
ln RTEL(-1)	-0.9298	-6.22	
D1	-0.0358	-2.54	
D2	-0.0242	-1.73	
D3	-0.0008	-0.06	

TABLE 7.2 ESTIMATED EQUATION OF THE NUMBER OF DOMESTIC TRUNK CALLS

Dependent variable - ln TRUNK.

Estimation method - ordinary least squares. Adjusted R^2 - 0.987. Durbin-Watson statistic - 1.5. Estimation period - 1983Q1 to 1988Q4.

well, the adjusted R^2 statistic indicating that independent variables explain over 98 per cent of the variation in the number of trunk calls. The Durbin-Watson statistic obtained was 1.5. The test for positive autocorrelation is inconclusive. The Theil statistic has a value of 0.006, indicating an excellent fit of four-quarter-ahead forecasts to the actual traffic (see figure 7.2).

All data used is listed in appendix I and the variable mnemonics are listed in appendix III.

CHAPTER 8 URBAN PUBLIC TRANSPORT

Urban public transport plays only a minor role in Australian cities, with a large part of urban travel being by private automobile. For example, in 1987-88 it is estimated that 94 per cent of all urban passenger-kilometres were by car, with urban public transport accounting for only 6 per cent of the urban passenger transport task (see table 8.1).

However, in the past the role of urban public transport has been much greater. As can be seen from figure 8.1, the number of passenger journeys on public transport reached a peak in Sydney, Melbourne and Brisbane just after World War II. Starting in the 1950s however, the number of private automobiles started to rise dramatically, and continued to

Year	Car	Bus	Train	Tram	Ferry	Total
Distance	travelled (billion	passe	enger-kilome	tres)		
1970-71	71.9	3.3	6.2	0.5	0.2	82.1
1975-76	91.3	3.0	4.9	0.5	0.2	99.9
1978-79	100.0	3.0	4.7	0.5	0.2	108.4
1981-82	111.3	3.0	5.4	0.5	0.2	120.4
1984-85	127.5	3.0	5.2	0.5	0.1	136.3
1987-88	144.7	3.1	6.1	0.5	0.1	154.5
۵						
Share of	distance travelled	(per	cent)			
1970-71	87.6	4.0	7.6	0.6	0.2	100.0
1975-76	91.4	3.0	4.9	0.5	0.2	100.0
1978-79	92.2	2.8	4.3	0.5	0.2	100.0
1981-82	92.4	2.5	4.5	0.4	0.2	100.0
1984-85	93.5	2.2	3.8	0.4	0.1	100.0
1987-88	93.6	2.0	4.0	0.3	0.1	100.0

TABLE 8.1 THE URBAN PASSENGER TRANSPORT TASK, 1970-71 TO 1987-88

Source BTCE estimates.

Source: Neutze (1977) and BTCE estimates.

Ć

Figure 8.1 Urban public transport passengers: Sydney,

Melbourne and Brisbane 1890-1990

 \langle

do so throughout the decades of the 1960s, 1970s and early 1980s (see figure 8.2). This dramatic rise in private automobile ownership meant a corresponding shift away from urban public transport. Thus, in spite of large increases in population and disposable income over this period, all three cities saw a steady downward trend in urban public transport patronage.

The late 1970s and early 1980s saw the end of this downward trend in patronage. Rising petrol prices, increasing congestion and parking problems, and (since the 1985 devaluation) sharply increased prices for new automobiles, have all been factors contributing to a resumption of growth in urban transport patronage in the 1980s. Thus, for the period for which the BTCE's models are derived, urban public transport was again trending upwards.

Rail grew more than other public transport modes during the 1980s. This is perhaps not surprising given the increasing job concentration in the developing central business districts of Australian cities during the decade. Trains are the basis for a rapid line-haul service and thus are favoured by centralisation of jobs in the central business district. Indeed the 1980s saw a resurgence in urban train systems around the world. Significant train services were initiated in Hong Kong, Singapore, Vienna, Brussels, Washington, Boston and Zurich (Newman & Kenworthy 1989).

Urban public transport equation

5

Using as a dependent variable the log of the aggregation of the bus, tram and train passenger numbers per 1000 population from seven cities (Sydney, Melbourne, Brisbane, Adelaide, Perth, Hobart and Canberra), an Australia-level model was fitted. The details of the equation are presented in table 8.2. Because the equation is of a double-log form, the coefficients represent elasticities. As can be seen from table 8.2, the coefficient of the log of Australian real income per person (ln RAUSIPP) implies an income elasticity of demand for urban public transport in Australia of about 0.6.

Australia: 1929-1989

66

C

Variable	Estimated	t statistic		
······				
Constant	13.4905	37.6		
ln RAUSIPP	0.6433	2.8		
ln RAUSF14	-0.5448	-5.8		
ln RAUSF58	-0.2519	-2.7		
TIME	0.0019	2.3		
AUSDISP	-0.0701	-8.8		
BIDUM	0.0148	2.5		
D1	-0.0103	-1.9		
D2	0.0291	5.3		
D3	0.0355	6.4		

TABLE 8.2	ESTIMATED	EQUATION	FOR	AUSTRALIA-LEVEL	URBAN	PUBLIC
	TRANSPORT			•		

Dependent variable - ln AUSPPP. Estimation method - ordinary least squares. Adjusted R² - 0.8749. Durbin-Watson statistic - 2.2. Estimation period - 1979Q1 to 1989Q3.

The log of the real urban public transport fare has a coefficient of -0.55 for 1 to 4 quarters back (ln RAUSF14) and -0.25 for 5 to 8 quarters back (ln RAUSF58), implying a -0.8 elasticity in total after two years. This elasticity is quite high. However, it must be born in mind that data for the current estimation involved a mix of bus, train and tram travel, as well as travel in both peak and off-peak periods (off-peak and bus elasticities being generally higher).

A positive linear time trend of 0.00192 implies that each year public transport patronage grew by 46 passengers per thousand people per quarter, independently of changes in other causative factors. A real petrol price variable was tried, but came out insignificant with the wrong sign and was dropped from the analysis. The tracking of the model is shown in figure 8.3. Most of the variation is accounted for and there is no evidence of autocorrelation. If the two dummies AUSDISP and BIDUM are dropped from the equation, the adjusted R^2 drops to 0.65. However, if the two dummies are

dropped, and the quarters during which they are active are excluded from the estimation period (as being a priori atypical), the adjusted R^2 is 0.84. There is no forecasting history with this equation.

CHAPTER 9 CONCLUDING REMARKS

It has been found possible to satisfactorily estimate a suite of simple forecasting models, covering a range of transport and communications activities.

The models presented in this paper have been in use in BTCE forecasting for *Transport and Communications Indicators* since the December quarter of 1988. The experience using them has been relatively good, with major turning points in imports, automobile sales and foreign tourism predicted in advance of occurrence.

The BTCE plans to refine and maintain the models, as well as to develop others to expand coverage of the sector. Current plans are to develop models of coastal shipping, private rail freight and interstate coach travel among others. These future developments will be the subject of further Working Papers from the BTCE.

