









Report 107

# Greenhouse Gas Emissions From Transport

Australian Trends to 2020





bureau of transport and regional economics

DEPARTMENT OF TRANSPORT AND REGIONAL SERVICES

### GREENHOUSE GAS EMISSIONS FROM TRANSPORT

**AUSTRALIAN TRENDS TO 2020** 



© Commonwealth of Australia 2002 ISSN 1446-9790 ISBN 1-877081-18-3

This work is copyright. Apart from any use as permitted under the *Copyright Act 1968*, no part may be reproduced by any process without prior written permission from the Commonwealth available from the Department of Communications, Information Technology and the Arts. Requests and enquiries concerning reproduction and rights should be addressed to the Manager, Copyright Services, Info Access, GPO Box 2154, Canberra, ACT 2601.

### Other enquiries to

Bureau of Transport and Regional Economics, GPO Box 501, Canberra ACT 2601, Australia, telephone (international) +61 2 6274 7210, fax +61 2 6274 6816, email: btre@dotars.gov.au, internet: http://www.btre.gov.au

### Published by

Bureau of Transport and Regional Economics, GPO Box 501, Canberra ACT 2601, Australia.

### This publication is available from

- Government Information Shops
- Info Access Network 132 447 (local call cost from anywhere in Australia)
- By visiting http://www.bookshop.gov.au

### **Indemnity Statement**

The Bureau of Transport and Regional Economics has taken due care in preparing these analyses. However, noting that data used for the analyses have been provided by third parties, the Commonwealth gives no warranty to the accuracy, reliability, fitness for purpose, or otherwise of the information.

Cover design and Desktop Publishing by Jodi Hood.

Printed by National Capital Printing.

### FOREWORD

This report presents the results of a Bureau of Transport and Regional Economics (BTRE) study to update base case (or 'business-as-usual') projections of greenhouse gas emissions from the transport sector. The work was undertaken on behalf of the Australian Greenhouse Office (AGO).

The work updates previous Bureau projections of transport sector greenhouse gas emissions published in Bureau of Transport and Communications Economics (BTCE) Report 88 (Greenhouse Gas Emissions from Australian Transport: Long-term projections) and BTCE Report 94 (Transport and Greenhouse: Costs and options for reducing emissions).

The BTRE acknowledges the contributions of Australian Greenhouse Office staff—in particular, Jo Evans, Simon Wear and Anthony Tabor.

The study was undertaken by Dr David Cosgrove, Dr David Gargett (project leader), David Mitchell, Mark Cregan and Dion Epstein, under the guidance of Deputy Executive Director Phil Potterton.

Tony Slatyer Executive Director November 2002

BTRE Report 107

page IV

### AT A GLANCE

- This report, compiled on behalf of the Australian Greenhouse Office (AGO), presents the results of a detailed Bureau of Transport and Regional Economics (BTRE) study into the modelling and forecasting of greenhouse gas emissions from the Australian transport sector.
- Overall, emissions from the domestic transport sector in 2010 are projected, under base case (or 'business-as-usual') assumptions, to be close to 47 per cent above the level for 1990. By 2020, the BTRE projects such business-as-usual emissions to be 68 per cent above 1990 levels.
- Policy measures currently in place aimed at greenhouse gas abatement from transport—comprising the Compressed Natural Gas Infrastructure Program (CNGIP), the Alternative Fuels Conversion Program (AFCP), the Environmental Strategy for the Motor Vehicle Industry (ESMVI) and the Diesel and Alternative Fuels Grants Scheme (DAFGS)—are estimated as capable of reducing this 47 per cent growth by 2010 to about a 43 per cent growth.
- The scale of these forecast increases (which are similar in magnitude to previously released Bureau projections of transport emissions) points to the fact that Australian transport demand is highly dependent on underlying economic and population growth.
- Within the aggregate forecast growth in domestic transport emissions over the next two decades (at about 1.7 per cent per annum), aviation is projected to have the strongest rate of growth (averaging about 4.4 per cent per annum), followed by commercial road vehicles (2.2 per cent per annum). The passenger car fleet will remain the single largest contributor to total sector emissions, but is expected to exhibit a slower rate of growth (of around 1 per cent per annum between 2000 and 2020).
- The sum of emissions from all other transport activities (accounting for around 9 per cent of total transport emissions) is forecast to grow at close to 1 per cent per annum (2000–2020).

page V BTRE Report 107

page Vi

### CONTENTS

| FOREWORD        |                                                                                    | iii  |  |
|-----------------|------------------------------------------------------------------------------------|------|--|
| AT A GLANCE     |                                                                                    | v    |  |
| LIST OF FIGURES |                                                                                    | viii |  |
| LIST OF TABLES  |                                                                                    | ix   |  |
| UNITS           |                                                                                    | xiv  |  |
| EXECUTIVE SUM   | 1ARY                                                                               | xv   |  |
| CHAPTER I       | Base Case Projections of Australian Transport<br>Emissions to 2020                 | I    |  |
| CHAPTER 2       | Sensitivity Analyses for Transport Emission<br>Projections                         | 31   |  |
| CHAPTER 3       | State, Territory and Urban Transport Emission<br>Projections                       | 47   |  |
| CHAPTER 4       | Impact of Transport Sector Greenhouse<br>Abatement Measures on Transport Emissions | 73   |  |
| CHAPTER 5       | Impact of Alternative Transport Measures on<br>Transport Emissions                 | 105  |  |
| APPENDIX I      | CARMOD Major Input Assumptions                                                     | 115  |  |
| APPENDIX II     | TRUCKMOD Major Input Assumptions                                                   | 127  |  |
| APPENDIX III    | Aviation Projections                                                               | 141  |  |
| APPENDIX IV     | Rail Projections                                                                   | 187  |  |

| APPENDIX V   | Shipping Projections                                                                                      | 215   |
|--------------|-----------------------------------------------------------------------------------------------------------|-------|
| APPENDIX VI  | Aggregate Projection Data and Parameter<br>Assumptions                                                    | 235   |
| REFERENCES   |                                                                                                           | 243   |
| ABBREVIATIO  | ONS                                                                                                       | 25 I  |
| LIST OF FIGU | RES                                                                                                       |       |
| Figure ES.I  | Projections of CO <sub>2</sub> equivalent emissions from<br>Australian domestic transport, 1990–2020      | xviii |
| Figure I.I   | Shares of Australian domestic transport fuel use,<br>by transport mode for 1997–98                        | 12    |
| Figure I.2A  | Per capita historical trend in annual passenger vehicle travel versus real Australian income levels       | 14    |
| Figure I.2B  | Projected car ownership in Australia                                                                      | 15    |
| Figure 1.3   | Components of Australian population increase                                                              | 16    |
| Figure 1.4   | Estimated average annual kilometres travelled per vehicle for the Australian passenger car fleet          | 17    |
| Figure 1.5   | Comparison of Australian non-urban per capita<br>road freight and US intercity per capita road<br>freight | 20    |
| Figure 1.6   | Comparison of modal energy shares for Australian transport, 1998 actual and 2020 base case projections    | 24    |
| Figure 1.7   | Long-term trends in Australian domestic transport<br>fuel consumption and base case forecasts to 2020     | 25    |
| Figure 1.8   | Modal shares of Australian non-urban travel,<br>measured on a passenger–kilometre basis                   | 26    |
| Figure 1.9   | Trends in mode share for Australian interstate non-bulk freight                                           | 27    |
| Figure 2.1   | Emission projections for different 2001 model specifications                                              | 45    |
| Figure I.I   | Per capita trend in passenger vehicle travel versus real GDP                                              | 117   |
| Figure I.2   | Forecast trend in passenger vehicle travel versus real GDP                                                | 118   |
| Figure I.3   | Current CARMOD vintage survival curves                                                                    | 120   |
| Figure II.I  | Projected growth in road freight task                                                                     | 129   |
| Figure II.2  | Assumed freight task split                                                                                | 130   |
| Figure II.3  | Projected average load                                                                                    | 130   |
| Figure II 4  | Average VKT projections                                                                                   | 131   |
| Figure II 5  | Age-based VKT scale factors                                                                               | 133   |
| Figure II.6  | Commercial vehicle base case CO <sub>2</sub> equivalent<br>emissions, 1990–2020                           | 135   |

page Vili

|               |                                                                                                                               | Contents |
|---------------|-------------------------------------------------------------------------------------------------------------------------------|----------|
| Figure III. I | Actual and predicted levels of Australian residents travelling on the domestic network                                        | 147      |
| Figure III.2  | Actual and projected levels of domestic aviation                                                                              | 152      |
| Figure III.3  | Aviation gasoline fuel consumption projections                                                                                | 154      |
| Figure III.4  | Actual and predicted levels of foreign passenger                                                                              |          |
| 5             | arrivals                                                                                                                      | 159      |
| Figure III.5  | Actual and predicted levels of Australian resident (short-term) departures                                                    | 160      |
| Figure III.6  | Actual and projected levels of international aviation turbine fuel uplifted in Australia                                      | 164      |
| Figure III.7  | Carbon dioxide equivalent emissions from international aircraft uplifting fuel in Australia                                   | 166      |
| Figure IV. I  | Government bulk freight tonnes carried: Actual and predicted                                                                  | 193      |
| Figure IV.2   | Government non-bulk freight tonnes carried:<br>Actual and predicted                                                           | 193      |
| Figure IV.3   | Private freight tonnes carried: Actual and predicted                                                                          | 194      |
| Figure IV.4   | Non-urban passengers carried: Actual and                                                                                      | 194      |
| Figure IV.5   | Heavy rail urban passengers carried: Actual and                                                                               | 195      |
| Figure IV.6   | Light rail urban passengers carried: Actual and                                                                               | 195      |
| Figure IV.7   | Actual and projected rail energy consumption                                                                                  | 201      |
| Figure V.I    | CO <sub>2</sub> equivalent emissions from fuel uplifted in<br>Australia by international ships                                | 223      |
| Figure V.2    | CO <sub>2</sub> equivalent emissions from coastal shipping                                                                    | 227      |
| LIST OF TA    | BLES                                                                                                                          |          |
| TABLE ES.I    | Emission projections for energy end-use by<br>Australian domestic civil transport                                             | xvii     |
| TABLE I.I     | Projected increases in greenhouse gas emissions from Australian civil domestic transport—end use                              | 4        |
| TABLE I.2     | Base case emission projections by major sector,<br>for energy end-use by Australian domestic civil<br>transport, 1990–2020    | 7        |
| TABLE I.3     | Base case emission projections by type of transport, for energy end-use by Australian domestic civil transport 1990–2020      | 8        |
| TABLE I.4     | Base case emission projections by type of transport, Australian domestic civil transport (including electric rail), 1990–2020 | 9        |
| TABLE 1.5     | Order of magnitude estimates for full fuel cycle<br>emissions by Australian domestic civil transport,<br>1990–2020            | 10       |

page ix

| TABLE I.6  | Projected increases in fuel end-use by domestic<br>Australian transport—simplified estimates                                        | 23 |
|------------|-------------------------------------------------------------------------------------------------------------------------------------|----|
| TABLE 2.1  | Summary of CO <sub>2</sub> equivalent emissions under sensitivity I—economic growth                                                 | 32 |
| TABLE 2.2  | Summary of CO <sub>2</sub> equivalent emissions under sensitivity 2—population growth                                               | 33 |
| TABLE 2.3  | Summary of CO <sub>2</sub> equivalent emissions under sensitivity 3—fuel intensity                                                  | 35 |
| TABLE 2.4  | Summary of CO <sub>2</sub> equivalent emissions under sensitivities 4 & 5—highest and lowest combined scenarios                     | 36 |
| TABLE 2.5  | CO <sub>2</sub> equivalent emissions from road passenger vehicles: response to sensitivity analysis                                 | 41 |
| TABLE 2.6  | CO <sub>2</sub> equivalent emissions from commercial road vehicles: response to sensitivity analysis                                | 44 |
| TABLE 3.1A | State and Territory CO <sub>2</sub> equivalent emissions—all transport, including emissions from electric rail                      | 49 |
| TABLE 3.1B | State and Territory CO <sub>2</sub> equivalent emissions<br>(end-use)—domestic transport, excluding<br>emissions from electric rail | 50 |
| TABLE 3.2  | State and Territory CO <sub>2</sub> equivalent emissions (end-use)—passenger cars                                                   | 55 |
| TABLE 3.3  | State and Territory CO <sub>2</sub> equivalent emissions<br>(end-use)—commercial vehicles                                           | 56 |
| TABLE 3.4  | State and Territory CO <sub>2</sub> equivalent emissions (end-use)—other road transport                                             | 57 |
| TABLE 3.5  | State and Territory CO <sub>2</sub> equivalent emissions (end-use)—aviation gasoline, on a fuel uplift basis                        | 58 |
| TABLE 3.6  | State and Territory CO <sub>2</sub> equivalent emissions<br>(end-use)—domestic aviation turbine fuel, on a<br>fuel uplift basis     | 59 |
| TABLE 3.7  | State and Territory CO <sub>2</sub> equivalent emissions<br>(end-use)—international aviation, on a fuel uplift<br>basis             | 60 |
| TABLE 3.8  | State and Territory CO <sub>2</sub> equivalent emissions<br>(end-use)—international shipping, on a fuel uplift<br>basis             | 61 |
| TABLE 3.9  | State and Territory CO <sub>2</sub> equivalent emissions—<br>passenger rail                                                         | 62 |
| TABLE 3.10 | State and Territory CO <sub>2</sub> equivalent emissions—<br>freight rail                                                           | 63 |
| TABLE 3.11 | State and Territory CO <sub>2</sub> equivalent emissions<br>(end-use)—coastal shipping, on a freight task<br>basis                  | 64 |
| TABLE 3.12 | State and Territory CO <sub>2</sub> equivalent emissions (end-use)—other minor transport sources                                    | 65 |
| TABLE 3.13 | Capital city CO <sub>2</sub> equivalent emissions—all major transport sources                                                       | 67 |

page X

| TABLE 3.14  | Capital city CO <sub>2</sub> equivalent emissions (end-                                                                       | 68       |
|-------------|-------------------------------------------------------------------------------------------------------------------------------|----------|
| TABLE 3.15  | Capital city CO <sub>2</sub> equivalent emissions (end-<br>use)—commercial vehicles                                           | 69       |
| TABLE 3.16  | Capital city CO <sub>2</sub> equivalent emissions (end-<br>use)—buses                                                         | 70       |
| TABLE 3.17  | Capital city CO <sub>2</sub> equivalent emissions (end-<br>use)—motorcycles                                                   | 71       |
| TABLE 3.18  | Capital city CO <sub>2</sub> equivalent emissions — passenger<br>rail                                                         | 72       |
| TABLE 4.1   | Summary of impacts on emissions of current transport sector abatement measures                                                | 74       |
| TABLE 4.2   | Estimated one standard deviation uncertainties in heavy vehicle CNG emissions                                                 | 80       |
| TABLE 4.3   | Summary of estimated CO <sub>2</sub> equivalent emissions abatement for CNGIP/AFCP                                            | 82       |
| TABLE 4.4   | Case I (NELA 1999): Estimated reduction in CO <sub>2</sub> equivalent emissions attributable to CNGIP/AFCP                    | 84       |
| TABLE 4.5   | Case 2 (ANGVC): Additional number of CNG vehicles and implied share of energy use by commercial vehicles under the CNGIP/AFCP | 86       |
| TABLE 4.6   | Case 2 (ANGVC): Estimated reduction in CO <sub>2</sub><br>equivalent emissions attributable to CNGIP/AFCP                     | 87       |
| TABLE 4.7   | Case 3 (budget constrained): Assumed average cost of vehicle conversion                                                       | 88       |
| TABLE 4.8   | Case 3 (budget constrained): Assumed number of vehicles converted under the AFCP and the total program cost                   | 89       |
| TABLE 4.9   | Emissions from LPG-fuelled stoichiometric combustion bus                                                                      | 90       |
| TABLE 4.10  | Emission factors for LPG-fuelled medium trucks                                                                                | 90       |
| TABLE 4.11  | Fuel consumption for rigid trucks and LCVs                                                                                    | 91       |
| TABLE 4.12  | Case 3: Emission reductions from LPG conversions of rigid trucks attributable to CNGIP/AFCP                                   | 92       |
| TABLE 4.13  | Case 3: Emission reductions from LPG<br>conversions of forklifts attributable to                                              | 02       |
| TABLE 4.14  | CNGIF/AFCF<br>Case 3: Emission reductions from CNG<br>conversions of urban buses attributable to<br>CNGIP/AFCP                | 73<br>94 |
| TABLE 4.15  | Case 3: Emission reductions from CNG conversions of rigid and articulated trucks attributable to CNGIP/AFCP                   | 95       |
| TABLE 4.16  | Case 3: Total reduction in emissions attributable to CNGIP/AFCP                                                               | 96       |
| TABLE 4.17A | Projected trend for NAFC to 2020                                                                                              | 98       |
|             |                                                                                                                               |          |

page XI

Contents

| TABLE 4.17B  | Estimated on-road fuel consumption for car fleet, under assumed NAFC changes                                                            | 98  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----|
| TABLE 4.18   | Estimated Impact of fuel efficiency measures<br>under government expectation of changes to<br>NAFC trend                                | 99  |
| TABLE 4.19   | Sensitivity of estimated impact of ESMVI–NAFC scenario to future trend in car ownership                                                 | 100 |
| TABLE 4.20   | Approximate price of diesel fuel to commercial vehicle operators                                                                        | 102 |
| TABLE 4.21   | Estimated impact of DAFGS on commercial vehicle CO <sub>2</sub> equivalent emissions                                                    | 103 |
| TABLE 4.22   | 'With Measures' emission projections by type of<br>transport, for energy end-use by Australian<br>domestic civil transport, 1990–2020   | 104 |
| TABLE 5.1    | Estimated abatement cost and reduction in emissions for ORP scenario                                                                    | 106 |
| TABLE 5.2    | Change in CO <sub>2</sub> equivalent emissions between<br>BAU metropolitan estimates and the scenario for<br>optimal congestion charges | 109 |
| TABLE I.I    | Base case VKT and vehicle ownership assumptions                                                                                         | 119 |
| TABLE I.2    | Current CARMOD base case scenario for fuel intensity                                                                                    | 121 |
| TABLE I.3    | Emission deterioration rates for cars                                                                                                   | 121 |
| TABLE I.4    | CARMOD petrol vehicle average emission factors (representative values)                                                                  | 122 |
| TABLE I.5    | GWP values used in base case                                                                                                            | 123 |
| TABLE I.6    | Projected base case CO <sub>2</sub> equivalent emissions from passenger cars                                                            | 124 |
| TABLE I.7    | Projected base case non-CO <sub>2</sub> emissions (end-use) for passenger vehicles                                                      | 125 |
| TABLE I.8    | CARMOD projected parameters (base case) for<br>Australian car fleet, 1990–2020                                                          | 126 |
| TABLE II.I   | Average test-cycle emission factors, NEPC 2000                                                                                          | 134 |
| TABLE II.2   | Projected base case CO <sub>2</sub> emissions—all<br>commercial vehicles                                                                | 136 |
| TABLE II.3   | Projected base case non-CO <sub>2</sub> emissions—all<br>commercial vehicles                                                            | 137 |
| TABLE II.4   | Projected number of commercial vehicles                                                                                                 | 138 |
| TABLE II.5   | Projected vehicle kilometres travelled by<br>commercial vehicles                                                                        | 139 |
| TABLE II.6   | Projected tonne–kilometres by commercial vehicles                                                                                       | 140 |
| TABLE III. I | Average aircraft emission rates                                                                                                         | 142 |
| TABLE III.2  | Average aviation emission conversion factors                                                                                            | 143 |
| TABLE III.3  | Results of the domestic aviation model                                                                                                  | 146 |