APPENDIX I DATA

,

~

ID 197701	AGGINFA 5.54967	AGGOFAR 4.42562	AIFRATE 1.11000	ALUMQ 1369-00	AUS 2.141301E+08
197702	5.64211	4.80808	1.15000	1450.00	2.253970F+08
197707	5.67820	4.68493	1.15000	1611.00	2,277062E+08
197704	5. 21742	4.44651	1.20000	1689.00	2.232834E+08
197801	5 24300	4.47371	1.20000	1400.00	2 162329E+08
197902	5 40429	A 53619	1 20000	1668.00	2 3075835+08
107002	5.04004	A A1816	1 20000	1548.00	2 247471E+09
107000	5 00190	4.90357	1.20000	1474 00	2,2470/12,00 2,25704AE±08
197809	4 07049	7 67116	1.20000	1499 00	2.2330442708
197901	4,27048	3.02110	1 20000	1400.00	
19/962	4.21027	3.0770/	1.20000	1834.00	2.17310JE+08
19/900	4.41171		1.28000	1670.00	2.3383376408
197904	4.28207	0./0760 7 67000	1.28000	1664.00	2.24/1166+08
198001	4.00872	3.33099	1.33000	2064.00	2.23/9396+08
198002	4.23977	J.85200	1.35000	18/4.00	2.308111E+08
198063	4.65024	4.1/083	1.68000	1289.00	2.428/206+08
198004	4 642/4	3.98054	1.77000	1767.00	2.082590E+08
1981Q1	4.26231	3.74524	1.89000	1578.00	2.268971E+08
198102	4.49774	3.96936	1.89000	1780.00	2.345876E+08
198103	4.46149	4.30367	2.09000	1646.00	2.356488E+08
198104	4.48304	4.04394	2.19000	1506.00	2.254195E+08
198201	4.26963	3.86893	2.19000	1642.00	2.260993E+08
198202	4.09814	3.99015	2.30000	1377.00	2.326209E+08
198203	4.22993	3.95615	2,30000	1452.00	2.312007E+08
1982Q4	4.92226	4.16251	2.45000	1481.00	2.237155E+08
198301	4.33399	3.93877	2.50000	1232.00	2.189464E+08
198302	4.25531	4.47183	2.50000	1565.00	2.275927E+08
198303	4.41118	4.21107	2.68000	1820.00	2.195018E+08
198304	4.43770	4.00634	2.68000	1761.00	2.269741E+08
1984Q1	4.42326	3.87554	2.68000	1468.00	2.222900E+08
198402	3.81771	4.13874	2.68000	1839.00	2.266644E+08
198403	4.39750	4.10370	3.16000	1775.00	2.285964E+08
198404	4.71679	3.84537	3.16000	1779.00	2.260456E+08
198501	3,84946	3.72744	3.16000	1797.00	2.220778E+08
198502	3.64376	3.99471	3.48000	1664.00	2.347592E+08
198503	3,86434	4.11002	3.72000	1798.00	2.418152E+08
198504	3,99657	4.00027	3.72000	1910.00	2.314214E+08
198601	4.04549	3.94921	3.72000	1831.00	2.299291E+08
198602	3,59152	3.85301	3.72000	1892.00	2.435953E+08
198603	3.76496	3,80146	4.02000	1894.00	2.468055E+08
198604	3,91564	3.46613	4.02000	2071.00	2.371650E+0B
198701	3.92111	3.76105	4.02000	2069 00	2.347880E+08
198702	3.50629	3.44503	4.02000	2083.00	2.469268E+08
198703	3 67403	3 20944	A 02000	2129 00	2 4932375408
198704	3 49050	र <u>भर</u> 047	4 22000	2020.00	
100001		7 70154	4.22000	2020.00	
176801	3.87117	3./9180	4.22000	2220.00	2.4/3481E+08
178802	3.30000	3.64000	4.22000	2172.00	2.3837046+08
148863	3.60000	3.82000	4.22000	1841.00	2.61/000E+08
178864	3.90000	3.32000	4.ZZ000	2180.00	2.320000E+08
196901	3.77000	3.60000	4.22000	2058.00	2.4560006+05
198902	3.43000 T FRAME	3.61000	4.28000	2211.00	2.63/000E+08
198903	3.59000	3.60000	4.20000 . Toooo	1834.00	2.566000E+08
198904	3.83000 T	3.59000	4.30000	2163.00	2.500000E+08
199001	3.41000	3.57000	4.36000	2020.00	NA
199002	3.48000	3.58000	4.36000	2150.00	NA

ID	AUSFAR	AUSPECS	AUSPOP	AVGDP	BULKOUT
197701	66.0000	12895.0	14157.0	82.3288	34831.3
197702	66. 1000	13334.0	14192.0	82.7288	39192.6
1977Q3	66 . 8000	13647.0	14231.0	82.1980	39861./
1977Q4	67.5000	13957.0	14282.0	80.6500	40458.6
197801	71.7000	14245.0	14330.0	81.1845	38188.5
197802	71,8000	14954.0	14359.0	82.1793	40717.6
197803	72.6000	15356.0	14397.0	83.2912	36634.6
197804	72.6000	15758.0	14431.0	84.6031	39892.7
107001	75 6000	16248.0	14478.0	84,9273	41465.3
107007	75 6000	16712.0	14516.0	85.4565	42064.5
107002	79.0000	17262.0	14555.0	85.6273	42975.Ú
19/903	74.1000	17485 0	14603 0	86 0910	45025.0
197904	84.1000	10450 0	14646 0	87 0340	42738 0
198001	87.4000	109/4 0	14695 0	84 2882	45141 0
198002	87.9000	18784.0	14073.0	00.2072	40101.0
198003	94.9000	19596.0	14747.0	88.3872	42100.0
1980Q4	101.000	20228.0	14807.0	87.0529	43403.0
1981Q1	102.100	20783.0	148/5.0	87.3892	34780.0
198102	102.200	21591.0	14923.0	88.8682	41890.0
1981Q3	105.600	22426.0	14989.0	89.6061	42167.0
198104	115.400	23036.0	15054.0	89.6198	39506.0
198201	117.200	23658.0	15122.0	87.5887	38912.0
198202	117.200	24717.0	15184.0	90.3214	43141.0
198203	123,500	25383.0	15239.0	87.8128	40300.0
198204	129,400	26160.0	15289.0	89.0613	38608.0
198301	130 200	26871.0	15346.0	88.7441	38235.0
100301	130 300	27224.0	15394.0	90.2061	40366.0
100707	134 100	27974 0	15439 0	97 0059	47143 0
170303	145 900	29741 0	15494 0	93 0540	49205 0
178.304	140.900	20/01.0	15531 0	75.0340 95 7590	48203.0
198401	147.800	27404.0	15570 0	73.2370	47302.0 54940 0
198402	147.300	30013.0	15479.0	70.3313	57/0/ Ó
198403	151.100	30387.0	13827.0	78.7313	3/676.0
198404	154.500	31345.0	156//.0	9/.9///	35306.0
1985Q1	155.200	32339.0	15/3/.0	98.3381	57237.0
198502	155.700	33484.0	15789.0	99.5000	59285.0
1985Q3	159.900	34510.0	15840.0	99.6414	58927.0
198504	163.500	35476.0	15901.0	100.260	57333.0
198601	166.300	35818.0	15962.0	99.9881	57220.0
198602	166.800	37030.0	16018.0	101.224	54362.0
198603	177.300	37965.0	16077.0	102.539	57381.0
198604	181.000	38593.0	16139.0	101.136	55518.0
198701	182.800	39266.0	16203.0	102.219	52187.0
198702	183,300	40319.0	16263.0	102.719	59661.0
198703	191.200	41833.0	16328.0	103.698	63946.Ú
198704	193.800	42544.0	16378.0	104.319	67773.0
198801	197.000	43757.Ŭ	16478.0	104,924	63298.0
198807	198 100	44672.0	16538.0	104 821	62300 0
100002	212 300	45740 0	16604 0	105 247	45701 O
100004	212.000	47059 0	16677 0	105 734	20031.0 20075 0
170024	213.400	47000.0 A9840 A	16747 0	103./38	40-0-0
178761	- 213.000 j	40000.V	14007 0	107.133	20010.V
128265	216.600	50369.0 51447 C	10007.0	107.737	00000.0
148469	228.700	01440.0	10002.0	108.576	6/115-0
198904	232.700	INF	167	109.727	60777.U
199001	234.900	NA	16782.0	110.570	446
199002	236.100	NA	17042.0	111.1/4	NE