page xii

| TABLE III.4    | Derived fuel intensity series for the domestic                                                |             |
|----------------|-----------------------------------------------------------------------------------------------|-------------|
|                | airline fleet                                                                                 | 149         |
| TABLE III.5    | Domestic aviation projection assumptions                                                      | 151         |
| TABLE III.6    | Scenarios for domestic avtur consumption                                                      | 153         |
| TABLE III.7    | Scenarios for domestic seat–kilometres in 2019–20                                             | 153         |
| TABLE III.8    | Results of the international aviation model                                                   | 156         |
| TABLE III.9    | Derived fuel intensity series for the international airline fleet                             | 161         |
| TABLE III.10   | International aviation projection assumptions                                                 | 163         |
| TABLE III. I I | Scenarios for international aviation turbine fuel uplifted in Australia                       | 165         |
| TABLE III.12   | Scenarios for international seat–kilometres in 2019–20                                        | 165         |
| TABLE III. I 3 | Domestic aviation projections                                                                 | 168         |
| TABLE III. I 4 | Aviation gasoline fuel consumption projections                                                | 172         |
| TABLE III.15   | Domestic aviation turbine fuel—projected greenhouse gas emissions                             | 173         |
| TABLE III.16   | Domestic aviation gasoline—projected                                                          |             |
|                | greenhouse gas emissions                                                                      | 175         |
| TABLE III.17   | Total domestic aviation emission projections                                                  | 177         |
| TABLE III.18   | International aviation projections                                                            | 179         |
| TABLE III.19   | Kilometres flown by inbound international aviation passengers                                 | 181         |
| TABLE III.20   | Kilometres flown by outbound international aviation passengers                                | 182         |
| TABLE III.21   | International aviation turbine fuel—projected greenhouse emissions                            | 183         |
| TABLE III.22   | Total civil aviation emission projections                                                     | 185         |
| TABLE IV. I    | Results of the BTRE rail model                                                                | 188         |
| TABLE IV.2     | Estimated average rail distances travelled, by rail task                                      | 197         |
| TABLE IV.3     | Energy consumption, task and derived fuel intensity rail—representative values using raw data | for<br>I 98 |
| TABLE IV.4     | Assumed fuel intensity trend for rail                                                         | 199         |
| TABLE IV.5     | Rail energy consumption using alternative levels of fuel efficiency                           | 202         |
| TABLE IV.6     | Rail emission conversion factors                                                              | 204         |
| TABLE IV.7     | Rail projections                                                                              | 205         |
| TABLE IV.8     | Assumed specific fuel intensities                                                             | 209         |
| TABLE IV.9     | Rail fuel intensity index                                                                     | 210         |
| TABLE IV.10    | Rail energy consumption projections (end-use)                                                 | 211         |
| TABLE IV. I I  | Rail emission projections                                                                     | 212         |
|                |                                                                                               |             |

page xili

Contents

| TABLE V.I   | Regression results for international shipping models                              | 218 |
|-------------|-----------------------------------------------------------------------------------|-----|
| TABLE V.2   | Projected import and export growth rates by region, 2000–2020                     | 222 |
| TABLE V.3   | Emission factors for international shipping                                       | 223 |
| TABLE V.4   | Assumed change in proportion of production shipped by coastal shipping            | 225 |
| TABLE V.5   | Emission factors for coastal shipping                                             | 227 |
| TABLE V.6   | Fuel uplifted in Australia for international shipping                             | 228 |
| TABLE V.7   | International shipping emission projections                                       | 229 |
| TABLE V.8   | Fuel consumption in coastal shipping                                              | 230 |
| TABLE V.9   | Coastal shipping emission projections                                             | 231 |
| TABLE V.10  | Shipping task projections                                                         | 232 |
| TABLE VI. I | State and Territory population projections                                        | 235 |
| TABLE VI.2  | Capital city population projections                                               | 236 |
| TABLE VI.3  | Base case GDP growth assumptions                                                  | 237 |
| TABLE VI.4  | Energy consumption (end-use) by domestic civil transport                          | 238 |
| TABLE VI.5  | Base case projections of energy consumption (end-use) by domestic civil transport | 240 |

### UNITS

page xiv kilo (k) =  $10^3$  (thousand)

mega (M)  $=10^{6}$  (million) giga (G)  $=10^{9}$  (billion)

peta (P) = $10^{15}$ 

Note:

I gigagram = I kilotonne

I kilowatt-hour (kWh) = 3.6 megajoules



The Bureau of Transport and Regional Economics (BTRE) has recently modelled future greenhouse gas emissions from the transport sector using two different methods (both of which gave similar results for the overall projected trend):

- modelling transport sub-sectors, and then aggregating to sector totals (here termed a 'bottom-up' approach)
- modelling the sector as a part of the total economy (a 'macro modelling' or 'top-down' approach).

This report, compiled on behalf of the Australian Greenhouse Office (AGO), describes the results of using the former approach—bottom-up modelling (i.e. detailed modelling of transport sub-sectors, typically using vehicle fleet models). The project formulation essentially followed AGO specifications.

As table ES.1 shows, the present study estimates direct greenhouse gas emissions from transport in 1998 (the latest year for which detailed modal energy data are available) to be 17 per cent above 1990 base year levels—at 69 612 gigagrams (i.e. 69.612 million tonnes) of carbon dioxide (CO<sub>2</sub>) equivalent. By 2010 (the middle year of the first 'budget period' of the Kyoto greenhouse targets, i.e. 2008 to 2012), transport sector emissions are projected under 'base case', or 'business-as-usual' (BAU), assumptions to be close to 47 per cent above the level for 1990 (the Kyoto target base year).

By 2020, BAU emissions from Australian transport are projected to be around 68 per cent higher than 1990 levels. The BTRE base case emission projections to 2020 are given in detail in Chapter I of the report.

The BTRE business-as-usual scenario incorporates a continuation of present trends in fuel efficiency improvements for transport vehicles. Due to continuing technical innovation, average fuel intensity across the transport sector is projected (in the base case) to fall by the order of 1.5 per cent per annum.

In Chapter 4, the projection analyses are adjusted to factor in the possible future effects of Australian government policy measures (aimed at abating greenhouse emissions from the transport sector) that have already been put in place. These measures consist of the Compressed Natural Gas Infrastructure Program (CNGIP), the Alternative Fuels Conversion Program (AFCP), the Environmental Strategy for the Motor Vehicle Industry (ESMVI) and the Diesel and Alternative Fuels Grants Scheme (DAFGS). This 'base case with measures' page XV scenario produces emission projections that are somewhat lower than the base case estimates. For example, total transport sector emissions for 2010 are estimated to grow to about 43 per cent above 1990 for the *base case with measures*, as opposed to about 47 per cent for business-as-usual (see table ES.1 and figure ES.1).

Such strong projected increases over the coming decade, for both the *base case* and *base case with measures* scenarios (at about 2 per cent and 1.8 per cent per annum respectively), point to the fact that Australian transport demand is highly dependent on underlying economic and population growth. The rate of emissions growth is expected to be below the forecast rate of GDP growth (averaging about 3 per cent per annum) and above that of population growth (averaging about 0.7 per cent per annum). Similar orders of magnitude increases were found for most Australian States and Territories (see Chapter 3).

The projections are, of course, subject to considerable uncertainty, principally concerning the likelihood of the various assumptions that had to be made in the modelling process. Sensitivity analyses were performed (see Chapter 2), where the values assumed for the major explanatory variables (such as economic growth, population growth and vehicle fuel intensity) were varied, and the effects on the emission projections examined.

Using the most optimistic assumptions (i.e. choosing future values for each of the major explanatory factors so as to give the lowest likely emission projections for a base case trend), carbon dioxide equivalent emissions from Australian transport in 2010 would still reach 78.3 million tonnes (an increase of 31 per cent over the 1990 base level). Alternatively, using pessimistic assumptions for the major underlying factors, total greenhouse emissions from transport in 2010 would reach 94.2 million tonnes (an increase of 58 per cent over 1990 levels).

Previous Bureau work on projecting greenhouse gas emissions from transport derived similar order of magnitude estimates for the overall trends as presented in this report. Though the different analyses have seen relatively large changes in the modal contributions to aggregate transport emissions, the growth forecasts for the aggregate have been quite comparable. Total domestic transport emissions had a forecast growth in BTCE Report 88 (1995a) of around 1.5 per cent per annum over the period of 1990 to 2015. This was revised upwards to about 1.85 per cent per annum (1990–2015) in BTCE Report 94 (1996b). The current BTRE base case has an aggregate growth in the sector's emission level of about 1.83 per cent per annum over the period of 1990 to 2015—very close to that of Report 94. The 'base case with measures' scenario has slightly lower estimated aggregate growth than the base case—at about 1.7 per cent per annum (over 1990–2015).

page xvi The BTRE base case results presented in this report differ somewhat from projections published recently by the AGO (2002). The projections issued by the AGO were derived by averaging the results of the BTRE *bottom-up* modelling and the results from two *top-down* models - the Centre of Policy Studies' (Monash University) MMRF-Green model and ABARE's GTEM. Top-down models typically generate higher transport projections than the Bureau's bottom-up fleet models (primarily due to top-down models lacking any constraint parameters to allow for the trend towards saturation in future Australian car ownership per person - see Chapter 2). These 'averaged' projections in the AGO's *National Communication 2002* have BAU growth for the transport sector as 54 per cent between 1990 and 2010 (with a likely range of 46 to 62 per cent, as opposed to the BTRE base case result of 47 per cent). 'With measures' growth (1990-2010) is projected in the AGO report to be 48 per cent (versus BTRE result of 43 per cent).

The BTRE also investigated several hypothetical policy scenarios for reducing emissions from the transport sector. Of the policies examined, optimal road pricing was judged to offer the largest potential for reducing greenhouse gas emissions from transport by 2010 (see Chapter 5).

## TABLE ES.IEMISSION PROJECTIONS FOR ENERGY END-<br/>USE BY AUSTRALIAN DOMESTIC CIVIL<br/>TRANSPORT

(Gigagrams of direct CO2 equivalent)

|           |                              |         |      |      |          |       |       | % change |
|-----------|------------------------------|---------|------|------|----------|-------|-------|----------|
|           |                              |         |      |      |          |       |       | in total |
|           |                              | Road    |      |      | Coastal  |       |       | from     |
| Year      | Cars                         | freight | Air  | Rail | shipping | Other | Total | 1990     |
| 1990      | 34220                        | 17321   | 2565 | 1741 | 1939     | 1890  | 59676 |          |
| 1998      | 39170                        | 20268   | 4846 | 1743 | 1614     | 1972  | 69612 | +17%     |
| 2010 base | e case                       |         |      |      |          |       |       |          |
|           | 47792                        | 26153   | 7792 | 2186 | 1363     | 2151  | 87437 | +47%     |
| 2010 base | e case with m                | easures |      |      |          |       |       |          |
|           | 45801                        | 26149   | 7792 | 2186 | 1363     | 2117  | 85408 | +43%     |
| 2010 opti | mistic sensitiv              | vity    |      |      |          |       |       |          |
|           | 41260                        | 24435   | 7172 | 2099 | 1309     | 2033  | 78308 | +31%     |
| 2010 pess | 2010 pessimistic sensitivity |         |      |      |          |       |       |          |
|           | 50778                        | 28840   | 8659 | 2304 | 1436     | 2231  | 94248 | +58%     |
|           | not applicable               | •       |      |      |          |       |       |          |

Notes: Energy supply emissions are not included (i.e. rail does not include emissions from electricity generation).
 Only the direct greenhouse gases—carbon dioxide, nitrous oxide and methane—are included (i.e. effects of indirect greenhouse gases, such as carbon monoxide and nitrogen dioxide, are not included here).
 'Air' is total domestic aviation (i.e. including general aviation).
 'Other' includes buses, motorcycles, small marine pleasure craft, ferries and recreational off-road motor vehicles.
 Source: BTRE estimates.

page xvii BTRE Report 107



page xviii c h a p t e

### BASE CASE PROJECTIONS OF AUSTRALIAN TRANSPORT EMISSIONS TO 2020

The Bureau of Transport and Regional Economics (BTRE), for this report, has compiled revised *base case*, or 'business-as-usual' (BAU), projections of fuel use and greenhouse gas emissions from the Australian transport sector. This study has used a *bottom-up* modelling approach across each of the main transport activities. The term 'bottom-up' is used here in the sense that the estimates are composed using a summation across major transport sub-sectors (typically calculated using vehicle fleet models or activity-specific econometric equations). This is as opposed to a common use of the term 'top-down' to refer to a total sectoral (or 'macro') estimate, typically derived from an economy-wide General Equilibrium model.

The revised modelling and projections were done on behalf of the Australian Greenhouse Office (AGO). The Bureau estimates presented here are essentially based on methodologies developed for Bureau of Transport and Communications Economics (BTCE) Report 88—Greenhouse Gas Emissions from Australian Transport: Long-term projections (BTCE 1995a), and BTCE Report 94—Transport and Greenhouse: Costs and options for reducing emissions (BTCE 1996b).

### SUMMARY OF RESULTS

Table 1.1 summarises the results for the base case projections. Emissions (in terms of direct  $CO_2$  equivalent) from energy end-use by civil domestic transport as a whole in 2010 are expected to increase by close to 47 per cent from 1990 levels. By 2020, the Bureau projects such business-as-usual emissions to be 68 per cent above 1990 levels. Table 1.1 shows that total end-use emissions (in the base case) are likely to rise from about 69 600 gigagrams (Gg)—i.e. 69.6 million tonnes—of  $CO_2$  equivalent in 1998 to about 100 200 gigagrams (100.2 million tonnes) in 2020. Emissions growth is highest for commercial road vehicles and for airlines. The results show that transport has an inherently high rate of growth in emissions, in line with its fairly direct link to economic and population growth.

The BTRE has also been conducting transport emission projections using a top-down approach (the results of which will be reported in a forthcoming BTRE Working Paper), partly to check consistency between the two modelling approaches. The recent Bureau research using a multi-sectoral model of the Australian economy (an enhanced version of the MMRF–Green model) has obtained comparable results to the bottom-up forecasting approach presented here. The current BTRE top-down results forecast BAU transport emission growth between 1990 and 2010 of about 45.4 per cent—similar to this report's bottom-up base case result (of a likely increase of 46.5 per cent over that period).

In accordance with AGO specifications, all emission values in this report that are given as 'CO<sub>2</sub> equivalent' refer to *direct* CO<sub>2</sub> equivalent emissions—i.e. they include solely the effects of the directly radiative gases emitted from transport fuel use: carbon dioxide, methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>O). The specified Global Warming Potentials (GWPs) for calculating the CO<sub>2</sub> equivalent mass estimates for emissions of methane and nitrous oxide (21 times for CH<sub>4</sub> and 310 times for N<sub>2</sub>O, using a reference period for warming effects of 100 years) were taken from Intergovernmental Panel on Climate Change (IPCC) guidelines on national greenhouse gas inventories (IPCC 1996; 1997).

Due to the difficulty in accurately quantifying global averages for warming due to 'indirect' greenhouse effects (i.e. the effects of gases such as carbon monoxide, which are not radiatively active themselves, but which can influence the concentrations of the direct gases), the IPCC reports referenced (1996; 1997) did not give GWP values for indirect greenhouse gases'. The emission level estimates would be significantly higher (and the scope for future abatement of those levels somewhat better) if the *indirect* effects of other gases emitted from transport—particularly the ozone precursors such as carbon monoxide (CO), nitrogen oxides (NO<sub>X</sub>) and non-methane volatile organic compounds (NMVOCs)—were also taken into account. Previous Bureau studies (e.g. BTCE Reports 88 and 94, BTCE Working Papers 22 and 24) included rough (order of magnitude) estimates of the indirect effects in their CO<sub>2</sub> equivalent emission values.

Note that this methodological difference means that values for 'CO<sub>2</sub> equivalent emissions' given in the earlier Bureau projection reports (BTCE 1995a; 1996b) are not directly comparable to those presented in this report. CO<sub>2</sub> equivalent totals calculated using six gas species (CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O, CO, NO<sub>x</sub> and NMVOCs—as in the earlier reports) will tend to be 10 to 20 per cent higher than those calculated using just the three direct gases (CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O—as for this report). Other variations between the reports' methodologies include:

I Note that an earlier IPCC report (1990) attempted to roughly quantify the indirect effects using a GWP approach, and recent IPCC research (see Section C of <www.ipcc.ch/pub/tar/wg1/010.htm>) has also focussed on ways to incorporate the indirect gases into a basic GWP reporting formulism.

- differing treatment of minor emission sources (such as fuel use by military vehicles, utility engines, pipelines and recreational vehicles)
- differing projection periods
- revised and updated data for historical time-series.

If these effects are allowed for (and  $CO_2$  equivalent totals are roughly recalculated from BTCE Report 88 and BTCE Report 94 data on a basis consistent with the current work), then the previous Bureau projections can be shown to contain similar order of magnitude estimates for overall emission trends as those presented in this report. Estimates of the modal contributions to the transport sector's aggregate emission level exhibit substantial differences between the various sets of projections. However, the different analyses have all derived quite comparable growth forecasts for aggregate transport emissions. Total direct greenhouse gas emissions from domestic transport had a forecast growth in BTCE Report 88 (1995a) of around 1.5 per cent per annum over the period of 1990 to 2015. This was revised upwards to about 1.85 per cent per annum (1990-2015) in BTCE Report 94 (1996b). The current BTRE base case has estimated growth in the sector's aggregate emission level of about 1.83 per cent per annum over the period of 1990 to 2015—very close to that of BTCE Report 94. The 'base case with measures' scenario (see Chapter 4) has slightly lower estimated aggregate growth than the base case at about 1.7 per cent per annum (1990–2015).

## TABLE I.IPROJECTED INCREASES IN GREENHOUSEGAS EMISSIONS FROM AUSTRALIAN CIVILDOMESTICTRANSPORT—END USE

#### (Gigagrams of direct CO<sub>2</sub> equivalent)

|          |        |        |        |          | Fercenta | ige Change |
|----------|--------|--------|--------|----------|----------|------------|
| Sub-     | 1990   | 1998   | 2010   | 2020     | 1990-    | 1990-      |
| sector   | (Gg)   | (Gg)   | (Gg)   | (Gg)     | 2010     | 2010       |
| Cars     | 34 220 | 39 170 | 47 792 | 50 1 1 0 | 40%      | 46%        |
| Trucks   | 9 924  | 11 779 | 14 606 | 17 443   | 47%      | 76%        |
| LCVs     | 7 397  | 8 489  | 11 547 | 14 431   | 56%      | 95%        |
| Aviation | 2 565  | 4 846  | 7 792  | 11 922   | 204%     | 365%       |
| Other    | 5 569  | 5 329  | 5 700  | 6 303    | 2%       | 13%        |
| Total    | 59 676 | 69 612 | 87 437 | 100 208  | 47%      | 68%        |

Notes: Figures relate to energy end-use (i.e. do not include emissions from power generation for electric railways).

LCV—light commercial vehicle.

'Other' includes rail transport (non-electric), water transport (coastal shipping, ferries and small pleasure craft), buses, motorcycles and unregistered off-road motor vehicles. For aviation, emissions during 1990 were not fully representative of the sector's trend growth pattern. 1990 was an anomalous year for Australian air transport since air travel was severely affected by an extended strike by airline pilots.

Values relate solely to 'direct'  $CO_2$  equivalent emissions (i.e. the radiative effects of emissions of  $CO_2$ ,  $CH_4$  and  $N_2O$ ).  $CO_2$  emissions account for over 95 per cent of such  $CO_2$  equivalent estimates for transport.  $CO_2$  equivalent estimates would be significantly higher (possibly of the order of 10 to 20 per cent) if the 'indirect' effects of other gases emitted (such as CO, nitrogen oxides and volatile organic compounds) were quantified and also taken into account. The global average effects of the indirect gases are difficult to quantify since such gases typically only have short atmospheric lifetimes, with their decay involving complex chemical processes. Due to methodological and data differences, BTRE emission estimates will differ slightly from those appearing in the AGO National Greenhouse Gas Inventory (NGGI). For example, the NGGI total for the transport sector is 3 per cent higher than the table value for 1990, and 4 per cent higher than the 1998 BTRE value. Year values for all emission estimates and projections refer to 'year ending 30 June'

Source: BTRE estimates.

Note also that BTRE bottom-up emission values will tend to differ to some extent from the emission estimates contained to date in the AGO National Greenhouse Gas Inventory (NGGI) — see <http://www.greenhouse.gov.au/inventory/>. The BTRE estimation methodologies are substantially more detailed than the default methods of the NGGI Workbook for Transport (National Greenhouse Gas Inventory Committee 1998a)—and transport data inconsistencies have been given particular consideration throughout these analyses. The creation of time-series estimates for transport emissions required a considerable amount of standardisation of the underlying data for transport tasks, efficiency and energy

use. For example, most studies dealing with trends in road transport have had to rely on data from the Australian Bureau of Statistics (ABS) Survey of Motor Vehicle Use (SMVU), now conducted annually. However, due to changes over time in the survey's scope, vehicle classifications and collection methods, coherent time-series comparisons are not always possible using the raw survey data. In general, the SMVU results published by the ABS need to be standardised, across the various survey years, before trend growth rates (for road transport tasks) can be derived from them.

The most significant variation between BTRE and current NGGI estimates is due to differences in the N<sub>2</sub>O emission factors assigned to passenger motor vehicles fitted with three-way catalytic converters. The N<sub>2</sub>O emission factors for such vehicles reported in the NGGI transport workbook are higher than BTRE values (based on data presented in BTCE 1995a and US Environmental Protection Agency 2001b) by as much as twofold. Note that there is considerable uncertainty surrounding the actual level of N<sub>2</sub>O emissions from motor vehicles. (Forthcoming reviews of the NGGI transport estimates may resolve this issue and, in the future, provide more robust estimates for N<sub>2</sub>O emissions from transport.)

As an example of the average BTRE divergence from the NGGI, consider emission estimates for 1998 (the most recent year for which a detailed modal breakdown is currently available for transport energy use). The NGGI transport estimate for 1998 totals 72.8 million tonnes of  $CO_2$  equivalent, compared to the BTRE's estimate of 69.6 million tonnes (see table 1.1), a difference of about 4 per cent.

As mentioned above, the most significant component of this difference is due to the estimated emissions of  $N_2O$  from the car fleet. If the BTRE projections had been done using the  $N_2O$  emission rates from the NGGI, the results would have been on average about 5 per cent higher.

For 1998, the other differences between the NGGI and current BTRE estimates relate to:

- the NGGI adopting lower estimates of domestic aviation emissions (due to not allowing for data accounting problems with aviation fuel sales)
- the NGGI emission values for trucks being towards the high end of the probable range for 'actual' values while the BTRE estimates for commercial road vehicles are toward the lower end (due to data uncertainties associated with the SMVU, the actual on-road fuel intensity for trucks is not accurately known)
- the NGGI adopting lower estimates of rail and maritime emissions (with fuel consumption data often being revised).

The NGGI is derived from energy use data provided by the Australian Bureau of Agricultural and Resource Economics' (ABARE) Fuel and Electricity Survey. BTRE estimates are partly based on ABARE data—supplemented with data

from the Apelbaum Consulting Group's work for the Australian Transport Energy Data and Analysis Centre (ATEDAC). They were also based on a detailed examination of activity levels in each major transport sub-sector (e.g. using sources such as the SMVU). The differences caused by these data discrepancies are generally relatively small, and may be resolved in future either by the NGGI transport sector reviews or by ATEDAC's ongoing work on transport data standardisation.

The energy end-use projections are presented in more detail in tables 1.2 and 1.3. Table 1.4 repeats the results from table 1.3, but with the addition of emissions due to power generation for electric railways. Rough estimates of full fuel cycle (FFC) emissions for the transport sector are then given in table 1.5, where the table 1.4 results have been increased to allow for transport fuel supply and processing. Based on CSIRO results (Beer et al. 2001), the BTRE estimates that the current fossil fuels used by transport incur a FFC emissions 'overhead' of the order of 20 per cent, relative to their energy end-use (i.e. end-use emissions for liquid fossil fuels are scaled up by 20 per cent to obtain FFC estimates).

By 2020, greenhouse gas emissions from Australian domestic civil transport are projected (in the BTRE base case scenario) to grow to almost 122 500 gigagrams (i.e. 122.5 million tonnes) of FFC direct  $CO_2$  equivalent.



Chapter I

# TABLE 1.2 BASE CASE EMISSION PROJECTIONS BY MAJOR SECTOR, FOR ENERGY END-USE BY AUSTRALIAN DOMESTIC CIVIL TRANSPORT, 1990–2020

(Gigagrams of direct CO<sub>2</sub> equivalent)

# TABLE 1.3BASE CASE EMISSION PROJECTIONS BY TYPE OF<br/>TRANSPORT, FOR ENERGY END-USE BY<br/>AUSTRALIAN DOMESTIC CIVIL TRANSPORT<br/>1990-2020

(Gigagrams of direct CO<sub>2</sub> equivalent)

|      |        | Pood     |       | Pail    |          |          |        |
|------|--------|----------|-------|---------|----------|----------|--------|
|      |        | freight  |       | (non    | Coastal  | Other    |        |
| Yoar | Care   | vehicles | Air   | (11011- | shibbing | (minor)  | Total  |
| 1990 | 24220  | 17221    | 2545  | 1741    | 1020     | (111110) | E9474  |
| 1970 | 24251  | 1/321    | 2142  | 1771    | 1737     | 1070     | 57070  |
| 1771 | 24947  | 10702    | 2202  | 1/2/    | 1011     | 1000     | 20257  |
| 1772 | 34647  | 10010    | 3373  | 16/3    | 1/42     | 1070     | 60357  |
| 1773 | 33600  | 17007    | 2222  | 1041    | 1004     | 1070     | (2021  |
| 1994 | 36148  | 1//22    | 3707  | 1/67    | 1004     | 1911     | 62921  |
| 1995 | 3/496  | 18329    | 42/4  | 1/08    | 1866     | 1926     | 65600  |
| 1996 | 38355  | 19018    | 4636  | 16/2    | 1770     | 1942     | 6/393  |
| 1997 | 38607  | 19203    | 4840  | 1806    | 1811     | 1957     | 68223  |
| 1998 | 39170  | 20268    | 4846  | 1743    | 1614     | 1972     | 69612  |
| 1999 | 40009  | 20537    | 4781  | 1717    | 1475     | 1982     | 70502  |
| 2000 | 40696  | 20762    | 4996  | 1782    | 1505     | 1980     | 71720  |
| 2001 | 41491  | 21329    | 5280  | 1840    | 1442     | 1998     | 73380  |
| 2002 | 43187  | 21798    | 5541  | 1875    | 1429     | 2015     | 75846  |
| 2003 | 44070  | 22386    | 5789  | 1911    | 1417     | 2033     | 77606  |
| 2004 | 44748  | 22992    | 6050  | 1948    | 1406     | 2050     | 79194  |
| 2005 | 4543 I | 23399    | 6313  | 1986    | 1396     | 2068     | 80592  |
| 2006 | 45910  | 23902    | 6584  | 2025    | 1388     | 2085     | 81892  |
| 2007 | 46523  | 24445    | 6868  | 2064    | 1380     | 2101     | 83381  |
| 2008 | 46999  | 25010    | 7164  | 2104    | 1373     | 2118     | 84767  |
| 2009 | 47426  | 25583    | 7471  | 2145    | 1367     | 2135     | 86127  |
| 2010 | 47792  | 26153    | 7792  | 2186    | 1363     | 2151     | 87437  |
| 2011 | 48189  | 26768    | 8130  | 2229    | 1359     | 2166     | 88840  |
| 2012 | 48540  | 27379    | 8485  | 2272    | 1356     | 2180     | 90211  |
| 2013 | 48843  | 27990    | 8856  | 2316    | 1353     | 2195     | 91554  |
| 2014 | 49116  | 28609    | 9245  | 2361    | 1352     | 2209     | 92893  |
| 2015 | 49342  | 29216    | 9650  | 2407    | 35       | 2224     | 94190  |
| 2016 | 49547  | 29817    | 10073 | 2454    | 1351     | 2238     | 95479  |
| 2017 | 49742  | 30396    | 10513 | 2502    | 1352     | 2251     | 96756  |
| 2018 | 49898  | 30962    | 10968 | 2551    | 1354     | 2265     | 97997  |
| 2019 | 50021  | 31459    | 11437 | 2600    | 1356     | 2279     | 99153  |
| 2020 | 50110  | 31874    | 11922 | 2651    | 1359     | 2292     | 100208 |
| 2020 | 30110  | 510/1    | 11722 | 2001    | 1557     | 2272     | 100200 |

Notes: 'Air' is total domestic aviation (i.e. including general aviation).

'Other (minor)' includes buses, motorcycles, small marine pleasure craft, ferries and unregistered off-road motor vehicles.

Sources: BTRE estimates, Apelbaum Consulting Group (2001), ABARE (1999), ABS (2000a; 2000c; 2001a).

Chapter I

# TABLE 1.4BASE CASE EMISSION PROJECTIONS BY TYPE OF<br/>TRANSPORT, AUSTRALIAN DOMESTIC CIVIL<br/>TRANSPORT (INCLUDING ELECTRIC RAIL),<br/>1990–2020

(Gigagrams of direct CO<sub>2</sub> equivalent)

|        |                                                                                                     | Road                                                                             |                                                                                 |                                                         |                                                              |                                      |                     |
|--------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------|--------------------------------------|---------------------|
|        |                                                                                                     | freight                                                                          |                                                                                 |                                                         | Coastal                                                      | Other                                |                     |
| Year   | Cars                                                                                                | vehicles                                                                         | Air                                                                             | Rail                                                    | shipping                                                     | (minor)                              | Total               |
| 1990   | 34220                                                                                               | 17321                                                                            | 2565                                                                            | 3218                                                    | 1939                                                         | 1890                                 | 61152               |
| 1991   | 34351                                                                                               | 16982                                                                            | 3141                                                                            | 3213                                                    | 1811                                                         | 1885                                 | 61383               |
| 1992   | 34847                                                                                               | 16810                                                                            | 3393                                                                            | 3205                                                    | 1742                                                         | 1890                                 | 61888               |
| 1993   | 35600                                                                                               | 17607                                                                            | 3553                                                                            | 3163                                                    | 1684                                                         | 1896                                 | 63502               |
| 1994   | 36148                                                                                               | 17722                                                                            | 3707                                                                            | 3297                                                    | 1664                                                         | 1911                                 | 64448               |
| 1995   | 37496                                                                                               | 18329                                                                            | 4274                                                                            | 3312                                                    | 1866                                                         | 1926                                 | 67204               |
| 1996   | 38355                                                                                               | 19018                                                                            | 4640                                                                            | 3229                                                    | 1770                                                         | 1942                                 | 68950               |
| 1997   | 38607                                                                                               | 19203                                                                            | 4838                                                                            | 3465                                                    | 1811                                                         | 1957                                 | 69882               |
| 1998   | 39170                                                                                               | 20268                                                                            | 4846                                                                            | 3375                                                    | 1614                                                         | 1972                                 | 71244               |
| 1999   | 40009                                                                                               | 20537                                                                            | 4782                                                                            | 3398                                                    | 1475                                                         | 1982                                 | 72183               |
| 2000   | 40696                                                                                               | 20762                                                                            | 4996                                                                            | 3518                                                    | 1505                                                         | 1980                                 | 73456               |
| 2001   | 41491                                                                                               | 21329                                                                            | 5280                                                                            | 3558                                                    | 1442                                                         | 1998                                 | 75098               |
| 2002   | 43187                                                                                               | 21798                                                                            | 5541                                                                            | 3614                                                    | 1429                                                         | 2015                                 | 77585               |
| 2003   | 44070                                                                                               | 22386                                                                            | 5789                                                                            | 3673                                                    | 1417                                                         | 2033                                 | 79368               |
| 2004   | 44748                                                                                               | 22992                                                                            | 6050                                                                            | 3733                                                    | 1406                                                         | 2050                                 | 80979               |
| 2005   | 4543 I                                                                                              | 23399                                                                            | 6313                                                                            | 3794                                                    | 1396                                                         | 2068                                 | 82400               |
| 2006   | 45910                                                                                               | 23902                                                                            | 6584                                                                            | 3855                                                    | 1388                                                         | 2085                                 | 83723               |
| 2007   | 46523                                                                                               | 24445                                                                            | 6868                                                                            | 3918                                                    | 1380                                                         | 2101                                 | 85236               |
| 2008   | 46999                                                                                               | 25010                                                                            | 7164                                                                            | 3983                                                    | 1373                                                         | 2118                                 | 86646               |
| 2009   | 47426                                                                                               | 25583                                                                            | 7471                                                                            | 4048                                                    | 1367                                                         | 2135                                 | 8803 I              |
| 2010   | 47792                                                                                               | 26153                                                                            | 7792                                                                            | 4114                                                    | 1363                                                         | 2151                                 | 89365               |
| 2011   | 48189                                                                                               | 26768                                                                            | 8130                                                                            | 4182                                                    | 1359                                                         | 2166                                 | 90793               |
| 2012   | 48540                                                                                               | 27379                                                                            | 8485                                                                            | 4251                                                    | 1356                                                         | 2180                                 | 92190               |
| 2013   | 48843                                                                                               | 27991                                                                            | 8857                                                                            | 4321                                                    | 1353                                                         | 2195                                 | 93559               |
| 2014   | 49116                                                                                               | 28610                                                                            | 9245                                                                            | 4392                                                    | 1352                                                         | 2209                                 | 94924               |
| 2015   | 49342                                                                                               | 29216                                                                            | 9650                                                                            | 4465                                                    | 1351                                                         | 2224                                 | 96248               |
| 2016   | 49547                                                                                               | 29817                                                                            | 10073                                                                           | 4539                                                    | 1351                                                         | 2238                                 | 97564               |
| 2017   | 49742                                                                                               | 30396                                                                            | 10513                                                                           | 4614                                                    | 1352                                                         | 2251                                 | 98868               |
| 2018   | 49898                                                                                               | 30962                                                                            | 10968                                                                           | 4691                                                    | 1354                                                         | 2265                                 | 100137              |
| 2019   | 5002 I                                                                                              | 31459                                                                            | 11437                                                                           | 4769                                                    | 1356                                                         | 2279                                 | 101321              |
| 2020   | 50110                                                                                               | 31874                                                                            | 11922                                                                           | 4848                                                    | 1359                                                         | 2292                                 | 102406              |
| Notes: | Rail transport he<br>Emissions for all<br>'Air' is total dom<br>'Other (minor)'<br>unregistered off | ere includes o<br>other sector<br>nestic civil av<br>includes buse<br>road motor | emissions fro<br>rs relate sole<br>iation (i.e. in<br>es, motorcyc<br>vehicles. | m power g<br>ly to energ<br>cluding gen<br>les, small m | eneration fo<br>y-end-use.<br>eral aviation<br>narine pleasu | r electric ra<br>).<br>re craft, fer | ilways.<br>ries and |

Sources: BTRE estimates, Apelbaum Consulting Group (2001), ABARE (1999), ABS (2000a; 2000c; 2001a).

### TABLE 1.5ORDER OF MAGNITUDE ESTIMATES FOR FULL<br/>FUEL CYCLE EMISSIONS BY AUSTRALIAN<br/>DOMESTIC CIVIL TRANSPORT, 1990–2020

(Gigagrams of direct CO<sub>2</sub> equivalent)

|        |                                                           | Road                           |                                |                            |                               |                           |                     |
|--------|-----------------------------------------------------------|--------------------------------|--------------------------------|----------------------------|-------------------------------|---------------------------|---------------------|
|        |                                                           | freight                        |                                |                            | Coastal                       | Other                     |                     |
| Year   | Cars                                                      | vehicles                       | Air                            | Rail                       | shipping                      | (minor)                   | Total               |
| 1990   | 41064                                                     | 20785                          | 3078                           | 3566                       | 2327                          | 2268                      | 73088               |
| 1991   | 41221                                                     | 20378                          | 3769                           | 3558                       | 2173                          | 2262                      | 73362               |
| 1992   | 41816                                                     | 20172                          | 4072                           | 3540                       | 2090                          | 2268                      | 73958               |
| 1993   | 42720                                                     | 21128                          | 4264                           | 3492                       | 2021                          | 2275                      | 75900               |
| 1994   | 43378                                                     | 21266                          | 4448                           | 3650                       | 1997                          | 2293                      | 77033               |
| 1995   | 44995                                                     | 21995                          | 5129                           | 3654                       | 2239                          | 2311                      | 80323               |
| 1996   | 46026                                                     | 22822                          | 5568                           | 3564                       | 2124                          | 2330                      | 82434               |
| 1997   | 46328                                                     | 23044                          | 5806                           | 3826                       | 2173                          | 2348                      | 83526               |
| 1998   | 47004                                                     | 24322                          | 5815                           | 3724                       | 1937                          | 2366                      | 85168               |
| 1999   | 48011                                                     | 24644                          | 5738                           | 3742                       | 1770                          | 2378                      | 86284               |
| 2000   | 48835                                                     | 24914                          | 5995                           | 3874                       | 1806                          | 2376                      | 8780 I              |
| 2001   | 49789                                                     | 25595                          | 6336                           | 3926                       | 1730                          | 2398                      | 89774               |
| 2002   | 51824                                                     | 26158                          | 6649                           | 3990                       | 1715                          | 2418                      | 92754               |
| 2003   | 52884                                                     | 26863                          | 6947                           | 4055                       | 1700                          | 2440                      | 94889               |
| 2004   | 53698                                                     | 27590                          | 7260                           | 4123                       | 1687                          | 2460                      | 96818               |
| 2005   | 54517                                                     | 28079                          | 7576                           | 4191                       | 1675                          | 2482                      | 98519               |
| 2006   | 55092                                                     | 28682                          | 7901                           | 4260                       | 1666                          | 2502                      | 100103              |
| 2007   | 55828                                                     | 29334                          | 8242                           | 433 I                      | 1656                          | 2521                      | 101912              |
| 2008   | 56399                                                     | 30012                          | 8597                           | 4403                       | 1648                          | 2542                      | 103600              |
| 2009   | 56911                                                     | 30700                          | 8965                           | 4477                       | 1640                          | 2562                      | 105255              |
| 2010   | 57350                                                     | 31384                          | 9350                           | 455 I                      | 1636                          | 2581                      | 106853              |
| 2011   | 57827                                                     | 32122                          | 9756                           | 4628                       | 1631                          | 2599                      | 108562              |
| 2012   | 58248                                                     | 32855                          | 10182                          | 4705                       | 1627                          | 2616                      | 110233              |
| 2013   | 58612                                                     | 33589                          | 10628                          | 4784                       | 1624                          | 2634                      | 87                  |
| 2014   | 58939                                                     | 34332                          | 11094                          | 4864                       | 1622                          | 2651                      | 113503              |
| 2015   | 59210                                                     | 35059                          | 11580                          | 4946                       | 1621                          | 2669                      | 115086              |
| 2016   | 59456                                                     | 35780                          | 12088                          | 5030                       | 1621                          | 2686                      | 666                 |
| 2017   | 59690                                                     | 36475                          | 12616                          | 5115                       | 1622                          | 2701                      | 118219              |
| 2018   | 59878                                                     | 37154                          | 13162                          | 5201                       | 1625                          | 2718                      | 119737              |
| 2019   | 60025                                                     | 37751                          | 13724                          | 5289                       | 1627                          | 2735                      | 121151              |
| 2020   | 60132                                                     | 38249                          | 14306                          | 5379                       | 1631                          | 2750                      | 122447              |
| Notes: | Emissions includ<br>transport vehicl<br>electric railways | le greenhous<br>e use. Rail tr | e gas contrib<br>ansport inclu | utions fron<br>des emissic | n fuel supply<br>ons from pov | and proces<br>ver generat | sing for<br>ion for |

'Air' is total domestic civil aviation (i.e. including general aviation).