ID	BULKRF	BUSFAR	COALQ	CPI	DEL3
1977Q1	1.959005E+07	29.1700	8336.00	71.4000	NA
197702	2.135076E+07	30.0300	9485.00	73.1000	NA
197703	2.124831E+07	30.8900	8883.00	74,5000	- 625783
197704	2.017010E+07	31.7500	9637.00	76.3000	- 665723
197801	1.873778E+07	32.5900	9122.00	77.3000	1 08685
197802	2.107679E+07	33,4300	10265.0	78.8000	2.48260
197803	1.941B13E+07	34.2700	8146.00	80.4000	3 54310
197804	2.110436E+07	35.1000	10006.0	82.2000	4 58466
197901	2.120383E+07	36.1100	9325.00	83,6000	4. 27334
197902	2-184185E+07	37.3000	10514.0	85.8000	3,78690
197903	2.313976E+07	38.4800	9527.00	87.8000	2 80804
197904	2-398818E+07	39.6700	11086.0	90.4000	2.35304
198001	2.391298E+07	40.2700	10864-0	97.4000	2,001/4
198002	2 461977E+07	40.2900	11130.0	95 0000	2.95035
199003	2 142524E+07	40 3100	8293 00	96 8000	3 44415
198003	2.5942228+07	40.3300	11997 0	98,8000	3.86813
100101	2 3977115+07	39 9200	11494 0	101 100	4 07150
170101	2.37//112:0/	79 0900	15431 0	107.100	4.0/132
178102		39.0400	11444 0	105.400	4.10873
198103	2.3846638707	38.2000	11444.0	105.500	2.93022
198104	2.232048E+07	37.4300	12228.0	109.900	1.65656
198201	2.4/5582E+0/	37.0600	9749.00	111.800	.102520
198202	2.848032E+07	37.1500	12636.0	114.500	-1.778039E-0
198203	2.741007E+07	37.2400	12492.0	118.500	164089
198204	2.515586E+07	37.3200	11826.0	121.900	7.848044E-01
1983Q1	2.398003E+07	36.9900	14713.0	124.600	347012
198302	2.516047E+07	36.2300	15665.0	127.300	515486
198303	2.690521E+07	35.4700	14745.0	129.500	153614
198304	2.647784E+07	34.7100	16072.0	132.500	1.95987
1984Q1	3.112872E+07	. 34.4400	18053.0	132.000	4.63323
198402	3.264835E+07	34.6600	15339.0	132.200	6.34549
198403	3.286979E+07	34.8700	21889.0	134.000	7.10586
198404	3.397366E+07	35.0900	20854.0	135.800	5.64980
198501	3.100858E+07	35.2900	20416.0	137,800	5.17143
198502	3.458861E+07	35.4800	22991-0	141.100	5.25693
1985Q3	3.751781E+07	35.6600	22536.0	144.200	5.81073
198504	3.700429E+07	35.8400	23230.0	147.100	6.22192
198601	3.394103E+07	36.3100	22713.0	150.500	4.14174
198602	3.709089E+07	37.0700	22004.0	153.000	2.66595
198603	3.906164E+07	37.8200	23037.0	157.000	1.42793
198604	3.748570E+07	38,5700	25030.0	161.500	1,75089
198701	3.511412E+07	39.3400	22912.0	164.700	3.77922
198702	3.703929E+07	39.8000	26739.0	167.200	4.59339
198703	3.785993E+07	37.8000	23871.0	170.000	5.33481
198704	3.896400E+07	41.5000	27360.0	172,900	4-67289
198801	3.593600E+07	41.8000	26588.0	176 000	4 27014
198802	3.469200E+07	41.8000	24242-0	179.000	7 94491
198803	3.685200E+07	44.5000	23539 0	182 400	3.00001
198804	3-513300E+07	45.5000	25945 0	184 700	7 701/1
198901	3.428200E+07	46 1000	21499 0	190.200	0.00101
198902	3.759100E+07	46.6000	24077.0	100.000	4.V602/ 5.060/5
198903	3.859500E+07	47 1000	25551 A	107 600	3.03863
198904	3-864400E+07	47 6000	20021.0	197.000	4.95224
199001	3.937400E+07	47 6000	29901.V 28500 0	200.700	4.58224
199082	0.707400E+07	45 3000	2000.0 22570 A	204.100	2.94994
	1 107	-0.000	200/8.0	207.400	NA

...**.**

ID	DISPWS	DOMAFR	DOMPAS	DOMPAS1	DOMPAS2
197701	7.10000	25785.0	2.371738E+06	NA	2.261009E+06
197702	13.5000	25200.0	2.251595E+06	NA	2.149411E+06
197703	17.5000	30991.0	2.622751E+06	NA	2.531951E+06
197704	14.6000	31334.0	2.512850E+06	138747.	2.374103E+06
197801	8.40000	27474.0	2.609597E+06	117569.	2.492028E+06
197802	57,9000	31091.0	2.544710E+06	88545.0	2.456165E+06
197803	49.6000	32805.0	2.758015E+06	104993.	2.653022E+06
197804	15,2000	31971.0	2.575563E+06	161838.	2.413725E+06
197901	8,00000	29315.0	2.602849E+06	135186.	2.467663E+06
197902	34.1000	33439.0	2.782664E+06	122625.	2.660039E+06
197903	72 4000	33594 0	2-8693216+06	146195.	2.723126E+06
197904	8 80000	35364 0	2 880057E+06	191003.	2.689055E+06
100001	24 2000	29800 0	2.8502485±04	198676	2.007000E+06
198001	17 3000	27800.0	2.0002-02.00	131676	2 795147E+04
198002	25 3000	33114 0	3 0975745+04	156101	2.700147E-00
198003	20.0000	71000 0	0 0135455404	2010121	2.7414002406
198004	7.20000 15 1000	31878.0	2.8133432406	174405	2.8118002+08
198101	13.1000	20774.0	2.031070ETUG	174423.	2.8374736408
198102	23.2000	30767.0	2.63//816+08	102000.	2,4831482+08
198103	13.7000	34333.0	2.950442E+06	164220.	2.7882196408
198104	38.9000	35/04.0	2.882/22E+06	211201.	2.8714612+06
198201	8.50000	30061.0	2.7618982+06	182198.	2.579701E+06
198202	8,30000	35932.0	2.801448E+05	156011.	2.645437E+06
198203	9.80000	38208.0	2.835480E+06	169050.	2. 6664 30E+06,
198204	5.90000	38314.0	2.606929E+06	208725.	2.398204E+06
198301	5.50000	31984.0	2.470351E+06	176325.	2.294026E+06
198302	8.60000	33347.0	2.420146E+06	143700.	2.276446E+06
1983Q3	4.90000	38812.0	2.759300E+06	170775.	2.588525E+04
198304	3.40000	39228.0	2.590800E+06	217200.	2.373600E+06
198401	5.20000	35157.0	2.573900E+06	184200.	2.389700E+06
198402	5.10000	36682.0	2.673600E+06	172125.	2.5014758+06
198403	3.00000	39639.0	2.859600E+06	171900.	2.387700E+06
198404	9.80000	39811.0	2.768400E+06	233100.	2.535300E+06
198501	8.60000	34406.0	2.806100E+06	215100.	2.591000E+06
198502	3.40000	36997.0	2.911100E+06	176250.	2.734350E+06
198503	21.2000	39246.0	3.006400E+06	182475.	2.823925E+06
198504	5.00000	42167.0	3.056800E+06	283200.	2.773600E+06
198601	4,20000	32693.0	2.988800E+06	259125.	2.729675E+06
198602	18.3000	34243.0	3.005300E+06	222900.	2.782400E+06
198603	10.3000	34883.0	3,153500E+06	232200.	2,921300E+06
198604	2.00000	36459.0	3-166400E±06	357825.	2.8085755+04
198701	4.50000	31335.0	3-084300E+06	324600.	2-759700E+06
198702	5 20000	34346 0	3 089000E+06	277500	2 811500E+04
199703	3.20000	34530 A	3 4254005+04	277000.	Z.811800E.08
100701	8.00000	39414 0	3.4204002.08	400700	J. 11/320E+08
190201	4. 70000	37616.0	3.4/4100E+08	420700.	3.043400E+08
198801	4.30000	33363.0	3.348700E+06	3951/5.	2.953525E+06
198802	9.10000	33803.0	3.3994002+05	361050.	3.038350E+06
100004	9.20000 1 Eccoc	37212.0	3.961200E+06	434925.	3.526275E+06
198804	1.30000	41020.0	3.512300E+06	549000.	3.063300E+06
148401	2.70000	33386.0	3.263411E+06	378250.	2.865161E+06
198902	6.10000	36117.0	5.176440E+06	329550.	2,846990E+06
148463	6.30000	19095.0	2.167652E+06	365025.	1.802627E+06
198904	4.50000	13527.0	1.837043E+06	460650.	1.376393E+06
199001	6.00000	26944.0	2.825392E+06	418575.	2.406817E+06
199002	3.30000	29129.0	3.048353E+06	366225.	2.682128E+06