'Other (minor)' includes buses, motorcycles, small marine pleasure craft, ferries and unregistered off-road motor vehicles.

Sources: BTRE estimates, Apelbaum Consulting Group (2001), ABARE (1999),

ABS (2000a; 2000c; 2001a), CSIRO (2001).

#### **OVERVIEW OF THE PROJECTION METHODS**

Throughout the rest of this introductory chapter, we make use of what are termed 'simplifying frameworks' for understanding the factors determining transport fuel use (and consequently emission levels). These are simple mathematical formulae—in reality, just straightforward calculating instructions, given various inputs. Such formulae are based on the more rigorous modelling presented in the appendices to the report.

What the simplifying frameworks achieve is conceptual simplifications that allow reasonably robust, but very approximate, estimates to be made of the major trends in fuel consumption by Australian transport. Yet before any experts take offence at this level of simplification, let us add that such an approach can be useful—especially as it allows a ready demonstration of the major sources, and their interactions, leading to transport fuel use.

The complete models used in this report, for making projections of future transport fuel use, are generally quite complex—and can include myriad details for factors such as the differences in vehicle technologies, the age structures of fleets or fuel type disaggregations. Yet, the essential drivers of such projections (and typically, the order of magnitude of the detailed model results) can be readily understood by using the simple identities presented below.

### **CURRENT TRANSPORT FUEL USE**

Australian domestic transport currently consumes in the order of 30 gigalitres (GL)—i.e. 30 billion litres—of petroleum fuels per annum (ignoring, for the moment, the differences in properties between fuel types). For example, allowing for the different energy contents and densities of the various fuels, Australian transport in 1998 accounted for oil and gas consumption equivalent to about 29.74 gigalitres of automotive gasoline.

The dominant transport fuel is automotive gasoline. In 1998 the consumption level was close to 18 GL (about 70 per cent of which was unleaded petrol and 30 per cent leaded petrol). Automotive gasoline (or 'petrol') use is currently followed by three other major transport fuels:

- automotive diesel oil (ADO), with 1998 consumption equivalent to around 7.5 GL of automotive gasoline
- liquefied petroleum gas (LPG), with 1998 consumption in the order of 2 GL of automotive gasoline equivalent
- aviation turbine fuel (Avtur), with 1998 consumption at around 2 GL of automotive gasoline equivalent.

Smaller amounts of a variety of other energy sources are used by the Australian transport sector including fuel oil, natural gas (NG), coal, aviation gasoline, ethanol and electricity. However, even though most of Australia's urban railways are now electrified, these other fuel sources currently account for

less than 5 per cent of total primary energy consumption by Australian transport.

Of annual transport fuel consumption, equivalent to approximately 30 gigalitres of automotive gasoline, passenger cars account for the major proportion (with close to 55 per cent of the total, as shown in figure 1.1).

Referring to figure 1.1:

- light commercial vehicles (LCVs) account for around 12 per cent of total transport fuel use and trucks for around 16 per cent
- domestic civil aviation accounts for close to another 7 per cent
- all other transport-related activities (such as coastal shipping, trains, pipelines, military transport, buses and motorcycles) account for under 11 per cent.



As the three major road vehicle categories account for close to 83 per cent of current transport fuel use, this summary will concentrate on the outlook for car, truck and LCV fuel consumption. Aviation (a particularly fast-growing sector) will also be examined in detail. Models of these and the other subsectors (such as rail and sea transport) are presented in Appendices I–V. Aggregate energy consumption data from the various models are presented in Appendix VI (tables VI.4–VI.5). In the National Greenhouse Gas Inventory, military vehicles and pipelines are not included in the transport sector and, consequently, have not been included in the emission estimates and emission projections of this report.

### FORECASTS OF CAR FUEL USE TO 2020

So, beginning with car fuel use, the simplifying framework looks like this:

Which, for 1997–98, gives roughly:

16.9 gigalitres = 0.5 vehicles per person x 18.8 million persons x 15 500 kilometres per vehicle x 0.116 litres per km

That is, a rough identity for current aggregate Australian car fuel use (of around 17 billion litres per annum) is composed of the car ownership level (of about 0.5 cars per person), times the national population (around 18.8 million people for 1998), times the average annual vehicle utilisation—or vehicle kilometres travelled (VKT)—of 15 500 kilometres per vehicle, times the average car fleet fuel intensity of 0.116 litres per kilometre (more commonly quoted as 11.6 L/100 km)<sup>2</sup>. For the car fleet, approximately 90 per cent of total fuel used is automotive gasoline. BTRE estimates of fleet fuel intensity are based on data from the ABS Survey of Motor Vehicle Use (SMVU).

The advantage of the simplifying framework comes when one starts to consider the likely future for car fuel use. By modelling (or using assumptions about) the likely growth of the components of the simplifying framework, it allows the ready generation of systematic forecasts of fuel use by the Australian car fleet.

#### Vehicles per person

The trend in per capita car travel (kilometres per person) in Australia has in general been following a logistic (saturating) curve against real per capita income—measured here by real Gross Domestic Product (GDP) per person (see figure 1.2A). The assumed base case rates of GDP growth imply that per capita car travel should level out at around 9000 kilometres per person by 2020. Together with base case assumptions about the trend in annual VKT per car, car ownership per capita is forecast to also stop growing appreciably

13

<sup>2</sup> Note that due to rounding, some of the identities presented here will have slightly differing numerical values on their left-hand and right-hand sides.

around 2020, having effectively approached a 'saturation' level of about 0.57 cars per person (see figure 1.2B). These logistic curves have been remarkably insensitive to the price of petrol and only somewhat responsive to the price of new vehicles. A large volume of new vehicle sales in recent years, associated with a period of rapid growth in incomes and lower car prices, has inflated the actual car stock to moderately above the original trend curve (see tailend values of figure 1.2B). However, the relationship between vehicle travel and income level has remained close (tail-end values of figure 1.2A). It is still likely that car travel and ownership will continue to follow this fundamental pattern over the next 20 years. As can be seen from figure 1.2B, the actual trend in cars per person had been following a basic logistic (s-shaped) curve for over 50 years.



page 15



All industrialised countries around the world have exhibited similar vehicle ownership curves, some with higher and some with lower saturation levels (e.g. Japan has a much lower saturation level due to the relative lack of road space).

It is, of course, possible that in the longer term, the car ownership trend will depart from this simple curve. Major structural changes to the transport sector (e.g. Intelligent Transport Systems influencing travel patterns and behaviour) could conceivably allow significantly higher vehicle ownership levels than currently. Alternatively, the spread of new technologies that substitute for transport (such as telecommuting and video-conferencing), could serve to reduce the level of car ownership in the future. Likewise, the fuel price increases that are probable when future world oil consumption outstrips oil production could also deter future car use.

### Population

The two main sources of population growth are natural increase and immigration. The contribution each has made to population growth over the last 40 years is shown in figure 1.3 (where the two components have been

page 16 stacked—thus summing to total growth). The average growth rate of both components has tended to decline over time.

The Australian Bureau of Statistics has previously produced three scenarios for population growth—see <www.abs.gov.au> for details—projecting national population to be between about 22 million and 24 million people by 2020. The following analysis uses population projections based on the time trend to 2020 of the ABS Series III projections (ABS 2001b), assuming a net immigration level of about 70 000 persons per year and a further declining rate of natural increase (due to a fairly rapid ageing of the population, coupled with a fairly low fertility rate). The population of Australia is forecast to reach about 22.2 million in 2020 under this scenario.



Average travel (kilometres per vehicle)

There is some controversy over what exactly is the average utilisation of the Australian car fleet. What little data are available, on the average kilometres travelled by cars in Australia, tend to be inconsistent and difficult to reconcile. Given that data on aggregate gasoline sales are known quite accurately, it is possible to estimate average fleet utilisation by using estimates for the number of vehicles on the road and the average rate of fuel consumption (L/100 km). Using this method, we are fairly confident that the current figure lies in the vicinity of 15 500 kilometres per vehicle per annum—but, with some uncertainty in the average fleet fuel consumption rate, it could be as much as 10 per cent higher or lower.

Despite not knowing car travel as accurately as one would like, there is enough evidence available to suggest that average VKT per vehicle has not varied greatly over the last 30 years (see figure 1.4). The BTRE considers the figure for current usage to be close to 15 500 kilometres per year per car, and that this is likely to increase only slowly in the future. There are a variety of factors that would tend to increase average VKT over time (such as increasing income levels). There are also a number of factors that would tend to decrease average VKT per car (such as the ageing population, increasing traffic congestion and more multi-car households). For the purposes of this projection framework, assume that these factors continue a rough balance in the future, and that average fleet VKT will increase only slightly over the next 22 years to around 15 800 kilometres per vehicle (figure 1.4).



#### Average fuel intensity of cars

The average on-road fuel intensity of cars is another factor that is not known to great accuracy. The average on-road fuel performance on the Australian car fleet is probably between 11 to 12 litres per 100 kilometres, and most likely currently lies toward the middle of this range.

Trends in average fuel intensity are primarily influenced by two factors:

 technological progress allowing decreases in the fuel intensity of engines of given size and power
a tendency for consumers to choose vehicles with larger, more powerful engines and more performance features.

With these two factors roughly counter-balancing, the average fuel efficiency of the Australian car fleet—allowing for the inclusion of four-wheel drive (4WD) passenger vehicles—has not changed greatly over the past 30 years (probably improving by only about 10 per cent over this period, based on ABS SMVU trend data).

For projecting fuel use out to 2020, assume a median (or base case) scenario in which the new car fleet improves its sales-weighted average fuel intensity (onroad) from about 10.3 L/100 km currently to about 9 L/100 km by 2020. Note that these fuel intensity estimates allow for the effects over time of increasing levels of urban congestion and increasing sales of 4WD passenger vehicles often commonly termed 'All Terrain Wagons' (ATWs). This median scenario (which is based on car manufacturers' product plans for the future and on a continuation of historical trends in fleet composition) has average fleet fuel intensity declining from about 11.6 L/100 km currently to about 10.8 L/100 km by 2020.

Car fuel use by 2020

Putting together the components of the simplifying framework gives a base case forecast for car fuel use in 2020 of about 21.5 billion litres. That is:

21.5 gigalitres= 0.57 vehicles per person x 22.2 million persons x 15 800 kilometres per vehicle x 0.108 litres per kilometre

This is an increase of around 27–28 per cent on current car fuel use. Car fuel use is currently growing at about 1.5 per cent per year. By 2020, with a near-saturation of cars per person, that growth rate could have slowed to practically zero (with the first and third right-hand elements above nearly constant and reductions in fuel intensity roughly balancing population growth by 2020).

The projected greenhouse gas emissions from cars under the base case also rise about 28 per cent between 1998 and 2020.

#### FORECAST OF TRUCK FUEL USE TO 2020

A similar simplifying framework for trucks can be set out in the form:

Truck fuel use= freight task x average fuel intensity / average load (1.2)

This gives a current estimate of:

4.5 gigalitres = 120 billion tonne-kilometres x 0.375 litres per kilometre / 10 tonnes per vehicle

where a freight task of 'x times y' tonne-kilometres (tkm) is equivalent to 'x' tonnes of freight being moved 'y' kilometres.

Note that the 'average load' figure in the above identity is calculated across the total truck fleet—i.e. includes both rigid and articulated vehicles. The average

load for rigid trucks (at 3.5 tonnes per vehicle) is substantially lower than that for articulated trucks (18.2 tonnes per vehicle). Rigid trucks accounted for approximately 55 per cent of total kilometres performed by heavy road freight vehicles and articulated trucks 45 per cent in 1999–2000.

The above 4.5 gigalitres of fuel will be primarily consumed as automotive diesel oil (ADO).

What can this framework (equation 1.2) tell us of the likely future fuel use by trucks?

Taking the last two components first, the trends in truck fuel use per kilometre are downward, in line with technical progress in engine and vehicle design. However, for the base case, the Bureau assumes that the average fuel intensity of the truck fleet will rise slightly to around 0.385 litres per kilometre by 2020. This assumed rise comes about primarily due to load per truck being assumed to increase, especially as more multiple-trailer vehicles enter the fleet. The base case scenario has average load per truck estimated as likely to reach about 17.3 tonnes by 2020. Thus, the BTRE assessment of the future fleet structure implies a significant fall in the amount of fuel required per unit freight task (i.e. in terms of litres of fuel consumed per tonne–kilometre of freight movement) over the next 20 years.

However, that does not mean that total truck fuel consumption will necessarily fall over the period. You have to look at the likely trend in the first component of the framework—the freight task—to complete the picture.

The freight task is currently growing exponentially—at least as fast as economic growth. While this cannot continue indefinitely, there are no signs yet of saturation in Australian truck freight use per person (as there are in car ownership per person). Similarly, there are no signs of saturation in current levels of United States' truck freight per person: American levels of road freight per person are already much higher than those in Australia (see figure 1.5).

Assuming an average 3 per cent (per annum) for GDP growth rate over the next 20 years (roughly, the assumed GDP growth under the base case), and that freight growth continues to be stronger than GDP growth, the result will be a more-than-doubling of the road freight task.

Putting these assumptions into the simplifying framework results in the following forecast of truck fuel use in 2020:

6.5 gigalitres (ADO) = 290 billion tonne-kilometres x 0.385 litres per kilometre / 17.3 tonnes per vehicle

This is nearly a 50 per cent increase on current annual fuel use by trucks (even after assuming a significant decrease in truck fuel intensity per tonne-kilometre).

Greenhouse emissions from heavy trucks are thus likely to grow by about 50 per cent between 1998 and 2020.

BTRE Report 107



page 20

#### Forecast of LCV Fuel Use to 2020

The light commercial vehicle (LCV) category includes utilities, panel vans and light trucks up to a weight of 3.5 tonnes (but does not include 4WD passenger vehicles and 'People Mover' passenger vans) comprising around 14 per cent of the motor vehicle fleet.

Again, a simplified framework illustrates the factors behind LCV fuel use:

LCV fuel use = number of vehicles x kilometres per vehicle x average fuel intensity (1.3)

Giving current fuel use of about:

3.7 gigalitres = 1.7 million vehicles x 16 600 kilometres per vehicle x 0.133 litres per kilometre

For LCVs, the major fuel type is automotive gasoline (accounting for over 60 per cent of total fleet fuel use), though there is also major use of diesel and LPG.

#### LCV fuel use by 2020

For future LCV fuel use, the first component above (the number of vehicles) is likely to be linked to the growth of the service economy. As such, it is unlikely to show any tendency towards saturation in the near future. The numbers of LCVs increased greatly during past decades, but the average growth rate has now slowed to about 2.8 per cent per year.

Similarly to the car fleet, assume here, for simplicity, that kilometres travelled per vehicle will remain roughly constant in the future.

As with cars, the BTRE expects average fuel intensity of the LCV fleet to decline slowly. Some increases in average payloads will be more than offset by increases in engine efficiency.

Therefore, by assuming that vehicle numbers continue to grow at about 2.8 per cent per year, the base case forecast of LCV fuel use in 2020 becomes:

6.3 gigalitres = 3 million vehicles x 16 600 kilometres per vehicle x 0.125 litres per kilometre

This is an increase of around 70 per cent from current consumption levels. Again, greenhouse gas emissions are likely to increase by a similar magnitude.

#### FORECASTS OF DOMESTIC AVIATION FUEL USE TO 2020

Domestic commercial aviation also has a simplifying framework—with skm denoting seat-kilometres, pkm denoting passenger-kilometres:

Domestic aviation fuel use = skm x fuel per skm (1.4) with skm = (Australian pkm + foreign pkm)/load factor

The load factor is the average proportion of the aircraft seats that are occupied.

For 1997-98:

I.8 GL =  $\frac{0.044 \text{ litres per skm} \times (26 \text{ billion pkm} + 3.7 \text{ billion pkm})}{0.72}$ 

The domestic aviation fuel use given above is estimated non-military usage, assuming 20 per cent of total domestic Avtur (aviation turbine fuel) sales serve military aircraft.

The first component on the right-hand side of equation 1.4 is the domestic airline task in seat-kilometres. It in turn is made up of two components:

- Australians travelling on the domestic network (about 26 million passengers per year, each travelling on average about 1000 kilometres, with an average aircraft load factor of 0.72) contributing about 36 billion seat-kilometres
- foreign tourists travelling on the domestic network (about 3.2 million per year travelling a slightly longer distance at a similar load factor to domestic passengers, 0.72) accounting for about 5.1 billion seat-kilometres.

Both of these components are growing rapidly. Continuing these trends over the next 20 years, the Australian component can be expected to grow at

something like 4 per cent per year, and the foreign component at 9 per cent per year. With average travel distances assumed to increase to 1400 kilometres and with an average load factor of 0.75, the Australian component in 2020 will be almost 108 billion seat-kilometres (skm). Foreigners will contribute about 37 billion skm, for a total task of about 145 billon skm (i.e. more than triple the current skm task, given current growth rates)<sup>3</sup>.

If aircraft fuel intensity were to fall from a current average of 0.044 litres per skm to about 0.031 litres per skm (a relatively large assumed decrease in fuel intensity), avtur use by domestic aviation in 2020 would still more than double, if current passenger growth rates are maintained, to about 4.5 gigalitres per year.

There are also small amounts of aviation gasoline (avgas) used by the general aviation sector. The total amount of avgas used is about 0.1 gigalitre per year, and is expected to remain essentially constant over the forecast period.

#### FORECAST OF OTHER TRANSPORT FUEL USE TO 2020

'Other' transport (not explicitly considered in this introductory chapter, but included in the detailed modelling of following chapters) includes coastal shipping, ferries, other small craft (primarily outboard motors), buses, railway transport (trains and trams), motorcycles, and off-road recreational vehicles. Current primary fuel end-use (oil and gas), totalled across all these activities, is of the order of 2 billion litres (in gasoline equivalent). Also, for many of these sectors, growth is relatively low.

For the simplified framework projections, assume that the growth rate of fuel use across all 'other transport' remains at about I per cent per year. This gives an estimate of total oil and gas consumption by other transport as increasing to about 2.5 gigalitres (gasoline equivalent) per year by 2020.

<sup>3</sup> The aviation forecasts are the most sensitive segment of the base case scenario to the assumptions regarding future growth in transport demand. The projections presented here are done on the assumption that Australian domestic aviation will continue to grow strongly— i.e. future growth in travel demand will not be constrained in any way. Since the underlying growth rates are so high for aviation, any structural changes in non-urban travel behaviour in the future will have a large effect on the eventual task levels. As an example, suppose that air travel is constrained in the future to never exceed a 40 per cent mode share of non-urban passenger-kilometres (assuming that by this level, aviation would have totally replaced the contestable portion of long-distance travel, leaving mostly rural local traffic as the residual). Then growth in air passenger-kilometres could possibly be limited to the order of 170 per cent over the next 20 years (as opposed to over 240 per cent estimated using the current base case assumptions). For details of a projection scenario of the 'constrained' type (with future saturation of air mode share) see BTE Working Paper 38 (1998).

#### FORECAST OF DOMESTIC TRANSPORT FUEL USE TO 2020

Table 1.6 shows a comparison of the projections' starting point (estimates for 1998), and their end-point (estimates for 2020), given our simplified frameworks and all the assumptions about the major components driving total fuel use. Figure 1.6 presents the changes in modal fuel use for the base case scenario over the projection period.