ID	DOMRPK	DOMRPK1	DOMRPK2	ERFAR	ERPAS
197701	1.736431E+06	NA	1.655362E+06	32.5600	415651.
197702	1.642350E+06	NA	1.582404E+06	32.5600	430849.
197703	2.093273E+06	NA	2.020803E+06	33.1900	432808.
197704	1.993933E+06	110075.	1.883838E+06	33.1900	442909-
107001	2 0761735+06	93537 1	1.982636E+06	33.3700	409319
107001	2.0175395+04	70201 7	1 9473368+06	33 3700	476441
1978022	2.2255445404	94707 9	2 140842E+06	33 5500	A110A7
197803		120302	1 97944555+04	33 5500	150007
197804	2.03//8/2+08	109575	1 9919095+04	34 1500	4378779
19/901	2.0404842408	1083/3.	2 1458485+04	34.1500	414700
19/902	2.244/872708	100000	2.1430406406	34.1300	414/07.
19/903	2.370938E+08	120802.	2.2301382408	37.3300	3861/4.
197904	2.3586/62+08	136423.	2.2022512+08	34.3300	374327.
198001	2.3534146+06	155/8/.	2.197627E+06	41.5300	402321.
198002	2.399767E+06	108334.	2.291433E+06	41.5300	3/695/.
1980Q3	2.634607E+06	132787.	2.501820E+06	46.9200	408175.
1980Q4	2.387534E+06	171368.	2.216167E+06	46.9200	432627.
1981Q1	2.441717E+06	150393.	2.291324E+06	49.5800	442284.
198102	2.278537E+06	131848.	2.146689E+06	49.5800	427103.
1981Q3	2.640812E+06	146989.	2.493823E+06	54.5100	417158.
1981Q4	2.552435E+06	187056.	2.365380E+06	54.5100	443098.
198201	2.473875E+06	163197.	2.310678E+06	62.2800	453109.
198202	2.488256E+06	138570.	2.349686E+06	62.2800	435311.
198203	2.578866E+06	153751.	2.425115E+06	68.7800	389374.
198204	2.344097E+06	187681.	2.156416E+06	68.78 00	447334.
198301	2.245043E+06	160243.	2.084800E+06	48,7800	399941.
198302	2 159183E+06	128205.	2.030978E+06	68.7800	365962.
198303	2.550862E+06	157875.	2.372788E+06	68.7800	352803.
199304	2 357394E+06	197632-	2.159762E+06	68,7800	403500.
100/01	2 3520598+04	168374	2 183735E+06	69.5000	388065.
100400	2.3320372100	156074	2 268207E+06	69 5000	393661
100407	2.4242010,00	150507	2 495115E+04	73 4900	390044
170400	2.8048782108	212547	2 311755E+06	73 4900	402253
100501	2.3243022408	107454	2.3255075404	78.4700	754486
198301	2.3183882408	177834	2.3233072408	78.0500	374011
198302	2.6363626706	137810.	2.4787342+08	78.0300	AUDDVQ
198503	2.84644JE+08	1/3131.	2 5005055504	80.0000	406047.
198504	2.853430E+08	203/8/.	2.3873236708	80.0000	408703.
198601	2.8031/6E+06	242602. Cozoc	2.3601446406	80.0000	407273.
198602	2.7898246+08	203085.	2.3827086708	80.0000	000040-
198663	3.028/49E+06	224220.	2.805/35E+06	85.6100	400494.
198604	3.033310E+08	342240.	2.6903238+08	85.6100	408842.
198701	3.051685E+06	321087.	2./30518E+06	85.6100	409325.
198702	2.932891E+06	252458.	2.669415E+06	93.7400	39403/.
198703	3.378816E+06	302705.	3.07512BE+06	92.0300	431042.
198704	3.382867E+06	415566.	2.965425E+06	92.0300	481897.
198801	3.254849E+06	381754.	2.862811E+06	92.0300	472179.
198802	3.250655E+06	346317.	2.905312E+06	97.4400	452600.
198803	3.888139E+06	426670.	3.461130E+06	97.2600	473300.
198804	3.532099E+06	540765.	3.046958E+06	97.3000	493000.
198901	3.196542E+06	393471.	2.914379E+06	103.400	478600.
198902	3.115916E+06	305395.	2.847430E+06	103,400	431000.
198903	2.204476E+06	354750.	1.849726E+06	114.300	497600.
198904	1.904494E+06	477513.	1.426981E+06	114.300	620600.
199001	2.8315i2E+06	395251.	2.436251E+06	118.300	505000.
199002	3.020522E+06	311924.	2.708599E+06	117.000	NA

-

~

5.1

~

מז	EXNZA	EXPO	EXTON	GRNQ	G7GDP
197701	1.15000	34371.0	6818.00	2939,00	79.5000
197702	1.15000	33763.0	7454.00	2939.00	80.3000
197703	1.14000	36155.0	7661.00	3264.00	81.3000
197704	1.12000	34709.0	8281.00	3264.00	81,7000
107001	1 12000	32578.0	8804.00	3264.00	82,5000
197001	1.12000	33857.0	10194.0	3264.00	84.4000
107002	1 10000	35229.0	10092.0	2771.00	85,1000
107000	1 09000	34160.0	11409.0	2771.00	86.2000
177007	1 04000	33903.0	12087.0	2711.00	86.4000
197901	1 11000	35937 0	12648.0	2771.00	87,1000
177702	1.17000	33970 0	12472 0	5076.00	87.8000
197903	1.17000	41910 0	14030 0	5024 00	88 1000
197904	1.15000	71050 0	12000.0	5024 00	89,0000
148001	1.13000	41577.0	12007.0	5025.00	97 4000
198002	1.17000	41023.0 7/467 0	12780.0	3028.00	87.8000
198003	1.19000	36433.0	14070 0	3387.00	89.5000
198004	1.23000	33773.0	14032.0	3387.00	88.0000
198101	1.27000	20201.0	15148.0	3387.00	89.8000
198102	1.35000	38728.0	13093.0	3387.00	89.8000
198103	1.39000	37724.0	14965.0	3373.00	90.2000
198104	1.37000	35629.0	17347.0	3573.00	89.6000
198201	1.37000	35442.0	17660.0	3573.00	89.0000
198202	1.38000	36982.0	17849.0	3573.00	89.000
198203	1.32000	36502.0	16370.0	2986.00	87.0000
198204	1.34000	35431.0	18772.0	2939.00	87.2000
1983Q1	1,33000	36130.0	21540.0	2707.00	90.0000
198302	1.34000	34410.0	20423.0	1415.00	91.4000
198303	1.36000	42060.0	17361.0	1474.00	92.4000
1983Q4	1.38000	43075.0	22153.0	2970.00	93.6000
198401	1.40620	44117.0	22446.0	6010.00	95.5 000
198402	1.35870	48251.0	22822.0	6011.00	96.3000
198403	1.70380	52718.0	20518.0	5097.00	97.1000
198404	1.73430	53645.0	22244.0	5245.00	97.8000
198501	1.51960	50416.0	27885.0	6630.00	78.70 00
198502	1.38500	58906.0	27334.0	5845.00	99.5000
198503	1.28960	54435.0	25668.0	3984.00	100.500
198504	1.36040	51718.0	30944.0	4751.00	101.200
198601	1.33940	54215.0	33670.0	7029.00	102.000
198602	1.25000	51112.0	33347.0	5637.00	102.500
198603	1.28300	52138.0	34388.0	4054.00	102.800
198604	1,26280	52607.0	38916.0	4390.00	103,400
198701	1.23250	47128.0	40594.0	4803.00	104.400
198702	1.20770	54721.0	40379.0	5209.00	105,400
198703	1.11200	55557.0	38453.0	4558.00	107.000
199704	1.09450	58532.0	44046.0	3791.00	108.600
198801	1 11820	57464.0	43294 0	3889.00	109.900
199902	1 17520	54947 0	37666 0	2651 00	110 500
100002	1 22470	57754 0	38407 0	2489 00	111 800
198804	1 75110	56367.0	41784 0	2512 00	117 400
100004	1 33290	57480 0	R745 0	3371 00	114 000
199902	1 30000	59310 0	38742 0	5046 00	114 400
100007	1 27000	47557 A	38732.0 38732.0	4000 00	115 500
100007	1.27000	54749 0	JUZJO.U NA	2900.00	116 100
100001	1.24000	557/7 A		4200.00	110.100
199001	1.22000	55763.0	INF4	4200.00	115.800
122005	1.20000	37727.O	NA	5717.00	117.200

ID	IFRATE	IMTON	INTER	IRONQ	MEATO
197701	1.351845E-02	11777.0	-100.000	20420.0	296.000
1977Q2	1.367989E-02	11527.0	100.000	18582.0	296.000
197703	1.3540566-02	12970.0	102.000	21092.0	342.000
1977Q4	1.404231E-02	14325.0	102.000	18814.0	342.000
197801	1.386065E-02	12886.0	103.300	17487.0	342,000
197802	1.371930E-02	14110.0	103,300	17355.0	342,000
197803	1.3568526-02	16215.0	105.400	21638.0	355.000
197804	1.339316E-02	17560.0	105-400	18621 0	355,000
197901	1 354157E+02	15320.0	108 700	19753 0	355,000
197902	1 2400015-02	14471 0	108 700	19070 0	755 000
107007	1 3014585-02	19073 0	113 100	1/707 0	333.000
197903	1.0774646-00	19050.0	117,100		317.000
177704	1.2334386-02	17032.0	113.100	22//4.0	317.000
198001	1.2/0489E-02	13723.0	119.300	17745.0	317.000
198002	1.2145/3E-02	16364.0	119.300	22233.0	317.000
198003	1.458434E-02	18112.0	130.700	22209.0	296.000
198004	1.456502E-02	19154.0	130.700	17567.0	296.000
1981Q1	1.471997E-02	15919.0	136.300	17415.0	296.000
198102	1.353965E-02	19057.0	137.800	16855.0	276.000
1981Q3	1.425210E-02	22445.0	147.600	19806.0	277.000
198104	1.454541E-02	24593.0	147.600	17069.0	277.000
198201	1.429821E-02	21317.0	147.600	19105.0	277.000
198202	1.455604E-02	21506.0	147.600	18094.0	277.000
198203	1.470400E-02	23304.0	158.100	17887.0	326.000
198204	1.499884E-02	23662.0	158,100	17724.0	319.000
198301	1.508587E-02	20236.0	164,700	16611.0	283.000
198302	1.465571E-02	22333.0	164.700	14539 0	274 000
198303	1.5216905-02	24699.0	164.700	22521 0	249.000
198304	1.4656828-02	29015 0	163-600	20417 0	245,000
198401	1 4438225-02	26288 0	167 600	17300 0	201.000
198407	1 492038E-02	28549 0	167 600	22057 0	204.000
100402	1 3840885-02	31002.0	174 000	21404 0	231.000
100400	1.3840886-02	33200.0	174,000	21466.0	240.000
190501	1 5080475-02	20135 0	174.000	23004.0	223.000
100500	1.3040872-02	20133.0	174.000	17318.0	219.000
100507	1.7807482-02	20032.0	182.000	20493.0	352.000
198303	2.000427E=02	27637.0	182.000	23031.0	237.000
178304	1.8389338-02	306/4.0	191.100	19073.0	275.000
198601	1.845424E-02	24585.0	191.100	20494.0	247.000
198602	1.945098E-02	25196.0	197.600	19932.0	286.000
198603	1.995721E-02	26861.0	197.600	21044.0	302.000
198604	1.971147E-02	28997.Ú	205.700	18207.0	321.000
198701	1.980366E-02	26175.0	205.700	14944.0	297.000
198702	1.990814E-02	27680.0	209.400	18960.0	310.000
1987Q3	2.126534E-02	31163.0	209.400	22345.0	307.000
198704	2.229984E-02	33451.0	213.600	22344.0	327,000
198801	2.144274E-02	29983.0	213.600	22459.0	360.000
198802	2.006077E-02	33608.0	214.000	23258.0	328,000
198803	1.886648E-02	37331.0	218.000	26130.0	264.000
198804	1.677433E-02	42532.0	222.000	23121.0	317.000
198901	1.684058E-02	40533.0	223,000	22994.0	781 000
198902	1.709402E-02	43485.0	227.000	23759.0	267.000
198903	1.718694E-02	46540.0	232.000	28464 0	270.000
198904	1.727924E-02	ND	235.000	20404.0 24094 0	220.000
199001	1 7509905-02	NA	200.000	21040 0	700.000
199082	1 7519495-02	N/A	240.000 046 000	24000 0	304,000
177062	1./010406-02	NH	240.000	24000.0	200.000