#### TABLE 1.6 PROJECTED INCREASES IN FUEL END-USE BY DOMESTIC AUSTRALIAN TRANSPORT— SIMPLIFIED ESTIMATES

|           |                                                                                                                  | 1998                                                                                                    |                                                                                              | 2020                                                                                | Increase                                                 |
|-----------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------|
|           |                                                                                                                  | (GL petrol                                                                                              |                                                                                              | (GL petrol                                                                          | 1998–2020                                                |
| Sub-secto | r (GL)                                                                                                           | equivalent)                                                                                             | (GL)                                                                                         | equivalent)                                                                         | (%)                                                      |
| Cars      | 17.0                                                                                                             | 16.9                                                                                                    | 21.6                                                                                         | 21.5                                                                                | 27                                                       |
| Trucks    | 4.5                                                                                                              | 5.0                                                                                                     | 6.5                                                                                          | 7.3                                                                                 | 46                                                       |
| LCVs      | 3.7                                                                                                              | 3.7                                                                                                     | 6.3                                                                                          | 6.3                                                                                 | 70                                                       |
| Aviation  | 1.9                                                                                                              | 2.0                                                                                                     | 4.6                                                                                          | 4.9                                                                                 | 142                                                      |
| Other     | 1.9                                                                                                              | 2.1                                                                                                     | 2.3                                                                                          | 2.5                                                                                 | 23                                                       |
| Total     |                                                                                                                  | 29.7                                                                                                    |                                                                                              | 42.5                                                                                | 43                                                       |
| Notes:    | Figures refer to oil<br>'GL petrol equivaler<br>consumption, on an<br>Due to rounding an<br>shown here will diff | and gas end-use (<br>nt' = gigalitres of<br>energy content l<br>d the approximat<br>fer slightly from d | i.e. do not inclue<br>petrol (i.e auton<br>pasis.<br>se nature of the s<br>etailed base case | de electricity con<br>notive gasoline) e<br>simplified framew<br>e results presente | sumption).<br>equivalent<br>eorks, values<br>ed in later |

Source: BTRE estimates.

page 24



The comparisons show that:

 total domestic transport fuel use is forecast to grow from around 29.7 gigalitres (gasoline equivalent) in 1998 to around 42.5 gigalitres (i.e. a 43 per cent increase)

page 25

- all major categories are expected to show increased levels of fuel use
- LCVs and domestic aviation are expected to show marked increases in their share of the total usage
- cars are expected to show a corresponding decline in their share of total transport fuel use (a reflection of the tendency to saturation in per person car ownership).

Figure 1.7 shows the time trend of the components, where the dominance of cars and their slowing growth rate of fuel consumption are evident. However, trucks, LCVs and civil aviation are all increasing their total fuel consumption quite strongly—resulting in total transport fuel use growing approximately linearly. This is a phenomenon that is also apparent for the road sector in terms of numbers of vehicles (passenger car equivalents) or vehicle kilometres travelled (passenger car equivalent kilometres).



#### **MODE SHARE TRENDS**

The simplified frameworks tend to hide some important changes going on at lower levels of aggregation of the transport task.

For example, notable mode shifts have been going on in passenger transport since the end of the Second World War (figure 1.8). Throughout the first half

of the century, rail played a significant role in non-urban passenger movement. (There were even special trains put on to carry football supporters to neighbouring towns for 'away' games!) Steadily, rail lost out to car, as motor vehicles became commonplace and the road system was fully developed. Similar switches of rail to road (in mode share) also occurred for urban passenger transport.

At the same time, air travel was growing quickly, interrupted only in the early 1980s by a halving of bus fares following bus deregulation. Air had its own deregulation in the early 1990s and resumed its take-over of long distance passenger travel from the other modes.

The freight task has seen similar mode-share shifts (figure 1.9). For general interstate freight, road has been the clear winner since the 1970s, taking share from rail and coastal shipping. In the absence of a major revival of rail transport (something which is possible when freight forwarders begin to run their own trains), road is likely to continue to increase its share of the freight task.





Chapter I



page 27

#### **EMISSION INTENSITY LEVELS**

The emission intensity of a transport activity (i.e. the rate of emissions per unit transport task) will vary according to a variety of factors. These include factors such as: the mode chosen, type and condition of the transport vehicle, type of fuel consumed, average vehicle occupancy, traffic levels and environmental conditions.

National average values for modal emission intensity do not fully capture the range of such variation across a particular mode, and will not accurately represent the likely emissions from a specific transport activity. However, they will give a reasonable idea of the relative efficiencies of the various modes that will be encountered on average.

For the major passenger transport modes, the following current values for greenhouse emission intensity—in grams of direct full fuel cycle  $CO_2$  equivalent per passenger–kilometre (g/pkm)—have been derived as part of the BTRE base case scenario:

The Australian car fleet has an average emission intensity of around 207.3 g/pkm. This value for cars relates to nationally averaged travel, with an average occupancy level of 1.55 persons per vehicle—urban car use (with an average occupancy of about 1.5) incurs an average emission rate of

around 220 g/pkm and non-urban driving (with an average occupancy of about 1.7) around 180 g/pkm.

- For rail, urban trains average around 132 g/pkm and urban trams average around 124 g/pkm (where electric rail values are inflated somewhat by the high emission rate of Victorian base load electricity generation from brown coal). Non-urban railways have a national average emission intensity of around 123 g/pkm. (For Australian rail, average operating loads are approximately 140 passengers per train and 20 passengers per tram.)
- The Australian bus and coach fleet has a national average emission intensity of around 93 g/pkm (with urban bus intensity, at an average occupancy of about eight, of around 142 g/pkm and non-urban intensity, at an average occupancy of about thirteen, of around 71 g/pkm).
- Domestic civil aviation (including general aviation) has an average emission intensity of around 196 g/pkm (where the average airline load factor is about 75 per cent).

For Australian domestic freight transport, BTRE base case values for current greenhouse emission intensity levels (in grams of direct full fuel cycle  $CO_2$  equivalent per tonne-kilometre) are:

- The commercial road freight fleet has a combined intensity (i.e. across all vehicle types, at average operating loads) of approximately 184 g/tkm, consisting of values of the order of 2000 g/tkm for LCVs, 233 g/tkm for rigid trucks and 82 g/tkm for articulated trucks.
- Public (or 'Government') rail systems (also at average operating loads) have a bulk freight emission intensity of around 24 g/tkm (including emissions from supply of electric power) and a non-bulk freight intensity of around 33 g/tkm. Private (bulk) rail freight has an intensity of close to 8 g/tkm.
- Australian coastal shipping has an average intensity of around 17 g/tkm.

#### FUELS TO MEET THE FUTURE DEMAND

The simplified frameworks used above also abstract from the types of fuels used to meet the demands of transport. For Australian transport fleets:

- cars mostly use petrol (except for heavy LPG use by the taxi fleet)
- the LCV fleet is a mixture of petrol, diesel (ADO) and LPG vehicles
- heavy trucks primarily use diesel
- for railways, the primary energy sources are electricity and diesel
- aviation primarily uses aviation turbine fuel (Avtur)
- coastal shipping consumes mostly diesel and fuel oil.

We do not expect this basic picture to change all that significantly over the next decade or so. Transport fuel demand will still be primarily met by petroleum, with natural gas possibly increasing its share of total transport fuel use to something like 2–3 per cent. The increasing share of commercial road vehicles within total fuel use will mean that diesel use will account for a greater proportion of future consumption.

In the longer term, however, alternatives to petroleum use are likely to be required if transport activity levels are to be maintained.

The roll-over in the global oil market (i.e. the point where the world demand for oil outstrips the capacity to produce it) is generally forecast to occur by 2030 (USGS 2000)—after which there will be significant upward pressures on oil prices.

BTRE Report 107

# 

#### SENSITIVITY ANALYSES FOR TRANSPORT EMISSION PROJECTIONS

As a part of the BTRE's revision of the projections of transport sector emissions, the Australian Greenhouse Office (AGO) requested that the Bureau undertake sensitivity testing of the results to changes in the underlying assumptions. This chapter presents the results of various sensitivity tests conducted by the BTRE.

#### SENSITIVITY ANALYSES PERFORMED ON ALL SUB-SECTORS

For all sub-sectors of transport, five sensitivity analyses were performed:

- I. low and high economic growth
- 2. low and high population growth
- 3. low and high fuel efficiency improvements
- 4. a combined result for low emission growth (low economic and population growth plus optimistic fuel efficiency improvements)
- 5. a combined result for high emission growth (high economic and population growth plus pessimistic fuel efficiency improvements).

Note that in tables 2.3–2.6 'Other' transport here includes buses, motorcycles, rail transport (non-electric), water transport (coastal shipping, ferries and small pleasure craft), and unregistered off-road motor vehicles.

Also note that the different settings of the various underlying variables (such as economic growth) used in the sensitivity tests do not necessarily represent alternative 'probable' scenarios for future growth. They simply relate to value ranges specified by the AGO to test the response of the base case results to variations in underlying assumptions.

Sensitivity analysis I: Low and high economic growth

Table 2.1 shows the result for the sector of assuming that the economic growth rate is 0.5 per cent per year higher or lower than in the base case. The base case GDP growth assumptions are listed in appendix table VI.3 and imply

average compound GDP growth of approximately 3 per cent per annum from 2000 to 2020. Overall, since car use and ownership are tending to saturate with regard to income, and since some sub-sectors are independent of Australian economic growth (e.g. commodity exports), the effect on total emissions is somewhat muted. For example, the high growth assumption has GDP increasing 10.5 per cent more than in the base case by 2020, whereas transport emissions are only 6.7 per cent higher. The sub-sectors most responsive to economic growth are road freight and aviation.

#### TABLE 2.1 SUMMARY OF CO<sub>2</sub> EQUIVALENT EMISSIONS UNDER SENSITIVITY I—ECONOMIC GROWTH

|               |                  |             | (        | Olgugiullis | /           |          |           |          |
|---------------|------------------|-------------|----------|-------------|-------------|----------|-----------|----------|
|               |                  |             |          | 2010        |             |          | 2010      | )        |
|               |                  |             |          |             | Change      |          |           | Change   |
| Sector        | 1990             | 1998        |          |             | from BAU    |          |           | from BAU |
|               | Base             | Base        | Base     | Scenario    | (%)         | Base     | Scenario  | (%)      |
| High GDP      | growth sce       | nario (ap   | proximat | tely 3.5 pe | er cent per | annum f  | rom 2000  | to 2020) |
| Cars          | 34220            | 39170       | 47792    | 48474       | 1.4         | 50110    | 51616     | 3.0      |
| LCVs          | 7397             | 8489        | 11547    | 12313       | 6.6         | 14431    | 16279     | 12.8     |
| Trucks        | 9924             | 11779       | 14606    | 15581       | 6.7         | 17443    | 19695     | 12.9     |
| Aviation      | 2565             | 4846        | 7792     | 8092        | 3.9         | 11922    | 12812     | 7.5      |
| Other         | 5569             | 5328        | 5700     | 5797        | 1.7         | 6302     | 6533      | 3.7      |
| Total transpo | ort <b>59676</b> | 69612       | 87437    | 90257       | 3.2         | 100208   | 106935    | 6.7      |
| Low GDP       | growth scei      | nario (apț  | oroximat | ely 2.5 pe  | r cent per  | annum fr | om 2000 t | o 2020)  |
| Cars          | 34220            | 39170       | 47792    | 47114       | -1.4        | 50110    | 48626     | -3.0     |
| LCVs          | 7397             | 8489        | 11547    | 10827       | -6.2        | 14431    | 12788     | -11.4    |
| Trucks        | 9924             | 11779       | 14606    | 13689       | -6.3        | 17443    | 15440     | -11.5    |
| Aviation      | 2565             | 4846        | 7792     | 7504        | -3.7        | 11922    | 11110     | -6.8     |
| Other         | 5569             | 5328        | 5700     | 5604        | -1.7        | 6302     | 6079      | -3.5     |
| Total transpo | ort <b>59676</b> | 69612       | 87437    | 84738       | -3.I        | 100208   | 94043     | -6.2     |
| Note: A gig   | gagram is ec     | jual to 100 | 0 tonnes |             |             |          |           |          |

Source: BTRE estimates.

Sensitivity analysis 2: Low and high population growth

The base case projections were made on the assumption of a 0.74 per cent per annum average rate of population growth over the period from 2000 to 2020. Table 2.2 shows the result for the sector when either a 0.55 rate or a 0.84 rate is assumed. In other words, population in 2020 is 3.6 per cent below the base case or 2.1 per cent above the base case. These ranges essentially correspond to the differences between the high, middle and low series in the ABS (2001b) population projections. Again, the effect is muted, with estimated transport emissions, in 2020, respectively 3.5 per cent below the base case or 2 per cent above.

## TABLE 2.2 SUMMARY OF CO2 EQUIVALENT EMISSIONS UNDER SENSITIVITY 2—POPULATION GROWTH

#### (Gigagrams)

|           |                                                                                                                                                                              |           |           | 2010      |            |        | 2020     |        |  |  |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|------------|--------|----------|--------|--|--|--|
|           |                                                                                                                                                                              |           |           | 2010      | Change     |        |          | Change |  |  |  |
|           | 1990                                                                                                                                                                         | 1998      |           |           | from BAU   |        | from BAU |        |  |  |  |
| Sector    | Base                                                                                                                                                                         | Base      | Base      | Scenario  | (%)        | Base   | Scenario | (%)    |  |  |  |
| High po   | pulation grow                                                                                                                                                                | th scena  | rio       |           |            |        |          |        |  |  |  |
| (approxi  | imately 0.55 p                                                                                                                                                               | er cent p | oer annun | n from 20 | 00 to 2020 | ))     |          |        |  |  |  |
| Cars      | 34220                                                                                                                                                                        | 39170     | 47792     | 48227     | 0.9        | 50110  | 51104    | 2.0    |  |  |  |
| LCVs      | 7397                                                                                                                                                                         | 8489      | 11547     | 11697     | 1.3        | 443    | 14795    | 2.5    |  |  |  |
| Trucks    | 9924                                                                                                                                                                         | 11779     | 14606     | 14796     | 1.3        | 17443  | 17886    | 2.5    |  |  |  |
| Aviation  | 2565                                                                                                                                                                         | 4846      | 7792      | 7854      | 0.8        | 11922  | 12113    | 1.6    |  |  |  |
| Other     | 5569                                                                                                                                                                         | 5328      | 5700      | 5728      | 0.5        | 6302   | 6405     | 1.6    |  |  |  |
| Total tra | nsport 59676                                                                                                                                                                 | 69612     | 87437     | 88302     | 1.0        | 100208 | 102303   | 2.1    |  |  |  |
| Low pop   | ulation growt                                                                                                                                                                | h scenar  | io        |           |            |        |          |        |  |  |  |
| (approxi  | imately 0.84 p                                                                                                                                                               | er cent p | oer annun | n from 20 | 00 to 2020 | ))     |          |        |  |  |  |
| Cars      | 34220                                                                                                                                                                        | 39170     | 47792     | 47040     | -1.6       | 50110  | 48380    | -3.5   |  |  |  |
| LCVs      | 7397                                                                                                                                                                         | 8489      | 11547     | 11284     | -2.3       | 443    | 13804    | -4.3   |  |  |  |
| Trucks    | 9924                                                                                                                                                                         | 11779     | 14606     | 14271     | -2.3       | 17443  | 16677    | -4.4   |  |  |  |
| Aviation  | 2565                                                                                                                                                                         | 4846      | 7792      | 7669      | -1.6       | 11922  | 11552    | -3.I   |  |  |  |
| Other     | 5569                                                                                                                                                                         | 5328      | 5700      | 566 I     | -0.7       | 6302   | 6255     | -0.7   |  |  |  |
| Total tra | nsport 59676                                                                                                                                                                 | 69612     | 87437     | 85925     | -1.7       | 100208 | 96668    | -3.5   |  |  |  |
| Note:     | lote: For those models essentially driven solely by growth in aggregate income levels, this sensitivity was conducted by assuming per capita GDP remained the same as in the |           |           |           |            |        |          |        |  |  |  |

base case. Source: BTRE estimates.

#### Sensitivity analysis 3: Low and high fuel efficiency improvements

Fuel efficiency improvement sensitivity tests needed to be specified sub-sector by sub-sector.

For cars, the assumed base case improvement in sales-weighted *new* car fuel use, over the standard test cycle used to evaluate National Average Fuel Consumption (NAFC) values, was from 8.36 litres per 100 kilometres in 1999 to 6.7 litres per 100 kilometres in 2020. A 'pessimistic' outcome was assessed with fuel intensity unchanged at 8.36 litres per 100 kilometres, while an 'optimistic' sensitivity assumed a new car fuel intensity of 3.44 litres per 100 kilometres in 2020 (a level which would probably require radical new automotive technologies to become the norm).

For trucks, the base case assumptions were that *new* LCV fuel efficiency would improve by 0.25 per cent per year, *new* rigid trucks by 0.1 per cent and that *new* articulated trucks would have no improvement (as increasingly large trucks would become commonplace). For the pessimistic outcome, LCV fuel

BTRE Report 107

improvements per year were assumed to be 0.15, rigid trucks 0.0 and articulated trucks -0.1. For the optimistic outcome, LCVs were set at 0.35 per cent per year improvement, rigid trucks at 0.2 per cent and articulated trucks at 0.1 per cent.

For aviation, the base case assumption was for average increases in *total fleet* fuel efficiency of about 28 per cent from 2000 to 2020. The optimistic outcome raised this to 34 per cent, while the pessimistic outcome lowered it to 18 per cent.

For 'other' transport, the fuel intensity was varied by  $\pm$  10 per cent by 2020.

The fuel intensity sensitivity results are presented in table 2.3. The impact on emissions is greatest for cars and aviation, where the parameter ranges of the sensitivity tests are the largest. Projected transport emissions range from 9.1 per cent above to 17.1 per cent below the base case in 2020.

| UNDER SENSITIVITY 3—FUEL INTENSITY  |                  |              |       |          |          |         |          |          |  |  |  |  |  |
|-------------------------------------|------------------|--------------|-------|----------|----------|---------|----------|----------|--|--|--|--|--|
| (Gigagrams)                         |                  |              |       |          |          |         |          |          |  |  |  |  |  |
| 2010 2020                           |                  |              |       |          |          |         |          |          |  |  |  |  |  |
|                                     |                  | Change Chang |       |          |          |         |          |          |  |  |  |  |  |
|                                     | 1990             | 1998         |       |          | from BAU |         |          | from BAU |  |  |  |  |  |
| Sector                              | Base             | Base         | Base  | Scenario | (%)      | Base    | Scenario | (%)      |  |  |  |  |  |
| Pessimistic fuel intensity scenario |                  |              |       |          |          |         |          |          |  |  |  |  |  |
| Cars                                | 34220            | 39170        | 47792 | 49584    | 3.7      | 50110   | 56590    | 12.9     |  |  |  |  |  |
| LCVs                                | 7397             | 8489         | 11547 | 11590    | 0.4      | I 443 I | 14592    | 1.1      |  |  |  |  |  |
| Trucks                              | 9924             | 11779        | 14606 | 14669    | 0.4      | 17443   | 17660    | 1.2      |  |  |  |  |  |
| Aviation                            | 2565             | 4846         | 7792  | 8335     | 7.0      | 11922   | 13577    | 13.9     |  |  |  |  |  |
| Other                               | 5569             | 5328         | 5700  | 587 I    | 3.0      | 6302    | 6932     | 10.0     |  |  |  |  |  |
| Total transpo                       | ort <b>59676</b> | 69612        | 87437 | 90049    | 3.0      | 100208  | 109351   | 9.1      |  |  |  |  |  |
| Optimistic                          | fuel inten       | sity scena   | rio   |          |          |         |          |          |  |  |  |  |  |
| Cars                                | 34220            | 39170        | 47792 | 42403    | -11.3    | 50110   | 35006    | -30.I    |  |  |  |  |  |
| LCVs                                | 7397             | 8489         | 11547 | 11509    | -0.3     | 14431   | 14275    | -1.1     |  |  |  |  |  |
| Trucks                              | 9924             | 11779        | 14606 | 14552    | -0.4     | 17443   | 17234    | -1.2     |  |  |  |  |  |
| Aviation                            | 2565             | 4846         | 7792  | 7447     | -4.4     | 11922   | 10866    | -8.9     |  |  |  |  |  |
| Other                               | 5569             | 5328         | 5700  | 5534     | -2.9     | 6302    | 5729     | -9.1     |  |  |  |  |  |
| Total transpo                       | ort <b>59676</b> | 69612        | 87437 | 81445    | -6.9     | 100208  | 83110    | -17.1    |  |  |  |  |  |
| Source: B                           | TRE estima       | tes.         |       |          |          |         |          |          |  |  |  |  |  |

### TABLE 2.3 SUMMARY OF CO2 EQUIVALENT EMISSIONS UNDER SENSITIVITY 3—FUEL INTENSITY

## Sensitivity analyses 4 and 5: Highest and lowest combined scenarios

The above sensitivity analyses (1-3) were then combined in two scenarios: sensitivity 4—the 'most optimistic' combination (where all the variables are chosen so as to give the lowest projected emission values); and sensitivity 5—the 'most pessimistic' (with the highest projections). As can be seen in table 2.4, the most optimistic scenario implies a 10.4 per cent reduction over the base case by 2010, and the most pessimistic scenario a 7.8 per cent increase (with a 23.7 per cent reduction and a 20 per cent increase, respectively by 2020).