ID	MEDIUM	NBULKIN	NBULKRF	NZGDP	OECDGDF	OECDCP I
197701	46.5800	NA	6.628426E+06	95.0000	7111.24	52.5667
197702	46.5800	NA	6.951965E+06	95.0000	7149.05	53.9667
197703	48.5900	NA	8.352715E+06	92.7000	7218.24	54.9000
197704	47,7100	NA	7.174059E+06	88.8000	7268.81	55.7667
197801	49.7900	NA	6.06079 4E+06	87.1000	7327.73	56.7000
197802	49.7900	NA	6.464547E+06	89.2000	7469.56	58.0333
197803	56.6900	NA	8.245833E+06	90.9000	7515.27	59,1667
197804	56 6900	NA	8.321871E+06	92.6000	7610.13	60.2000
197901	56.6900	NA	7.037850E+06	93.1000	7623.34	61,4333
197902	62.8900	NA	7.669422E+06	93.5000	7708.64	63.3000
197903	62.9200	1398 00	B.663290E+06	93.1000	7762.77	65.1667
197904	42.9200	1492 00	B.305724E+06	93.8000	7799.82	66.9333
198001	48 2200	1113.00	7.378731E+06	94.9000	7888.79	69.5000
199007	71 2700	1399 00	7.436664E+06	94.8000	7765.92	72.0000
198003	74 9300	1723 00	8.525603E+06	94.8000	7794.40	73,5000
198083	74.8300	1697 00	7.873694E+06	95.5000	7845.88	75,2667
198004	74.8300	1527 00	6.343791E+06	94.8000	7923.73	77.3000
198101	74.8300	1755 00	7.076496E+06	98.1000	7932 21	79.3000
170102	83.0100	1650 00	8.054899E+06	99.3000	7943 29	81.2000
198103	91.8100	1690.00	7.287447E+06	100.000	7030 45	87 8667
198104	91.8100	1009.00	6.115321E+06	100.600	7910 07	84 2067
196201	97.9000	1604.00	6.329581E+06	101.900	7937 90	85 8333
198202	97.9000	1091.00	6 A716A6E+06	101 100	7707.70	03.0000
198203	112.480	1592.00	6.401040E+06	101.100	7907.87	87.3000
198204	112.480	1054.00	5 3305925±04	97.2000	/727.27 7005 10	88.3000
198301	118.990	1199.00	1 91774/E+06	77.8000	7993.18	89.0333
198302	118.890	1422.00	4.012/04E+06	442 000	8091.88	90.4333
1983Q3	120.330	1487.00	6.382703E+06	102.200	8165.06	91.5333
198304	127.690	1632 00	5 100007E+04	103.200	8204.09	92.8000
198401	127.690	1653.00	5.04777755+04	102,000	8415.37	94.0333
198402	130.290	1009.00	7 0004015+06	107.500	8437.3/	93.2007
198403	134.960	2079 00	4 017740E+06	109 500	8043.04	76.2000
198404	134.960	1010 00	5.5017075.04	109.300	8601.46	97.3000
198501	134.960	1019.00	4 077775E+04	111 000	8683.40	78.000/
198502	134.960	2058.00	2.200770E+04	110.200	8746.90	99.8000
198503	143.230	1725.00	/.328/20E+08	110.200	8831.90	100.433
198504	143.230	1891.00	6.JZ/66JE+06	110.800	8892.80	101.433
198601	143.230	1773.00	J.614961E+V6	109.300	8940.30	101.967
198602	143,230	1/38.00	3./03807E+08	111.000	9015.00	102.233
198603	155.180	1959.00	7.1044876+06	114.100	9045.00	102.733
198604	155.180	1864.00	7.200001ETU0	110.300	9098.90	193.467
198701	155.180	1641.00	3.841620E+06	111.600	9164.90	104.303
198702	155.180	1570.00	5.328711ETVA	111.600	9264.20	103.500
198703	165.250	1698.00	7.7109882+08	112.000	93/6.50	106.400
198704	165.250	1866.00	7.382220E+08	111.600	9471.30	107.300
198801	165.250	1651.00	-6.283364E+06	111.500 -	9587.70	108.033
198802	165.250	1994.00	0.708040E+06	110.600	9625.6-	109.367
198603	174.930	2013.00	8.280140E+06	110.100	9700.00	110.567
19880.4	174.930	2395.00	3.271120E+06	110.300	9780.00	111.900
198901	174.930	2608.00	7.4310206+06	111.900	9830.00	113.067
198902	174.930	2355.00	7.812880E+06	112.800	9879.00	114.800
1989Q3	187.930	2288.00	0.333000E+06	115.400	98/4.00	116.100
198904	187.930	NA	3.308000E+06	113.300	9941.00	116.400
199001	-197.500	NA	7.427000E+06.	110.400	10020.0	117.300
199002	197.500	NA	NA	117.300	10100.0	118,300

ID	OILQ	στο	OTCCH	PETROL	PPI
197701	300.000	NA	NA .	NA	1872.00
197702	300,000	NA	. NA	NA	1842.00
197703	300.000	NA	NA	NA	1871.00
197704	300,000	NA	NA	NA	2046.00
197801	300.000	NA	NA	NA	2024.00
197902	300,000	NA	NA	NA	2028.00
107203	300.000	NA	NΔ	NA	2020.00
197004	300.000	NA	NΔ	NA	2456.00
107004	300.000	NA	NG	ΝA	2528.00
19/901	300.000	NA	NA	3740 70	2780.00
17/702	700.000			3/42.70	2760.00
197903	300.000	NA		3867.70	3010.00
197904	300.000	NH	NH	3/30.44	3327.00
198001	300.000	NFA NIA	NH	36/1.8/	3246.00
198002	300.000	NA	NA	3643.66	2718.00
178003	300.000	NA	NA	3649.63	3568.00
198004	200.000	NA	1.95000	3804.73	3647.00
1981Q1	300.000	NA	1.93750	3614.95	3934.00
198102	300.000	NA	1.92500	3716.17	4313.00
1981Q3	300.000	NA	1.91250	3823.97	4042.00
198104	300.000	NA	1.90000	3839.87	4227.00
1982Q1	418,000	NA	1.89750	3699.14	4144.00
198202	347.000	NA	1.89500	3861.84	4268.00
1982Q3	251.000	NA	1.89250	3720,53	4789.00
198204	343.000	NA	1.89000	3904.41	4797.00
198301	348.000	NA	1.88500	3607.37	4986.00
198302	310,000	7.698583E+06	1.88000	3751.12	4755.00
198303	581.000	8-166301E+06	1.87500	3784.06	5106.00
198304	677.000	8.842544E+06	1.87000	3882 42	5350-00
109401	734 000	8 8672195+06	1 88250	3802 53	5323.00
199402	1107 00	9 247591E+04	1 89500	5867.58	5514 00
100402	1072 00	9 9153175+06	1 90750	3801 42	5544 00
100404	1194 00	1 1020975+07	1 92000	4014 91	5514 00
198501	1525 00	1 1250155+07	1.90000	7070 10	5478.00
198301	10/4 00	1.0105705+07	1.90000	3837.17	3628.00
176302	1004.00	1.7175475.07	1.88000	3723.41	4704 00
198503	1968.00	1.31/34/2+0/	1.86000	3887.36	6324.00
198504	1718.00	1.449290E+07	1.84000	4100.40	6100.00
198601	1399.00	1.4426028+07	1.83250	0810.76	6231.00
198602	5/1.000	1.814014E+07	1.82500	4064.48	5543.00
198603	1043.00	1./565//E+0/	1.81/50	4032.60	5891.00
198604	1918.00	1.9810966+07	1.81000	4090.05	6289.00
198701	1497.00	2.047759E+07	1.82500	3879.67	6420.00
198702	1393.00	2.204500E+07	1.84000	4005.93	6231.00
1987Q3	1450.00	2.349300E+07	1.85500	4097.94	6200.00
198801	1438.00	2.884600E+07	1.86500	4140.66	6490,00
198802	1532.00	3,192700E+07	1.86000	4097.51	6096.00
198803	1847.00	3.523800E+07	1.85500	4217.30	6061.00
198804	1526.00	3.659900E+07	1.85000	4318.70	5910.00
198901	1507.00	3.744700E+07	1.84500	4247.30	5910.00
198902	1141.00	4.103100E+07	1.84000	4295.00	6405.00
198903	1475.00	4.324300E+07	1.83500	4308.00	4504.00
198904	1575.00	4.541300E+07	1.83000	4389.00	4811 00
199001	1949.00	4.491500E+07	1.82500	4261 00	7252 00
199002	2257.00	NA	1.82000	NA	7259.00

				•	
ID	PRICE	RAILEXP	REGO	RGNE85	RGNFP85
197701	54.8883	11275.0	126143.	44078.0	41001.0
197702	57.4409	12424.0	129353.	44393.0	41349.0
197703	59.9936	12147.0	135673.	43558.0	41151.0
197704	62.5463	12901.0	126280.	42873.0	40948.0
197801	64.7098	12386.0	117402.	44071.0	41611.0
197902	46 8732	13529 0	139342	44804.0	42266.0
197002	48 0347	10817 0	144718	45718 0	42691 0
197003	71 2001	13777 0	131017	44015 0	12840 0
197804	71.2001	12074 0	101547	44707 0	42080.0
197901	71.7124	17005.0	121347.	46307.0	43834.0
197902	72.6247	13283.0	137/13.	48100.0	40400.0
19/903	/3.33/0	14553.0	143112.	43229.0	43421.0
197904	/4.0494	16112.0	128572.	46221.0	44004.0
1980Q1	77.8281	15890.0	124385.	46592.0	44465.0
198002	81.6068	16156.0	130233.	47079.0	44954.0
198003	85.3856	11680.0	139758.	47705.0	45009.0
198004	87.1643	15384.0	135908.	48812.0	46265.O
198101	90.0328	15083.0	127653.	49129.0	46248.0
198102	90.9014	18818.0	144034.	49854.0	46895.0
198103	91.7699	15017.0	147375.	50334.0	470B6.0
198104	92.6385	15799.0	136692.	50679.0	46844.0
198201	94,4789	13322.0	136737.	50432.0	46812.0
198202	96.3192	16209.0	150495.	50538.0	46932.0
100202	00 1504	15478 0	151201	10707 A	47070 0
170200	100,000	14745 0	140155	49787.0	4/037.0
178204	100.000	17/20.0	192133.	47137.0	46/12.0
198201	107.100	17420.0	120062.	48/00.0	46633.0
198302	114.600	1/080.0	132831.	48528.0	46323.0
198303	116.100	16219.0	136382.	49731.0	47234.0
1983Q4	117.500	19042.0	131920.	50332.0	47795.0
1984Q1	120.000	24063.0	135333.	52193.0	49661.0
198402	121.900	21350.0	150302.	53138.0	50113.0
1984Q3	124.600	26986.0	147869.	53123.0	50567.0
1984Q4	126.900	26101.0	146421.	54217.0	51104.0
1985Q1	130.100	27046.0	156151.	54145.0	51432.0
198502	139.800	28836.0	160541.	55036.0	52862.0
198503	145.000	26520.0	155872.	56441.0	54396.0
198504	148.800	27981.0	152497.	56458.0	53690.0
198601	159.700	29742.0	117207.	56271.0	54307.0
198602	165.000	27643.0	130551.	55897.0	53628.0
198603	170.500	27091.0	125838.	56287.0	54259.0
198604	198.200	29420.0	104613.	56184.0	54841.0
198701	199.300	27715.0	99045.0	56884.Ú	55137.0
198702	203.200	31948.0	99213.0	57957.0	56245.0
198703	207.000	28429.0	106881	58796.0	56985 0
198704	215,000	31151.0	109333.	59546.0	57601.0
100001	221 400	30477 0	0 97499	59997 0	57007 0
100000	224 300	24997.0	116471	41000 0	50070 0
198802	227.000	26078.0	175500	(1772 0	
170004	227,000	20020.0	175060	01722.V (7770 0	38427.V
178824	230.200 271 00/	10407.V OEA7A A	133700.	63//U.U /EDCC ~	37504.0
198901	201.700	20070.0	121600.	03872.0	60497.0
148465	204.702 Div 150	311/3.V .	13/300.	66783.0	515/5.0
148403	236,450	29321.0	146500.	6/395.0	62102.
198904	236.747	27301.0	138900.	66849.Ŭ	61879.
199001	238.700	32700.0	142100.	66800.0	62775.O
199002	241.800	30495.0	146700.	65511.0	62246.Ú

ID	ROADPR	RTWI	BUGG	TEL .	TERT
197103	NA	NA	NA	· NA	1164.00
197104	NA	NA	NA	NA	1176.00
1972012	NA	NA		NA	1049.00
197203	NA	NA	NA	NA	1235.00
197204	NA	NA	NA	NA	1293.00
197301	NA	NA	NA	NA	1144.00
197302	NA	NA	NA	NA	1257.00
197303	NA NA		NA NA	NA	1433.00
197401	NA	NA	NA	NA	1322.00
197402	NA	NA	NA	NA	1417.00
197403	NA	NA	NA	NA	1618.00
197404	NA	NA	NA	NA	1456.00
197501	NA	NA	NA	NA	1150.00
197502	NA	NA	14		1373.00
197504	NA	NA	NA	NA	1453.00
197401	NA	NA	NA	NA	1217.00
197602	NA	NA	NA	NA	1412.00
197603	NA	NA	NA	NA	1510.00
197604	NA Di cono	107 440	NA	jera -	1586.00
197702	22, 9000	125.295	711.000		1419.00
197793	22.4000	124.147	663.000	NA	1573.00
197704	22.7000	122.317	663.000	NA	1662.00
197801	23,0000	119.290	663.000	NA	1506.00
197802	23,4000	117.046	662.000	NA	1613.00
197803	23.8000	113.002	471.000	NA	1648.00
197004	24.2000	112.723	471.000	No.	1488.00
197902	25,1000	112.438	471.000	NA	1569.00
197903	25.5000	112.501	643.000	NA	NA
197904	26.0000	112,505	643,000	NA	NA
198021	26.4000	112.209	643.000	NA	NA
198002	27.9000	112.133	A43.000	NA	NA
198004	30, 1000	114.333	679.000	NA	NA
198191	31.0000	116,141	\$79,000	NA	NA
198192	33.2000	121.133	679.000	NA	NA
198193	33.2000	121.871	678.000	88.2000	NA
196104	35.7000	120.024	678.000	90.0000	NA
198201	35.7000	117.677	678.000	93, 3000	
198293	35.7000	113.749	1108.00	95,0000	1889.00
198204	35,7000	115.135	799.000	76.6000	1866.00
198321	35.7000	106.500	236,000	98.3000	1730.00
198302	33.7000	109.376	642.000	100,000	1905.00
198303	35.7000	115,795	8/1.000	101.700	1998.00 2048.00
1984Q1	37.3000	116.372	268.000	105,100	1968.00
198402	38.4000	109.905	767.000	106.800	2060.00
198403	38.4000	111.B14	1159.00	107.700	2073.00
199404	39.5000	113.449	694.000	108.600	2052.00
198303	39.5000	96.9410	511.000	109.500	1893.00
198503	41.2000	93.0384	891.000	110.900	2298.00
198504	42.3000	68.0290	743.000	111.300	2455.00
198401	42.3000	90.1819	502.000	111.900	2170.00
198402	45.7000	84.2573	798.000	112.400	2258.00
198404	45.7000	79.3151	764.000	112.400	2300.00
198791	45.7000	83. 0407 97.4541	406.000	112.800	2312.00
199702	45.7000	69.5884	27.0000	113.200	2375.00
198793	46.8000	89.7932	897.000	115.400	2434.00
198704	46.8000	83.7912	777.000	117.900	2556.00
198801	46.8000	86.3437	510.000	120.300	2425.00
199807	46.0000	93.2917	764.000	122.700	2368.00
198804	49, 4000	104.337	741.000	123.400	2797.00
198901	47.6000	104.420	570.000	123.000	2304.00
198902	50.8000	100.642	759.000	124.200	2299.00
198903	50.8000	100.940	789.000	124.200	2392.00
199001	53.1000	104.314	836.000	124.200	2703.00
199002	55.4000	103.347	771.000	124.200	2097.00
		1.44. 014			A