Given the wide range covered by the input variables to these two scenarios, it is highly likely that any *realistic* base case scenario for the next 20 years (i.e. with the basic parameters projected according to current trends) would fall between these bounds. In fact, in order to attain the lower scenario value, large-scale changes to the Australian vehicle fleet probably would be required (e.g. having to convert the entire new vehicle market to hybrid or fuel cell vehicles by 2020).

#### SENSITIVITY ANALYSES FOR CARS

Due to the major contribution to total transport emissions by road passenger vehicles, and the relative complexity of their modelling framework, additional sensitivity analyses were performed for the car sub-sector.

## TABLE 2.4SUMMARY OF CO2 EQUIVALENT EMISSIONSUNDER SENSITIVITIES 4 & 5 — HIGHEST ANDLOWEST COMBINED SCENARIOS

|             |               |       | (0    | Gigagrams) |        |        |          |        |
|-------------|---------------|-------|-------|------------|--------|--------|----------|--------|
|             |               |       |       | 2010       |        |        | 2020     |        |
|             |               |       |       |            | Change |        |          | Change |
|             |               |       |       |            | from   |        |          | from   |
|             | 1990          | 1998  |       |            | BAU    |        |          | BAU    |
| Sector      | Base          | Base  | Base  | Scenario   | (%)    | Base   | Scenario | (%)    |
| Most pes    | simistic scen | nario |       |            |        |        |          |        |
| Cars        | 34220         | 39170 | 47792 | 50778      | 6.2    | 50110  | 59498    | 18.7   |
| LCVs        | 7397          | 8489  | 11547 | 12361      | 7.0    | 14431  | 16467    | 14.1   |
| Trucks      | 9924          | 11779 | 14606 | 16479      | 12.8   | 17443  | 22468    | 28.8   |
| Aviation    | 2565          | 4846  | 7792  | 8659       | 11.1   | 11922  | 14592    | 22.4   |
| Other       | 5569          | 5328  | 5700  | 597 I      | 4.8    | 6302   | 7186     | 14.0   |
| Total trans | port 59676    | 69612 | 87437 | 94248      | 7.8    | 100208 | 120211   | 20.0   |
| Most opt    | timistic scen | ario  |       |            |        |        |          |        |
| Cars        | 34220         | 39170 | 47792 | 41260      | -13.7  | 50110  | 32936    | -34.3  |
| LCVs        | 7397          | 8489  | 11547 | 10793      | -6.5   | 14431  | 12656    | -12.3  |
| Trucks      | 9924          | 11779 | 14606 | 13642      | -6.6   | 17443  | 15262    | -12.5  |
| Aviation    | 2565          | 4846  | 7792  | 7172       | -8.0   | 11922  | 10125    | -15.1  |
| Other       | 5569          | 5328  | 5700  | 5441       | -4.5   | 6302   | 5527     | -12.3  |
| Total trans | port 59676    | 69612 | 87437 | 78308      | -10.4  | 100208 | 76506    | -23.7  |
| Source:     | BTRE estima   | tes   |       |            |        |        |          |        |

Response of vehicle use to income growth

Since personal travel budgets are not unlimited, passenger vehicle kilometres per capita cannot grow in a totally unconstrained fashion. In fact, there are indications that many of the world's developed countries are tending towards saturation in private vehicle use. For Australia, the BTRE has modelled per capita car use as a saturating function in per capita real GDP. The base case projections are calculated using a logistic function with an asymptote in car travel of slightly above 9000 kilometres per person per annum.

However, the overall response of this projection process to variation in assumed GDP growth rates is dependent on the form and parameters of the chosen saturating function.

If the curve is constrained such that saturation in car use is effectively attained soon after the 2020 baseline, then the responses to GDP variations over the projection period are minor. For example, for a utilisation curve close to full

saturation by 2020, the high GDP growth scenario (as described earlier in Sensitivity 1) would have  $CO_2$  equivalent emissions from cars only 0.4 per cent higher than the base case in 2020.

Alternatively, the view could be taken that the logistic function roughly gives the properly shaped trend in future vehicle use (i.e. with a declining rate of growth over time), but that full saturation is unlikely in the medium term. For the response to GDP variations, a suitable 'upper bound' scenario (as opposed to the 'lower bound' set by the full saturation case) could be derived by assuming that the car use trend curve is shifted up with respect to current income elasticities. Using Sensitivity I high GDP growth and an average implied income elasticity of 0.7 (constant over the projection period), gives CO<sub>2</sub> equivalent emissions as 7.1 per cent higher than the base case in 2020.

A scenario approximately midway between these two upper and lower bounding cases was also calculated (and used for table 2.1—the summary table for Sensitivity I: economic growth). This case used a constant income elasticity of 0.3, giving (under parameter assumptions for the high GDP growth scenario outlined in Sensitivity I) emissions 3.0 per cent higher than the base case in 2020.

The impacts on  $CO_2$  equivalent emissions from cars of the different economic growth scenarios are listed in table 2.5.

Vehicle saturation levels

Related to the above sensitivity analyses—for car travel in response to changes in GDP assumptions—is the question of the dependence of the projections on the exact saturation parameter in the model's functional form.

A further sensitivity was run by allowing the asymptote in vehicle ownership to vary—such that by 2010 onwards, the level of cars per person was  $\pm$  10 per cent that of the base case. Vehicle kilometres travelled (VKT) per car was allowed to respond to the resulting variation in the vehicle availability. The resulting CO<sub>2</sub> equivalent emissions from cars, for this sensitivity scenario, differed by approximately 6 per cent from the base case values for 2020.

If the saturation assumption is relaxed entirely (i.e. future vehicle use is unconstrained over the medium term and is allowed to grow in line with current behavioural parameters), a considerably higher set of projections results. A scenario of no saturation in future vehicle travel gives projections of  $CO_2$  equivalent emissions from cars nearly 22 per cent higher than the base case by 2020. (It should be noted that the saturation assumption is probably the primary difference between results obtained by several recent top-down and our bottom-up modelling approaches for vehicle travel—see figure 2.1 at the end of this chapter).

The impacts on  $CO_2$  equivalent emissions from cars of the different vehicle saturation scenarios are also listed in table 2.5.

#### Rebound travel

The sensitivity results for car fuel intensity variations (as presented in Sensitivity 3) were calculated by keeping average VKT per car the same as the base case.

However, the optimistic scenario, which has the average fuel consumption rate of cars falling to very low levels, could also be run with an allowance for possible 'rebound' travel. Rebound travel refers to extra vehicle use induced by lower travel costs—here brought on by significantly lower fuel consumption rates. It is assumed here that the improvements to fuel efficiency are not obtained in part through increased fuel prices.

Such a sensitivity run, using the 'Optimistic fuel intensity scenario' from Sensitivity 3 (with a NAFC of 3.44 litres per 100 kilometres by 2020), gives emissions in 2020 of 25.9 per cent below the base case (see table 2.5). This is compared with 30.1 per cent below for the 'no-rebound' case given previously (see table 2.3).

#### Four-wheel drive passenger vehicles

The base case projection results are also sensitive to the input assumptions made about the future composition of the four-wheel drive (4WD) passenger vehicle fleet (also often called All Terrain Wagons).

The base case assumes that the share of 4WDs in the passenger car fleet will grow to be 20 per cent of new vehicle sales by 2020 (from their current market share of slightly above 15 per cent), and that their average new vehicle fuel intensity improves by 30 per cent. Note that in the United States, Ford have a target of a 25 per cent improvement in the average fuel efficiency of their sports utility vehicles by 2005. The base case scenario thus has 4WDs at 20 per cent market share and 9.32 litres per 100 kilometres on-road fuel consumption for new vehicles by 2020.

A variety of sensitivity scenarios were run (summarised in table 2.5) with different combinations of 4WD market share and fuel use. An upper bound was set by having new 4WDs remain at their current on-road fuel intensity over the whole projection period, and grow to be 30 per cent of car sales by 2020. This case, with 4WDs at 30 per cent and fuel use at 13.3 litres per 100 kilometres, gives 8.8 per cent higher emissions in 2020 than the base case.

A second scenario assumed that 4WD fuel intensity decreases by the same percentage as cars overall in the base case (around 22 per cent) and that sales still grow to be 30 per cent of cars by 2020. This case, with 4WDs at 30 per cent and fuel use at 10.4 litres per 100 kilometres, gives 3.6 per cent higher emissions in 2020 than the base case.

A third case, with 4WDs at 30 per cent market share and fuel use at the base case value of 9.3 litres per 100 kilometres, gives 2.1 per cent higher emissions in 2020 than the base case. (Note that almost identical results to this case

are obtained under the assumptions of a 20 per cent share and 10.4 litres per 100 kilometres fuel use by 2020.)

A low scenario was also conducted—with 4WDs assumed to remain at a 15 per cent market share and fuel use set at the base case values (9.3 litres per 100 kilometres by 2020)—giving 0.7 per cent lower emissions in 2020 than the base case.

#### Vehicle deterioration rates

Parameters within CARMOD (the BTRE's passenger vehicle fleet model) include rates for vehicle deterioration over time. For fuel efficiency, the default values have vehicles getting approximately 1 per cent worse each year. This is until vehicles reach a plateau of about 10 per cent higher fuel use than when new (after about 10 years of ageing).

Sensitivity tests to these input parameters were conducted—a high case (with the current deterioration factors doubled) and a low case (with the deterioration factors set to zero). The high case resulted in projected emissions 4.8 per cent higher in 2020 than the base case.

#### Vehicle scrappage rates

Forcing the scrappage of, on average, an extra 50 000 cars per annum above the number of vehicles scrapped in the base case, resulted in projected enduse emissions 1.1 per cent lower in 2020 than the base case. Note that if emissions over the full vehicle lifecycle were considered (i.e. including emissions due to production and disposal of the vehicle), this emission benefit could be significantly reduced— possibly even negated. Since this study focuses on vehicle fuel use, such additional lifecycle effects are not dealt with here. The extra scrappage was spread over the entire fleet, although it was concentrated more heavily on older vehicles.

#### **Nitrous oxide emissions**

To aid comparability with other published results, a model run was also conducted using the current  $N_2O$  emission rates (for catalytic converter equipped cars) from the National Greenhouse Gas Inventory (NGGI) process—see NGGIC (1998a), AGO (2001a) and <www.greenhouse.gov.au/inventory/methodology/pubs/98workbook3.pdf>. These rates, in our view, significantly overestimate actual  $N_2O$  emissions from catalyst-equipped cars. Using the  $N_2O$  emission rate assumptions currently in the NGGI for such cars, gives projected CO<sub>2</sub> equivalent emissions 9.1 per cent higher in 2020 than the current BTRE base case value for the car fleet (compared to a 4.8 per cent difference in 2000).

The N<sub>2</sub>O emission rates used by BTRE for our base case scenario are based on data presented previously by the Bureau (e.g. BTCE 1995a, p.182), and on rates used by the United States Environmental Protection Agency e.g. table D 12 of <a href="http://yosemite.epa.gov/OAR/globalwarming.nsf/uniquekeyloo">http://yosemite.epa.gov/OAR/globalwarming.nsf/uniquekeyloo</a> kup/shsu5bnglk/\$file/annex-d.pdf>.

BTRE Report 107

**Fuel price** 

A high fuel price scenario (with crude remaining at the 2001 level of US\$29.57 per barrel over the period) was conducted using two long-term price elasticities, -0.2 and -0.4. (Note that the base case uses a fuel price forecast trend specified by AGO, that results in crude oil prices of around US\$22.70 per barrel by 2020.)

Under the less responsive demand scenario, the high fuel price resulted in projected emissions 3.5 per cent lower in 2020 than in the base case. Under the more responsive demand case, the high fuel price resulted in projected emissions 6.9 per cent lower in 2020 than under the base case. Recent BTRE modelling suggests that the long-run price elasticity of demand for automotive fuel is probably closer to -0.2 than -0.4.

#### **Urban congestion**

Sensitivity to the input parameter for the effect of future urban congestion levels on car fuel use was also conducted. Firstly, a high case was estimated, in which the default factors in CARMOD relating increases in VKT to consequent increases in fuel intensity were doubled. Then a low case was conducted, where the congestion factors for extra fuel consumption were removed from the model run. Using results from BTCE Report 92 *Traffic Congestion and Road User Charges in Australian Capital Cities* (1996a), the base case assumption is that increasing trends in traffic volumes will increase average urban fuel intensity (by 2020) by around 17 per cent above the level it would otherwise have reached.

The high sensitivity case resulted in projected emissions 10.4 per cent higher in 2020 than the base case.

Chapter 2

### TABLE 2.5 CO2 EQUIVALENT EMISSIONS FROM ROAD PASSENGER VEHICLES: RESPONSE TO SENSITIVITY ANALYSIS

(Gigagrams)

|      |                   | re                                                                                                          | ar                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |  |
|------|-------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|
|      |                   | 20                                                                                                          | 10                                                                                                                                                                                                                                                                                                                  | 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |  |
|      |                   |                                                                                                             | Change                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Change                                                 |  |
|      |                   |                                                                                                             | from                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | from                                                   |  |
|      |                   |                                                                                                             | BAU                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BAU                                                    |  |
| 1990 | 1998              | Gg                                                                                                          | (%)                                                                                                                                                                                                                                                                                                                 | Gg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (%)                                                    |  |
| 4220 | 39170             | 47792                                                                                                       |                                                                                                                                                                                                                                                                                                                     | 50110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |  |
|      |                   |                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |  |
|      | High              | 48108                                                                                                       | 0.7                                                                                                                                                                                                                                                                                                                 | 50317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.4                                                    |  |
|      | Low               | 47405                                                                                                       | -0.8                                                                                                                                                                                                                                                                                                                | 49847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.5                                                   |  |
|      | High              | 48474                                                                                                       | 1.4                                                                                                                                                                                                                                                                                                                 | 51616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.0                                                    |  |
|      | Low               | 47114                                                                                                       | -1.4                                                                                                                                                                                                                                                                                                                | 48626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -3.0                                                   |  |
|      | High              | 49392                                                                                                       | 3.3                                                                                                                                                                                                                                                                                                                 | 53659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.1                                                    |  |
|      | Low               | 46219                                                                                                       | -3.3                                                                                                                                                                                                                                                                                                                | 46684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -6.8                                                   |  |
|      |                   |                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |  |
| 6    | High              | 50128                                                                                                       | 4.9                                                                                                                                                                                                                                                                                                                 | 53086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.9                                                    |  |
|      | Low               | 45107                                                                                                       | -5.6                                                                                                                                                                                                                                                                                                                | 46719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -6.8                                                   |  |
|      |                   | 50996                                                                                                       | 6.7                                                                                                                                                                                                                                                                                                                 | 61058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21.8                                                   |  |
|      |                   |                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |  |
|      |                   | 43402                                                                                                       |                                                                                                                                                                                                                                                                                                                     | 37143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |  |
|      |                   |                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |  |
| ı    |                   | 48770                                                                                                       | 2.0                                                                                                                                                                                                                                                                                                                 | 54500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.8                                                    |  |
| ı    |                   | 48340                                                                                                       | 1.1                                                                                                                                                                                                                                                                                                                 | 51922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.6                                                    |  |
|      |                   | 48109                                                                                                       | 0.7                                                                                                                                                                                                                                                                                                                 | 51146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.1                                                    |  |
|      |                   | 47632                                                                                                       | -0.3                                                                                                                                                                                                                                                                                                                | 49753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.7                                                   |  |
|      | High              | 49741                                                                                                       | 4.1                                                                                                                                                                                                                                                                                                                 | 52521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.8                                                    |  |
|      | Low               | 44991                                                                                                       | -5.9                                                                                                                                                                                                                                                                                                                | 46687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -6.8                                                   |  |
|      |                   |                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |  |
|      |                   | 47659                                                                                                       | -0.3                                                                                                                                                                                                                                                                                                                | 49546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1.1                                                   |  |
|      |                   | 51636                                                                                                       | 8.0                                                                                                                                                                                                                                                                                                                 | 54663                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.1                                                    |  |
|      |                   |                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |  |
|      |                   | 46286                                                                                                       | -3.2                                                                                                                                                                                                                                                                                                                | 48377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -3.5                                                   |  |
|      |                   | 44998                                                                                                       | -5.8                                                                                                                                                                                                                                                                                                                | 46644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -6.9                                                   |  |
|      | High              | 49935                                                                                                       | 4.5                                                                                                                                                                                                                                                                                                                 | 55313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.4                                                   |  |
|      | Low               | 45477                                                                                                       | -4.8                                                                                                                                                                                                                                                                                                                | 44905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -10.4                                                  |  |
|      | 1990<br>4220<br>% | 1990 1998<br>4220 39170<br>High<br>Low<br>High<br>Low<br>% High<br>Low<br>% High<br>Low<br>h<br>h<br>h<br>h | 20<br>1990 1998 Gg<br>4220 39170 47792<br>High 48108<br>Low 47405<br>High 48474<br>Low 47114<br>High 49392<br>Low 46219<br>6 High 50128<br>Low 45107<br>50996<br>43402<br>1 48770<br>1 48770<br>1 48340<br>48109<br>47632<br>High 49741<br>Low 44991<br>47659<br>51636<br>46286<br>44998<br>High 49935<br>Low 45477 | 2010           Change<br>from<br>BAU           1990         1998         Gg         (%)           4220         39170         47792           High         48108         0.7           Low         47405         -0.8           High         48474         1.4           Low         47114         -1.4           High         49392         3.3           Low         46219         -3.3           %         High         50128         4.9           Low         45107         -5.6           50996         6.7         43402            n         48770         2.0         48340         1.1           48109         0.7         47632         -0.3           High         49741         4.1         Low         44991         -5.9           47659         -0.3         51636         8.0         46286         -3.2           44998         -5.8         High         49935         4.5         -4.8 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |  |

not applicable .. a.

The relevant comparison here is to the 'Optimistic fuel intensity scenario' (table 2.3), rather than the base case (BAU scenario), with differences in 2010 and 2020 of 2.4 per cent and 6.1 per cent respectively. Source: BTRE estimates.

#### SENSITIVITY ANALYSES FOR TRUCKS

Additional sensitivity analyses were also performed for the commercial road vehicle sub-sector.

For commercial vehicles, the additional sensitivity analyses covered changes in the following key variables:

- real road freight rates
- aggregate vehicle scrappage rates
- average new vehicle fuel intensity
- average loads.

#### Real road freight rates

Real road freight rates declined by 2.9 per cent per annum between 1971 and 1991, a significant factor in the strong growth in road freight transport activity over that period. Most of the decline in real road freight rates, however, were achieved by the early 1980s. Since 1980, real road freight rates have fallen by only 1.65 per cent per annum. Under the base case, the BTRE has assumed that real freight rates will decline by approximately 0.5 per cent per annum, due to continuing improvements in freight vehicle technology and trends to larger mass and dimension vehicles. The sensitivity analysis scenarios include a 'high freight growth' case—real freight rates assumed to decline by 1.65 per cent per annum (the post-1980 experience); and a 'low freight growth' case—no decline in real freight rates from 2000.