ID	TOTINPAS	TOUTPAS	TRUNK	TWI	URBEOP
197701	147639.	205116.	NA ·	92.5000	9044.95
197702	109579.	262694.	NA	92.5000	9067.68
197703	121067.	250700.	NA	91.5000	9090.30
197704	184996.	252743.	NA	87.4000	9112.97
197801	156759.	207088.	NA	87.5000	9135.95
197802	118060.	294400.	NA	86.2000	9158.13
197803	139991.	276622.	NA	83.6000	9180.30
197804	215784.	284125.	NA	82.7000	9200.40
1979Q1	180248.	250939.	NA	82.3000	9220,80
197902	163500.	320353.	NA	83.1000	9240.70
197903	194927.	305960.	NA	83.5000	9260,80
197904	254670.	298516.	NA	83.3000	9283.00
198001	251568.	276410.	NA	84,4000	9305.00
198002	175568.	323779.	NA	85,0000	9326.90
198003	208161.	299824.	NA	85.8000	9349.10
198004	269260.	303679.	NA	87.1000	9376.58
198101	232567.	275097.	NA	88.8000	9403.35
198102	203514.	316083.	NA	72.9000	9430.13
198103	218964.	306808.	188.791	93.8000	9457.60
198104	281681.	319311.	197.959	90.5000	9493.17
198201	242930.	285214.	200,005	88.8000	9529 55
198202	208015.	336797.	199.527	88,2000	9566.42
198203	225400.	343057.	201.680	83 8000	9402 10
198204	278300	321840	209 573	83.0000	9802.10
198301	235100	274909	208 103	74 1000	7632.30
198302	191400	319257	217 815	73,1000	7663.30
198303	227200	333408	275 444	77.7000	7874.30
198304	299400	325400	232 050	81 1000	7724.40
198401	245400	277800	232,030	87.9000	7/31.23
198402	279500	373400	230.433	78 2000	9777.70
109402	229200	383000	200.000	90 3000	7804.20
198404	310800	384520	255 505	80.3000	7830.40
198501	284800	317800	254 003	48 3000	7880.30
198502	235000	412500	245 049	45.0000	7871.10
198503	243300	404000	203.000	63.0000	7744.80 0057.00
198504	377400	375700	207.073	40.7000	7733.70
198401	745500	310200	277.373	60.7000	7787./3
198402	297200	404100	300 005	51.1000	10024.5
100403	200400 300400	479105	301.710	54.0000	10039.4
199404	477100	707147	332 014	51.9000	10094.5
198701	477900	774700	732 044	55.4000	10104.8
198702	370000	419700	302.041	33.4000 E4 4000	101/3.4
199707	410500	418700.	747.000	56.8000	10215.5
100700	571400	467300,	370 547	58.2000	10255.9
178704	571800.	411400.	3/0.34/	52.0000	10300.9
198801	526900.	346200.	369.800	53.0000	10346.3
198802	481400.	427300.	386.700	57.0000	10391.2
176863	5/9900.	465500.	410.700	60.9000	10435.2
198804	661200.	458800.	407.000	62.7000	10475.8
148461	540000.	415300.	407.600	62.8000	10517.1
148402	438000.	497500.	429.400	60.0000	10557.4
198903	486/00.	540900.	442.100	59,5000	10597.9
198904	614200.	536100.	443.800	60.5000	NA
199001	558100.	439700.	440.600	59.5000	NĤ
144065	488300.	5/1100.	NA	60.5000	NA

APPENDIX II VARIABLE CONSTRUCTION METHODOLOGY

Several of the variables used in the modelling have complicated methods of construction. The following list explains how each variable is constructed from its components.

Variable Construction methodology

- AUSIPP Australian private final consumption per person. The numerator is Australian price final consumption expenditure (AUSPFCS); source ABS Cat. no. 5206.0. The denominator is Australian total population (AUSPOP); source ABS Cat. no. 3101.0.
- AUSPPP Urban public transport passenger per person. The numerator is urban public transport passengers aggregated over seven major cities -Sydney, Melbourne, Brisbane, Adelaide, Perth, Hobart and Canberra (AUS); source State transit authorities, personal communications. The denominator is the aggregate of the seven cities' populations (URBPOP); source ABS Cat. no. 3101.0.
- AVGDP Average real GDP (1985 = 100). This is the simple average of G7GDP (an index of real GDP for the G7 countries of the OECD - the United States, Japan, Germany, France, Italy, the United Kingdom and Canada) and NZGDP (an index of real GDP for New Zealand).

AVGDP = (NZGDP/1.10325 + G7GDP)/2

DEL3 Growth rate of the Australian economy. The three quarter centred average of the four quarter percentage change in Australian real non-farm gross domestic product.

DOMPAS1 Foreign passengers travelling on the Australian domestic air network.

DOMPAS1 = 0.75 * TOTINPAS

DOMPAS2 Australians travelling on the Australian domestic air network.

DOMPAS2 = DOMPAS - DOMPAS1

DOMRPK1 Revenue passenger-kilometres performed by foreign tourists on the Australian domestic air network. The average distance travelled by foreign tourists is taken as equal to AVKM, the average distance travelled by all passengers on the domestic network.

> AVKM = DOMRPK/DOMPAS DOMRPK1 = DOMPAS1 * 0.75 * AVKM

DOMRPK2 Revenue passenger-kilometres performed by Australians on the domestic network.

DOMRPK2 = DOMRPK - DOMRPK1

EXPQ Quarterly exports of seven major bulk commodity exports.

EXPQ = IRONQ + COALQ + ALUMQ + OILQ + GRNQ + MEATQ + SUGQ

IFRATE Air freight rates from New Zealand to Australia, expressed in Australian dollars.

IFRATE = AIRFRATE * EXNZA

RAILEXP Exports of the two major rail-associated bulk commodity exports.

RAILEXP = COALQ + GRNQ

RTWI Real trade-weighted index of the Australian dollar.

RTWI = TWI * CPI/OECDCPI

TFRT Estimated both-ways freight tonnages on the six major intercity corridors in Australia. ABS Cat. no. 9214.0 publishes partial freight tonnages derived from a survey of freight forwarders. The BTCE applies adjustment factors based on calculations of survey coverage on the seven routes. The adjustment factors and corridors are: Sydney-Melbourne, divide by 0.467; eastern States to Perth, divide by 0.530; Melbourne-Adelaide, divide by 0.599; Melbourne-Brisbane, divide by 0.577; Sydney-Adelaide, divide by 0.572; Sydney-Brisbane, divide by 0.589. These fractions are applied to the total of both-way traffic and the resulting numbers summed to give TFRT. For an explanation of the rationale behind the fractions, consult BTCE 1990.

APPENDIX III VARIABLE MNEMONICS AND SOURCES

The following list of mnemonics gives an explanation of each variable and the source of data. Note that wherever these variable mnemonics are preceded by an 'R' in the model specifications, this is to be interpreted as a 'real' variable (that is, the nominal variable has been divided by the consumer price index and multiplied by 100).

Variable Description and source

- AGGINFA Aggregate average of economy and minimum air fares into Australia in Australian dollars; source Department of Transport and Communications.
- AGGOFAR Aggregate average of economy and minimum air fares out of Australia; source Department of Transport and Communications.
- AIFRATE Freight rate in New Zealand dollars for air imports from New Zealand (see appendix II under IFRATE).

ALUMQ Tonnages of alumina exported quarterly; source ABS Cat. no. 5404.0.

AUSF14 Urban public transport fares, averaged over quarters -1 to -4; source urban fares subindex of the consumer price index, ABS Cat. no. 6401.0.

AUSF58 Urban public transport fares, averaged over quarters -5 to -8; source urban fares subindex of the consumer price index, ABS Cat. no. 6401.0.

AUSIPP Australian private final consumption per person (see appendix II).

AUSPPP Urban public transport passengers aggregated over seven major cities, divided by the aggregate population in the seven cities (see appendix II).

AVGDP A simple average of two indexes of real gross domestic product: for the G7 countries and for New Zealand (see appendix II).