The impacts on CO<sub>2</sub> equivalent emissions of the different freight rate growth scenarios are listed in table 2.6. The high freight growth case implies CO<sub>2</sub> equivalent emissions would be 4.8 per cent and 9.6 per cent higher than the base case in 2010 and 2020, respectively. And for the low freight growth case, CO<sub>2</sub> equivalent emissions would be 11 per cent and 19.8 per cent lower than the base case in 2010 and 2020 respectively.

Aggregate vehicle scrappage rates

TRUCKMOD (the BTRE's truck and LCV fleet model) contains two scrappage functions: an age specific scrappage function and a fleet average scrappage function. Together, the two functions control the rate of vehicle scrappage for each vehicle vintage in any given year. The age specific scrappage functions were estimated using an econometric model and observed historical vehicle survival rates. The forecast aggregate annual scrappage rates are based on historical values.

For the scenario analysis, the BTRE estimated the impact on total end-use emissions of aggregate vehicle scrappage rates one full percentage point above and below the base case. (Note that as for cars, extra energy use from vehicle production and disposal is not included.)

The sensitivity analysis shows that changes to the scrappage rate have only a small effect on total  $CO_2$  equivalent emissions. One percentage point difference in the aggregate scrappage rate changes total  $CO_2$  equivalent emissions from commercial vehicles by under 0.15 per cent in 2020. The small impact of aggregate vehicle scrappage rates on total  $CO_2$  equivalent emissions is due to the fact that only a relatively small number of vehicles are replaced by more fuel efficient vehicles under a 1 per cent increase in the aggregate scrappage rate.

#### Average new vehicle fuel intensity

The base case emissions projection assumed that on-road new vehicle fuel efficiencies would improve by 0.25, 0.1 and zero per cent per annum for LCVs, rigid trucks and articulated trucks, respectively. The base case fuel efficiency improvement assumptions included in TRUCKMOD are, arguably, optimistic, particularly in the case of articulated trucks. The latest *Survey of Motor Vehicle Use* (ABS 2001a) shows a possible worsening in recent years for the average fuel efficiency of articulated trucks, as the average truck size has grown. For the low sensitivity analysis, the BTRE estimated the impact of varying the average new vehicle fuel efficiency by 0.1 litres per 100 kilometres below the base case assumptions for each vehicle type. For the high emissions scenario, the fuel efficiency of the lighter commercial vehicles was increased by 0.1 litres per 100 kilometres; but new articulated truck average fuel efficiencies were set to be significantly worse than in the base case (assumed to decline by I per cent per annum from 2000).

Because penetration of more fuel efficient vehicles takes time, the impact of new vehicle fuel efficiency on total greenhouse emissions becomes progressively greater towards the end of the forecast period. The pessimistic new vehicle fuel intensity scenario implies that  $CO_2$  equivalent emissions would be 3.3 per cent higher in 2010 and 8.0 per cent higher in 2020 than under the base case.

#### **Average loads**

Under the base case, average loads were assumed to grow by 0.5, 1.0 and 1.64 per cent per annum for LCVs, rigid and articulated trucks. The high and low scenarios assume growth 10 per cent higher and lower than the base case projections for each vehicle type. (Higher and lower average loads than those specified in the base case would affect freight rates and the on-road fuel efficiency, and hence greenhouse gas emissions, but these effects are not included in this analysis.)

The impact of a 10 per cent increase and decrease in average vehicle loads is a 10 per cent increase and decrease, respectively, in estimated  $CO_2$  equivalent emissions. TRUCKMOD assumes that a 'fixed' freight task is undertaken by a 'variable' number of commercial vehicles at their 'fixed' load and utilisation intensities. An exogenous increase in the average load of freight vehicles, therefore, translates into a direct proportional reduction in vehicle travel and, assuming fixed usage across vehicle types,  $CO_2$  equivalent emissions. 43

## TABLE 2.6 CO2 EQUIVALENT EMISSIONS FROM COMMERCIAL ROAD VEHICLES: RESPONSE TO SENSITIVITY ANALYSIS

(Gigagrams)

|                                    |       |       |       | Year   |       |        |  |
|------------------------------------|-------|-------|-------|--------|-------|--------|--|
|                                    |       |       | 2     | 010    | 2     | 2020   |  |
|                                    |       |       |       | Change |       | Change |  |
|                                    |       |       |       | from   |       | from   |  |
|                                    |       |       |       | BAU    |       | BAU    |  |
| Scenario                           | 1990  | 1998  | Gg    | (%)    | Gg    | (%)    |  |
| Base case                          | 17321 | 20268 | 26153 |        | 31874 |        |  |
| Real freight rates                 |       |       |       |        |       |        |  |
| High                               |       |       | 27405 | 4.8    | 34942 | 9.6    |  |
| Low                                |       |       | 23284 | -11.0  | 25576 | -19.8  |  |
| Aggregate scrappage rates          |       |       |       |        |       |        |  |
| High                               |       |       | 26185 | 0.1    | 31921 | 0.1    |  |
| Low                                |       |       | 26126 | -0. I  | 31837 | -0. I  |  |
| Average new vehicle fuel intensity | ,     |       |       |        |       |        |  |
| High                               |       |       | 27005 | 3.3    | 34440 | 8.1    |  |
| Low                                |       |       | 26061 | -0.4   | 31509 | -1.1   |  |
| Average loads                      |       |       |       |        |       |        |  |
| High                               |       |       | 28760 | 10.0   | 35064 | 10.0   |  |
| Low                                |       |       | 23783 | -9. I  | 28974 | -9. I  |  |

page 44

Source: BTRE estimates.

#### **BOTTOM-UP AND TOP-DOWN DIFFERENCES**

As noted earlier, one of the main differences between the projection results obtained by the BTRE bottom-up modelling approach and those obtained to date by most top-down models is the assumption regarding the trend towards saturation in car utilisation per person.

The remaining differences between the results of most current top-down approaches could relate to four other main effects:

- I BTRE bottom-up projections allow for increased future traffic congestion
- 2 BTRE projections also allow for vehicle deterioration in fuel efficiency with the age of the vehicle
- 3 current BTRE projections of annual growth in fuel use by road freight appear to be slightly lower than for most current top-down results

aggregate rates (AGO 2001a), a higher factor for converting fuel use into  $CO_2$  equivalent emissions than is inherent in BTRE's CARMOD results.

Within the bottom-up calculations the magnitudes of factors 1 and 2 above presently combine to roughly counterbalance the effect of factor 3. Allowing for the methodological disagreement regarding  $N_2O$  (factor 4), combined with relaxing the model constraint specifying the approach to car use saturation, gives a projection level very similar to that obtained by one of the previous top-down approaches (see figure 2.1). This level was derived in mid 2001 using an earlier version of the Monash Multi-Regional Forecasting–Green (MMRF–Green) model specification<sup>4</sup> than the one currently being used by the BTRE.

As discussed in Chapter I, the two BTRE emission modelling approaches (topdown and bottom-up) now yield essentially equivalent results (in terms of projected trends). This is largely due to the top-down modelling now using inputs (such as fuel efficiency trends and expected growth in personal travel) derived from the bottom-up modelling.



<sup>4</sup> For details about MMRF–Green, see

<sup>&</sup>lt;http://www.monash.edu.au/policy/ftp/workpapr/op-94.pdf>.

# chapter

#### STATE, TERRITORY AND URBAN TRANSPORT EMISSION PROJECTIONS

In this chapter the BTRE presents its estimates of CO<sub>2</sub> equivalent emissions for each State and Territory, and for the State and Territory capital cities. Estimates for rail transport have been calculated to allow for emissions from the generation of electricity (used for traction). Estimates for other modes of transport relate solely to energy end-use (i.e. direct combustion of fuel in vehicles).

#### STATE AND TERRITORY TRANSPORT EMISSIONS

Total State and Territory (domestic civil) transport emissions by mode are listed in tables 3.1A and 3.1B.

Due to data limitations, attribution of transport emissions to States and Territories varies according to transport mode. Wherever the data availability permits, emissions are attributed to the State and Territory within which the transport activity occurs.

In summary, transport emissions have been attributed by the following means.

- Passenger car emissions are based on the State or Territory of vehicle registration. Approximately 95 per cent of total passenger vehicle kilometres are performed within the relevant State or Territory of registration.
- Commercial vehicle emissions are based on the State or Territory of vehicle operation—i.e. where the appropriate portion of the travel is undertaken. For LCVs and rigid trucks, over 95 per cent of vehicle kilometres travelled (VKT) are within the State or Territory of registration; but over a quarter of total VKT by articulated trucks are outside the State or Territory of registration.
- Rail emissions are based on the State or Territory of operation (by the various rail systems).
- Aviation emissions are based on the State or Territory in which the fuel is sold (or 'uplifted').

 Coastal shipping emissions are based on the tonne-kilometres performed for each State or Territory sea freight task, using a weighted average of freight loaded and discharged within the ports of each State or Territory.

All estimated State by State splits for road transport are done on a dynamic basis (i.e. the input variables determining the splitting factors vary from year to year of the projection period). The estimation methods for non-road modes rely primarily on constant splitting factors.

While developing its State by State disaggregations, the BTRE sought comment from various State and Territory officials regarding the methodologies it proposed to use in forecasting freight and passenger transport for each region. There was general agreement that the proposed methods were fully acceptable, especially at the level of detail to be considered.

In fact, only one State reported having developed an aggregate projection methodology of its own that had any appreciable differences from the default BTRE processes. Even though this projection modelling approach, used within the New South Wales government, seems fairly similar to the BTRE methods, it also appears to incorporate somewhat more detail on the State level than our State by State modelling (which is essentially based on our national level approach). For example, one of the main differences appears to be their inclusion of an explicit allowance for the effects of the likely ageing of the State population on future levels of personal travel. Yet, the BTRE projection model for passenger car travel includes a rough adjustment factor for the possible effects of an ageing national population (see Appendix I). It is probable that trends projected using the two methods would be roughly consistent.

State authorities often have access to detailed data or models for some components of their transport systems. However, typically there is not enough consistent information, at the detailed level, to compile a full *bottom-up* inventory of their State's entire transport activity. In general, when scaling (localised) estimates of transport activity to State totals, State bodies tend to use the same basic aggregate data as used here by the BTRE. For example, State estimates of road use are often taken from the ABS *Survey of Motor Vehicle Use*, or derived from fuel sales data by the State marketing areas.

Chapter 3

# TABLE 3.1ASTATE AND TERRITORY CO2 EQUIVALENT<br/>EMISSIONS—ALL TRANSPORT, INCLUDING<br/>EMISSIONS FROM ELECTRIC RAIL

(Gigagrams)

| Year  | NSW                    | Vic.                   | Qld                        | SA                          | WA                     | Tas.                   | NT                     | ACT                     | Total  |
|-------|------------------------|------------------------|----------------------------|-----------------------------|------------------------|------------------------|------------------------|-------------------------|--------|
| 1990  | 19238                  | 15130                  | 11728                      | 4984                        | 6945                   | 1394                   | 886                    | 846                     | 61152  |
| 1991  | 19311                  | 15129                  | 11691                      | 5045                        | 7112                   | 1376                   | 873                    | 846                     | 61383  |
| 1992  | 19297                  | 15210                  | 11966                      | 5008                        | 7226                   | 1386                   | 904                    | 891                     | 61888  |
| 1993  | 19743                  | 15615                  | 12452                      | 5136                        | 7306                   | 1414                   | 907                    | 929                     | 63502  |
| 1994  | 20018                  | 15829                  | 12687                      | 5189                        | 7430                   | 1423                   | 921                    | 953                     | 64448  |
| 1995  | 20833                  | 16437                  | 13383                      | 5316                        | 7776                   | 1475                   | 996                    | 988                     | 67204  |
| 1996  | 21542                  | 16894                  | 13640                      | 5364                        | 7964                   | 1513                   | 1027                   | 1006                    | 68950  |
| 1997  | 21879                  | 17099                  | 13850                      | 5367                        | 8071                   | 1552                   | 1043                   | 1021                    | 69882  |
| 1998  | 22362                  | 17618                  | 13852                      | 5552                        | 8260                   | 1546                   | 1026                   | 1028                    | 71244  |
| 1999  | 22597                  | 17972                  | 14122                      | 5522                        | 8245                   | 1613                   | 1057                   | 1054                    | 72183  |
| 2000  | 22988                  | 18264                  | 14483                      | 5707                        | 8242                   | 1647                   | 1031                   | 1095                    | 73456  |
| 2001  | 23480                  | 18660                  | 14875                      | 5760                        | 8478                   | 1661                   | 1066                   | 1118                    | 75098  |
| 2002  | 24198                  | 19290                  | 15435                      | 5921                        | 8777                   | 1696                   | 1111                   | 1156                    | 77585  |
| 2003  | 24746                  | 19728                  | 15814                      | 6023                        | 9014                   | 1716                   | 1147                   | 1180                    | 79368  |
| 2004  | 25215                  | 20100                  | 16222                      | 6107                        | 9227                   | 1729                   | 1180                   | 1199                    | 80979  |
| 2005  | 25622                  | 20424                  | 16592                      | 6177                        | 9419                   | 1738                   | 1211                   | 1216                    | 82400  |
| 2006  | 26011                  | 20713                  | 16951                      | 6235                        | 9604                   | 1742                   | 1239                   | 1229                    | 83723  |
| 2007  | 26452                  | 21052                  | 17351                      | 6304                        | 9809                   | 1752                   | 1269                   | 1246                    | 85236  |
| 2008  | 26859                  | 21358                  | 17736                      | 6365                        | 10007                  | 1757                   | 1302                   | 1261                    | 86646  |
| 2009  | 27238                  | 21653                  | 18121                      | 6430                        | 10208                  | 1763                   | 1342                   | 1275                    | 8803 I |
| 2010  | 27611                  | 21932                  | 18502                      | 6485                        | 10403                  | 1766                   | 1378                   | 1288                    | 89365  |
| 2011  | 27985                  | 22228                  | 18906                      | 6555                        | 10617                  | 1774                   | 1426                   | 1302                    | 90793  |
| 2012  | 28372                  | 22514                  | 19305                      | 6613                        | 10823                  | 1780                   | 1466                   | 1316                    | 92190  |
| 2013  | 28728                  | 22786                  | 19704                      | 6677                        | 11035                  | 1784                   | 1516                   | 1329                    | 93559  |
| 2014  | 29084                  | 23053                  | 20107                      | 6736                        | 11247                  | 1789                   | 1566                   | 1341                    | 94924  |
| 2015  | 29411                  | 23305                  | 20508                      | 6797                        | 11460                  | 1791                   | 1623                   | 1353                    | 96248  |
| 2016  | 29768                  | 23560                  | 20898                      | 685 I                       | 11664                  | 1793                   | 1665                   | 1365                    | 97564  |
| 2017  | 30119                  | 23809                  | 21289                      | 6904                        | 11867                  | 1795                   | 1709                   | 1377                    | 98868  |
| 2018  | 30459                  | 24047                  | 21675                      | 6953                        | 12068                  | 1795                   | 1752                   | 1388                    | 100137 |
| 2019  | 30770                  | 24260                  | 22046                      | 6996                        | 12261                  | 1793                   | 1796                   | 1398                    | 101321 |
| 2020  | 31049                  | 24446                  | 22400                      | 703 I                       | 12443                  | 1789                   | 1840                   | 1407                    | 102406 |
| Note: | Estimates<br>emissions | include r<br>for elect | ninor sour<br>ric rail. En | rces (e.g.  <br>nissions fo | oleasure b<br>or modes | oats) and<br>other tha | power ge<br>1 electric | neration<br>rail relate | e to   |

Sources: BTRE estimates, Apelbaum Consulting Group (2001), ABARE (1999), ABS (2001a).

# TABLE 3.1BSTATE AND TERRITORY CO2 EQUIVALENT<br/>EMISSIONS (END-USE)— DOMESTIC<br/>TRANSPORT, EXCLUDING EMISSIONS FROM<br/>ELECTRIC RAIL

| (Gigagrams) |        |       |       |       |       |      |      |      |        |  |  |
|-------------|--------|-------|-------|-------|-------|------|------|------|--------|--|--|
| Year        | NSW    | Vic.  | Qld   | SA    | WA    | Tas. | NT   | ACT  | Total  |  |  |
| 1990        | 18506  | 14865 | 11249 | 4983  | 6945  | 1394 | 886  | 846  | 59676  |  |  |
| 1991        | 18576  | 14867 | 11211 | 5044  | 7104  | 1376 | 873  | 846  | 59897  |  |  |
| 1992        | 18587  | 14935 | 11436 | 5007  | 7210  | 1386 | 904  | 891  | 60357  |  |  |
| 1993        | 19028  | 15353 | 11937 | 5135  | 7277  | 1414 | 907  | 929  | 61980  |  |  |
| 1994        | 19276  | 15573 | 12202 | 5188  | 7387  | 1423 | 921  | 953  | 62921  |  |  |
| 1995        | 20049  | 16171 | 12881 | 5315  | 7725  | 1475 | 996  | 988  | 65600  |  |  |
| 1996        | 20806  | 16605 | 13158 | 5363  | 7916  | 1513 | 1027 | 1006 | 67393  |  |  |
| 1997        | 21119  | 16782 | 13328 | 5366  | 8011  | 1552 | 1043 | 1021 | 68223  |  |  |
| 1998        | 21611  | 17314 | 13335 | 555 I | 8202  | 1546 | 1026 | 1028 | 69612  |  |  |
| 1999        | 21848  | 17655 | 13569 | 5521  | 8185  | 1613 | 1057 | 1054 | 70502  |  |  |
| 2000        | 22215  | 17933 | 39 3  | 5705  | 8181  | 1647 | 1031 | 1095 | 71720  |  |  |
| 2001        | 22716  | 18338 | 14303 | 5759  | 8419  | 1661 | 1066 | 1118 | 73380  |  |  |
| 2002        | 23429  | 18963 | 14854 | 5920  | 8716  | 1696 | 1111 | 1156 | 75846  |  |  |
| 2003        | 23968  | 19397 | 15224 | 602 I | 8952  | 1716 | 1147 | 1180 | 77606  |  |  |
| 2004        | 2443 I | 19764 | 15622 | 6106  | 9165  | 1729 | 1180 | 1199 | 79194  |  |  |
| 2005        | 24829  | 20083 | 15984 | 6176  | 9356  | 1738 | 1211 | 1216 | 80592  |  |  |
| 2006        | 25209  | 20368 | 16332 | 6233  | 9540  | 1742 | 1239 | 1229 | 81892  |  |  |
| 2007        | 25642  | 20703 | 16722 | 6303  | 9744  | 1752 | 1269 | 1246 | 83381  |  |  |
| 2008        | 26040  | 21004 | 17097 | 6364  | 9941  | 1757 | 1302 | 1261 | 84767  |  |  |
| 2009        | 26411  | 21294 | 17472 | 6429  | 10141 | 1763 | 1342 | 1275 | 86127  |  |  |
| 2010        | 26775  | 21568 | 17843 | 6484  | 10335 | 1766 | 1378 | 1288 | 87437  |  |  |
| 2011        | 27140  | 21859 | 18236 | 6554  | 10548 | 1774 | 1426 | 1302 | 88840  |  |  |
| 2012        | 27518  | 22140 | 18625 | 6612  | 10754 | 1780 | 1466 | 1316 | 90211  |  |  |
| 2013        | 27865  | 22407 | 19013 | 6675  | 10964 | 1784 | 1516 | 1329 | 91554  |  |  |
| 2014        | 28212  | 22669 | 19405 | 6734  | 11176 | 1789 | 1566 | 1341 | 92893  |  |  |
| 2015        | 28530  | 22916 | 19794 | 6796  | 11388 | 1791 | 1623 | 1353 | 94190  |  |  |
| 2016        | 28877  | 23165 | 20173 | 6849  | 11590 | 1793 | 1665 | 1365 | 95479  |  |  |
| 2017        | 29219  | 23409 | 20552 | 6902  | 11793 | 1795 | 1709 | 1377 | 96756  |  |  |
| 2018        | 29549  | 23642 | 20927 | 695 I | 11993 | 1795 | 1752 | 1388 | 97997  |  |  |
| 2019        | 29850  | 23849 | 21286 | 6994  | 12185 | 1793 | 1796 | 1398 | 99153  |  |  |
| 2020        | 30119  | 24030 | 21627 | 7030  | 12366 | 1789 | 1840 | 1407 | 100208 |  |  |

Note:Estimates include minor sources (e.g. pleasure boats).Sources:BTRE estimates, Apelbaum Consulting Group (2001), ABARE (1999), ABS (2001a).