BULKOUT Tonnages of bulk exports; source ABS Cat. no. 9206.0.

BULKRF Bulk rail freight tonnages on government rail systems; source BTCE Transport and Communications Indicators Database.

BUSFAR Sydney to Melbourne bus fare, average of normal-price and discount operators; source BTCE Transport and Communications Indicators Database.

COALQ Tonnages of coal exported quarterly; source ABS Cat. no. 5404.0.

CPI Consumer price index; source ABS Cat. no. 6401.0.

DEL3 The three quarter average of the four quarter change in Australian real non-farm gross domestic product (see appendix II).

DOMAFR Tonnages of domestic air freight (including mail) carried on scheduled airline services;

source Department of Transport and Communications.

- DOMPAS Total passengers on the Australian domestic trunk and regional air network; source Department of Transport and Communications 1991.
- DOMPAS1 Estimate of foreign passengers on the Australian domestic trunk and regional air network (see appendix II).
- DOMPAS2 Australian passengers on the Australian domestic trunk and regional air networks (see appendix II).
- DOMRPK Total revenue passenger-kilometres on the Australian domestic trunk and regional air network; source Department of Transport and Communications 1991.
- DOMRPK1 Revenue passenger-kilometres by foreign passengers on the Australian domestic trunk and regional air network (see appendix II).
- DOMRPK2 Revenue passenger-kilometres by Australians on the Australian domestic trunk and regional air network (see appendix II).
- DISPWS Waterside disputes, hours lost; source ABS personal communication.
- ERFAR Weighted interstate economy rail fare; source BTCE Transport and Communications Indicators Database.
- ERPAS Interstate rail passenger movements on government rail systems; source BTCE Transport and Communications Indicators Database.

- EXNZA Exchange rate between Australian and New Zealand dollars (in \$A per \$NZ); source Reserve Bank of Australia.
- EXPQ Quarterly tonnages of seven major bulk commodity exports (see appendix II).
- EXTON Tonnages of air freight exports; source Department of Transport and Communications.
- GRNQ Tonnages of wheat, barley and oats exported quarterly; source ABS Cat. no. 5404.0.
- G7GDP Index (1985-86 = 100) of real gross domestic product for the group of seven major economies (G7) of the OECD; source OECD 1991.
- IFRATE Freight rate in Australian dollars for air imports from New Zealand (see AIFRATE and appendix II).
- IMTON Tonnages of air freight imports; source Department of Transport and Communications.
- INTER Non-bulk freight rates for government rail systems; source BTCE Transport and Communications Indicators Database.
- IRONQ Tonnages of iron ore exported quarterly; source ABS Cat. no. 5404.0.
- MEATQ Tonnages of beef and mutton (meat and live animals) exported quarterly; source ABS Cat. no. 5404.0.
- MEDIUM Weighted average of air fares on medium length air routes; source Department of Transport and Communications.
- NBULKIN Non-bulk import tonnages; source ABS Cat. no. 9206.0.

- NBULKRF Non-bulk rail freight tonnages on government rail systems, including both intra- and interstate traffic; source BTCE Transport and Communications Indicators Database.
- NZGDP Index (1981-82 = 100) of real gross domestic product for New Zealand; source IMF 1991.
- OECDGDP Real OECD gross domestic product; source OECD 1990.
- OECDCPI Consumer price index for the OECD; source OECD 1990.
- OILQ Tonnages of oil, LNG, LPG and petroleum products exported quarterly; source ABS Cat. no. 5404.0.
- OTC Both-way international telephone calls; source BTCE Transport and Communications Indicators Database.
- OTCCH OTC call charges per minute; source OTC 1990.
- PETROL Australian retail petrol sales in megalitres; source Quarterly Mineral Statistics, ABARE.
- PPI Retail petrol (automotive fuel) price index, sub-index of the consumer price index; source ABS Cat. no. 6401.0.
- PRICE Index of the price of new imported automobiles; source Automotive Industry Authority, Melbourne.
- RAILEXP Rail export bulk tonnages, taken as the sum of coal and grain export tonnages (see appendix II).

REGO Registrations of new cars, station wagons and light commercial vehicles; source ABS Cat. no. 9301.0.

RGNE85 Real (1984-85 prices) gross national expenditure; source ABS Cat. no. 5206.0.

RGNF85 Real (1984-85 prices) gross non-farm product; source ABS Cat. no. 5206.0.

ROADPR Sub-contractors road freight rates, average of intercapital routes; source BTCE Transport and Communication Indicators Database.

RTWI Real trade-weighted index of the Australian dollar exchange rate (see appendix II).

SUGQ Tonnages of sugar exports quarterly; source ABS Cat. no. 5404.0.

TEL Trunk call tariff index; source BTCE Transport and Communications Indicators Database.

TFRT

Estimated intercapital road freight tonnages hauled both ways over the Sydney-Melbourne, Sydney-Brisbane, Melbourne-Brisbane, Melbourne-Adelaide, Adelaide-Sydney and eastern States-Perth corridors; Source ABS Cat. no. 9214.0 and BTCE estimation methods (see appendix II).

TOTINPAS Total short-term foreign arrivals in Australia; source ABS Cat. no. 3401.0.

TOUTPAS Total short-term Australian departures from Australia; source ABS Cat. no. 3401.0.

TRUNK Number of trunk calls on the Telecom network; source BTCE Transport and Communications Indicators Database.

Trade-weighted index of the Australian dollar; source Reserve Bank of Australia.

TWI

REFERENCES

Abbreviations

 ABARE Australian Bureau of Agricultural and Resource Economics
ABS Australian Bureau of Statistics
AGPS Australian Government Publishing Service
AIC Automotive Industry Council of Australia
BTCE Bureau of Transport and Communications Economics
BTE Bureau of Transport Economics
IMF International Monetary Fund

ABARE 1991, Quarterly Mineral Statistics, ABARE, Canberra.

ABS 1991a, Australian Demographic Statistics, Cat. no. 3101.0, ABS, Canberra.

ABS 1991b, Australian National Accounts: National Income and Expenditure, Cat. no. 5206.0, ABS, Canberra.

ABS 1991c, Consumer Price Index, Cat. no. 6401.0, ABS, Canberra.

ABS 1991d, Exports Australia, Cat. no. 5404.0, ABS, Canberra.

ABS 1991e, Interstate Road Freight Movement, Australia, Cat. no. 9214.0, ABS, Canberra.

ABS 1991f, Overseas Arrivals and Departures, Australia, Cat. no. 3401.0, ABS, Canberra.

ABS 1991g, Registrations of New Motor Vehicles, Australia, Preliminary, Cat. no. 9301.0, ABS, Canberra.

ABS 1991h, Shipping and Air Cargo Commodity Statistics, Australia, Cat. no. 9206.0, ABS, Canberra.

AIC 1988, Factors Determining Future Demand for Motor Vehicles, AGPS, Canberra.

BTCE 1990, Freight Flows in Australian Transport Corridors, Occasional Paper 98, AGPS, Canberra.

BTCE 1991, Transport and Communications Indicators, AGPS, Canberra.

BTE 1987, Domestic Air Cargo Industry in Australia, Occasional Paper 87, AGPS, Canberra.

Department of Transport and Communications 1991, Provisional Statistics of Domestic Schedules Airline Performance, Department of Transport and Communications, Canberra.

Gawan-Taylor, M. 1984, The Australian Domestic Air Freight Market: Consequences of Partial Deregulation, Discussion Paper no. 87, Centre for Economic Policy Research, Australian National University, Canberra.

IMF 1991, International Financial Statistics, IMF, Washington.

Neutze, M. 1977, Urban Development in Australia: A Descriptive Analysis, George, Allen & Unwin, Sydney.

Newman, P. & Kenworthy, J. 1989, Cities and Automobile Dependence: An Inter-national Sourcebook, Gower, Aldershot, United Kingdom.

OECD 1991, Main Economic Indicators, OECD, Paris.

OTC 1990, Annual Report 1989-90, OTC, Sydney.

ABBREVIATIONS

ABARE	Australian Bureau of Agricultural and Resource Economics
ABS	Australian Bureau of Statistics
AIC	Automotive Industry Council of Australia
BTCE	Bureau of Transport and Communications Economics
BTE	Bureau of Transport Economics - now BTCE
GDP	Gross domestic product
G7	Group of seven major countries in the OECD (United States, Japan, Germany, France, Britain, Italy and Canada)
IMF	International Monetary Fund
LNG	Liquefied natural gas
LPG	Liquefied petroleum gas
OECD	Organisation for Economic Co-operation and Development
OTC	Overseas Telecommunications Commission
RPK	Revenue passenger-kilometres (1 RPK is equal to 1 paying passenger carried 1 kilometre)
4qfit	A series of forecasts made four quarters ahead of the latest data

99

.