Note that it is not totally appropriate to split rail emissions across the States solely on the basis of end-use emissions (i.e. leaving out power generation emissions for electric rail). Table 3.1B is included only for the sake of completeness (e.g. for emission inventory accounting purposes, where State by State subtotals are required to sum to the national end-use total).

#### **Passenger vehicles**

The BTRE (bottom-up) base case projections of  $CO_2$  equivalent emissions from the Australian car fleet were calculated on a national basis, using a model based on national average fleet characteristics and utilisation values.

To produce regional level estimates for passenger vehicle emission trends, the national data had to be apportioned between the various States and Territories. That is, the estimation process had the following value constraints that the State by State breakdowns must sum to:

- national CO<sub>2</sub> equivalent emissions
- national number of vehicles (by vehicle type)
- total Australian fuel consumption
- national VKT (by vehicle type)
- aggregate levels of population.

The first step in the process involved splitting the national population projections into State by State projections. This was achieved by using current ABS projected trends for each State and Territory population, as specified by the AGO.

From vehicle registration data (ABS 1993, 2000b and 2001a) the BTRE estimated recent trend curves for cars per person for each State and Territory. From 2000 onwards, each State curve was assumed to follow the same (slowly saturating) shape as the curve projected for national car ownership. That is, BTRE assumed that differences between the States in car ownership levels are largely structural, and that these differences will continue to remain roughly constant over time. The resulting curves were then calibrated so that their sum equalled the national projection of cars per person. (Theoretically, given the requisite data, the default process of assuming a constant relativity across States for the approach to saturation, could be varied. Car fleets for States with relatively low car ownership per person—such as NSW—could be allowed to grow somewhat more strongly over the projection period than States with already high car ownership levels, such as South Australia. However, such a modification would probably cause very little variation to the total emission estimates.)

Multiplying the State population levels by the estimates of State cars per person then gives State by State projections of vehicle fleet size.

Average utilisation values were derived for each State (i.e. average VKT per annum by cars registered in that State) using the ABS Survey of Motor Vehicle Use and Motor Vehicle Census, and sales data for automotive fuels—for State marketing areas—collated by the then Department of Industry, Science and Resources (DISR) and the Australian Institute of Petroleum (AIP). (Note that DISR has since changed to the Department of Industry, Tourism and Resources—see <www.industry.gov.au>.)

Multiplying average VKT for each State by the relative number of cars in the State then gives an estimate of total VKT for each State. The default assumption for the projection period is to keep each State's average VKT constant relative to the previously projected national average. The resulting State by State VKT projections were then calibrated to sum to the national projection of VKT. (Theoretically, separate trend curves could be done for each State—perhaps based on Gross State Product data—but since State by State average VKT relativities appear to have altered little over recent years, this was deemed unwarranted.)

Finally, national average fuel consumption rates for cars (L/100 km) were used to convert the VKT estimates into State by State projections for car fuel consumption and thus emissions (table 3.2). The default assumption for this part of the State breakdown has each State assigned the same trend in future car fuel intensity (since ABS SMVU data imply the various State car fleets exhibit little difference in average L/100 km).

#### **Commercial vehicles**

The BTRE has estimated State and Territory road freight task by State and Territory of operation<sup>5</sup> using SMVU data. The estimated State and Territory road freight tasks were then modelled as a function of Gross State Product and real road freight rates. The model was used to forecast State and Territory road freight tasks to 2020. Each State's share of the aggregate of these State forecasts was then multiplied by the national level forecast of total tonne-kilometres (tkm) to derive final estimates of the State and Territory road freight projections.

The share of the road freight task undertaken by different commercial vehicle types varies across States and Territories, and this affects the relative fuel efficiency of vehicle fleets across the different regions. For the projections, BTRE has taken into account the variation in fuel efficiency attributable to the differences in the mix of vehicles undertaking the road freight task. The State and Territory emission projections have been derived using the product of State or Territory freight task (in tkm) times the share of tkm by each vehicle type times the average emission intensity of that vehicle type, summed over the

<sup>5</sup> State and Territory of operation measures the freight task carried within a particular State and Territory. The Survey of Motor Vehicle Use also records freight task by State of vehicle registration.

vehicle types. The State and Territory emission estimates were also calibrated so that their sum, for each vehicle type, was consistent with the national totals (see table 3.3).

#### Aviation

The State and Territory estimates of aviation emissions (tables 3.5–3.6) are based on the State or Territory in which the fuel is uplifted (ABARE 1999). Note that fuel sales statistics are based on State marketing areas, which differ slightly from State geographical areas. For example, the ACT is included as part of the NSW State marketing area. For the BTRE projections, ACT estimates of aviation emissions have been attributed on the basis of population. The BTRE has also attributed international aviation emissions by State and Territory, as shown in table 3.7, but these are not included in total domestic emissions.

#### Rail

State and Territory rail emissions (tables 3.9–3.10) were derived by separately accounting for the electric and non-electric, passenger and freight rail transport tasks. Passenger rail emissions were attributed to States and Territories on the basis of the share of total passenger–kilometres (pkm) travelled. Freight rail emissions were attributed to States and Territories on the basis of the share of total rail freight tonne–kilometres undertaken within each State.

Allowing for the possible provision of major new rail infrastructure during the projection period was considered by BTRE as overly speculative and has not been included in the analysis.

#### Shipping

The BTRE calculated coastal shipping emissions from the product of total tonne-kilometres and fuel intensity (measured in fuel consumption per tonne-kilometre performed). State and Territory coastal shipping emissions, listed in table 3.11, were derived by apportioning the forecast national emissions according to the State/Territory share of total coastal freight volumes— calculated by averaging over tonnages loaded and discharged with the State/Territory. Shipping data by State and Territory was taken from the Bureau's Coastal Shipping Database (BTRE 2002c) for the period 1993–94 to 1999–2000. For the forecast horizon, 2000 to 2020, the BTRE assumed that the State and Territory task shares remained constant at the 1999–2000 shares.

#### **Other minor sources**

Emissions for the remaining transport sources (such as buses, motorcycles, ferries, off-road recreational vehicles and small pleasure craft) are minor, comprising only around 3 per cent of total transport emissions. Their overall emission levels have therefore only been roughly estimated and are included solely for the sake of completeness when presenting tables giving 'total' transport emission estimates. Bus and motorcycle emissions (table 3.4) have been apportioned to the appropriate States/Territories using relative utilisation
data from the ABS SMVU. Emissions for the other minor sources (table 3.12) have been very roughly apportioned, primarily on the basis of population. The State by State division of the minor source totals is thus merely indicative.

International transport

There is no universally agreed way of apportioning emissions due to international transport to various jurisdictions. Again, for the sake of completeness, a roughly estimated State by State division has been provided, based on the shares of total volumes of Avtur and fuel oil sold to international operators in the relevant States/Territories. As for the minor source allocation, this State by State division of international aviation (table 3.7) and international shipping (table 3.8) is also merely indicative.

| TABLE 3.2 STATE AND TERRITORY CO2 EQUIVALENT<br>EMISSIONS (END-USE)_PASSENGER CARS |          |            |          |           |           |           |           |            |        |  |  |  |
|------------------------------------------------------------------------------------|----------|------------|----------|-----------|-----------|-----------|-----------|------------|--------|--|--|--|
| LINSIONS (LIND-USL)-I ASSENGER CARS                                                |          |            |          |           |           |           |           |            |        |  |  |  |
| (Gigagrams)                                                                        |          |            |          |           |           |           |           |            |        |  |  |  |
| Year                                                                               | NSW      | Vic.       | QId      | SA        | WA        | Tas.      | NT        | ACT        | Total  |  |  |  |
| 1990                                                                               | 10718    | 9675       | 6234     | 2720      | 3226      | 794       | 215       | 638        | 34220  |  |  |  |
| 1991                                                                               | 10772    | 9679       | 6115     | 2764      | 3384      | 776       | 228       | 633        | 34351  |  |  |  |
| 1992                                                                               | 10838    | 9757       | 6273     | 2788      | 3485      | 801       | 244       | 662        | 34847  |  |  |  |
| 1993                                                                               | 11072    | 9968       | 6408     | 2848      | 3560      | 819       | 249       | 676        | 35600  |  |  |  |
| 1994                                                                               | 11242    | 10121      | 6507     | 2892      | 3615      | 83 I      | 253       | 687        | 36148  |  |  |  |
| 1995                                                                               | 11661    | 10499      | 6749     | 3000      | 3750      | 862       | 262       | 712        | 37496  |  |  |  |
| 1996                                                                               | 11929    | 10740      | 6904     | 3068      | 3836      | 882       | 268       | 729        | 38355  |  |  |  |
| 1997                                                                               | 12007    | 10810      | 6949     | 3089      | 3861      | 888       | 270       | 734        | 38607  |  |  |  |
| 1998                                                                               | 12078    | 11054      | 6936     | 3228      | 4005      | 868       | 278       | 725        | 39170  |  |  |  |
| 1999                                                                               | 12257    | 11294      | 7202     | 3245      | 4075      | 908       | 280       | 749        | 40009  |  |  |  |
| 2000                                                                               | 12563    | 11436      | 7343     | 3315      | 4065      | 934       | 288       | 752        | 40696  |  |  |  |
| 2001                                                                               | 12799    | 11665      | 7515     | 3357      | 4158      | 940       | 295       | 763        | 41491  |  |  |  |
| 2002                                                                               | 13310    | 12144      | 7856     | 3475      | 4339      | 966       | 307       | 790        | 43187  |  |  |  |
| 2003                                                                               | 13572    | 12391      | 805 I    | 3528      | 4440      | 973       | 3 3       | 801        | 44070  |  |  |  |
| 2004                                                                               | 13772    | 12578      | 8210     | 3567      | 4521      | 975       | 318       | 807        | 44748  |  |  |  |
| 2005                                                                               | 13974    | 12766      | 8371     | 3605      | 4602      | 977       | 322       | 813        | 45431  |  |  |  |
| 2006                                                                               | 14113    | 12897      | 8495     | 3626      | 4664      | 974       | 326       | 816        | 45910  |  |  |  |
| 2007                                                                               | 14293    | 13065      | 8645     | 3657      | 4739      | 974       | 329       | 820        | 46523  |  |  |  |
| 2008                                                                               | 14430    | 13195      | 8770     | 3678      | 4801      | 970       | 333       | 822        | 46999  |  |  |  |
| 2009                                                                               | 14553    | 13312      | 8887     | 3694      | 4857      | 966       | 335       | 822        | 47426  |  |  |  |
| 2010                                                                               | 14656    | 34         | 8992     | 3705      | 4908      | 960       | 338       | 822        | 47792  |  |  |  |
| 2011                                                                               | 14769    | 13519      | 9104     | 3719      | 4962      | 955       | 340       | 822        | 48189  |  |  |  |
| 2012                                                                               | 14868    | 13613      | 9207     | 3729      | 5011      | 948       | 343       | 821        | 48540  |  |  |  |
| 2013                                                                               | 14952    | 13694      | 9302     | 3736      | 5056      | 941       | 345       | 819        | 48843  |  |  |  |
| 2014                                                                               | 15026    | 13766      | 9391     | 3740      | 5098      | 932       | 346       | 817        | 49116  |  |  |  |
| 2015                                                                               | 15086    | 13825      | 9471     | 3740      | 5134      | 923       | 348       | 814        | 49342  |  |  |  |
| 2016                                                                               | 15140    | 13877      | 9547     | 3739      | 5169      | 914       | 349       | 810        | 49547  |  |  |  |
| 2017                                                                               | 15191    | 13927      | 9622     | 3738      | 5203      | 904       | 351       | 807        | 49742  |  |  |  |
| 2018                                                                               | 15230    | 13966      | 9689     | 3733      | 5232      | 893       | 352       | 802        | 49898  |  |  |  |
| 2019                                                                               | 15259    | 13996      | 9750     | 3727      | 5258      | 882       | 353       | 797        | 50021  |  |  |  |
| 2020                                                                               | 15278    | 14016      | 9804     | 3717      | 5281      | 870       | 353       | 792        | 50110  |  |  |  |
| Sources:                                                                           | BTRE est | imates, Ap | elbaum C | onsulting | Group (20 | 001), ABA | RE (1999) | ), ABS (20 | )0la). |  |  |  |

| TABLE 3.3 | STATE AND TERRITORY CO <sub>2</sub> EQUIVALENT       |
|-----------|------------------------------------------------------|
|           | EMISSIONS (END-USE)—COMMERCIAL VEHICLES <sup>a</sup> |

|          |                                                                                      |           |          | (Gigagi   | rams)     |          |           |            |        |  |
|----------|--------------------------------------------------------------------------------------|-----------|----------|-----------|-----------|----------|-----------|------------|--------|--|
| Year     | NSW                                                                                  | Vic.      | Qld      | SA        | WA        | Tas.     | NT        | АСТ        | Total  |  |
| 1990     | 5555                                                                                 | 3946      | 3285     | 1447      | 2157      | 399      | 388       | 144        | 17321  |  |
| 1991     | 5446                                                                                 | 3869      | 3220     | 1419      | 2115      | 391      | 381       | 142        | 16982  |  |
| 1992     | 5399                                                                                 | 3818      | 3257     | 1386      | 2075      | 381      | 341       | 154        | 16810  |  |
| 1993     | 5582                                                                                 | 4060      | 3517     | 1436      | 2122      | 389      | 326       | 175        | 17607  |  |
| 1994     | 5609                                                                                 | 4121      | 3566     | 1432      | 2123      | 381      | 304       | 186        | 17722  |  |
| 1995     | 5806                                                                                 | 4248      | 3772     | 1426      | 2187      | 391      | 3 3       | 188        | 18329  |  |
| 1996     | 6070                                                                                 | 4389      | 3919     | 1425      | 2261      | 424      | 346       | 183        | 19018  |  |
| 1997     | 6213                                                                                 | 4449      | 3912     | 1408      | 2237      | 443      | 350       | 191        | 19203  |  |
| 1998     | 6599                                                                                 | 4689      | 4076     | 1495      | 2347      | 481      | 375       | 205        | 20268  |  |
| 1999     | 6749                                                                                 | 4797      | 4104     | 1449      | 2325      | 512      | 393       | 208        | 20537  |  |
| 2000     | 6778                                                                                 | 4925      | 4066     | 1536      | 2358      | 502      | 356       | 243        | 20762  |  |
| 2001     | 6948                                                                                 | 5052      | 4202     | 1567      | 2434      | 511      | 365       | 251        | 21329  |  |
| 2002     | 7082                                                                                 | 5157      | 4321     | 1591      | 2499      | 518      | 373       | 258        | 21798  |  |
| 2003     | 7255                                                                                 | 5289      | 4466     | 1622      | 2578      | 527      | 383       | 267        | 22386  |  |
| 2004     | 7432                                                                                 | 5425      | 4616     | 1654      | 2660      | 537      | 393       | 276        | 22992  |  |
| 2005     | 7543                                                                                 | 5513      | 4727     | 1672      | 2719      | 542      | 400       | 283        | 23399  |  |
| 2006     | 7686                                                                                 | 5622      | 4857     | 1697      | 2791      | 548      | 409       | 290        | 23902  |  |
| 2007     | 7840                                                                                 | 5742      | 4999     | 1724      | 2868      | 556      | 418       | 299        | 24445  |  |
| 2008     | 8000                                                                                 | 5865      | 5146     | 1752      | 2948      | 564      | 428       | 307        | 25010  |  |
| 2009     | 8161                                                                                 | 5990      | 5297     | 1780      | 3029      | 572      | 438       | 316        | 25583  |  |
| 2010     | 8320                                                                                 | 6114      | 5448     | 1808      | 3111      | 579      | 448       | 325        | 26153  |  |
| 2011     | 8492                                                                                 | 6247      | 5611     | 1838      | 3199      | 588      | 458       | 335        | 26768  |  |
| 2012     | 8662                                                                                 | 6379      | 5774     | 1868      | 3287      | 596      | 469       | 345        | 27379  |  |
| 2013     | 883 I                                                                                | 6510      | 5938     | 1897      | 3377      | 604      | 480       | 354        | 27991  |  |
| 2014     | 9001                                                                                 | 6642      | 6106     | 1927      | 3468      | 611      | 491       | 364        | 28610  |  |
| 2015     | 9166                                                                                 | 6771      | 6274     | 1955      | 3558      | 619      | 502       | 374        | 29216  |  |
| 2016     | 9328                                                                                 | 6897      | 6441     | 1982      | 3648      | 626      | 513       | 383        | 29817  |  |
| 2017     | 9482                                                                                 | 7017      | 6605     | 2008      | 3736      | 632      | 523       | 393        | 30396  |  |
| 2018     | 9632                                                                                 | 7134      | 6767     | 2032      | 3824      | 638      | 533       | 402        | 30962  |  |
| 2019     | 9759                                                                                 | 7234      | 6917     | 2052      | 3903      | 642      | 543       | 410        | 31459  |  |
| 2020     | 9859                                                                                 | 7314      | 7048     | 2067      | 3974      | 644      | 551       | 417        | 31874  |  |
| a.       | Includes light commercial vehicles, articulated trucks, rigid and other truck types. |           |          |           |           |          |           |            |        |  |
| Sources: | BIKE esti                                                                            | mates, Ap | eibaum C | onsulting | Group (20 | лл), АВА | KE (1999) | ), ABS (20 | JUTA). |  |

# TABLE 3.4STATE AND TERRITORY CO2 EQUIVALENT<br/>EMISSIONS (END-USE)—OTHER ROAD<br/>TRANSPORT<sup>a</sup>

|      |     |      |     | (Gigagra | ims) |      |    |     |      |
|------|-----|------|-----|----------|------|------|----|-----|------|
| Year | NSW | Vic. | QId | SA       | WA   | Tas. | NT | ACT | Tota |
| 1990 | 445 | 321  | 283 | 120      | 145  | 38   | 39 | 28  | 1420 |
| 1991 | 442 | 319  | 281 | 119      | 144  | 38   | 39 | 28  | 1410 |
| 1992 | 442 | 319  | 281 | 119      | 144  | 38   | 39 | 28  | 1410 |
| 1993 | 442 | 319  | 281 | 119      | 144  | 38   | 39 | 28  | 1410 |
| 1994 | 445 | 321  | 283 | 120      | 145  | 38   | 39 | 28  | 1420 |
| 1995 | 448 | 323  | 285 | 121      | 146  | 39   | 40 | 28  | 1430 |
| 1996 | 451 | 325  | 287 | 122      | 147  | 39   | 40 | 28  | 1440 |
| 1997 | 454 | 328  | 289 | 123      | 148  | 39   | 40 | 28  | 1450 |
| 1998 | 457 | 330  | 291 | 124      | 149  | 40   | 41 | 29  | 1460 |
| 1999 | 461 | 332  | 293 | 124      | 150  | 40   | 41 | 29  | 1470 |
| 2000 | 458 | 330  | 292 | 124      | 150  | 40   | 41 | 29  | 1462 |
| 2001 | 462 | 334  | 296 | 124      | 151  | 39   | 41 | 29  | 1475 |
| 2002 | 466 | 337  | 300 | 124      | 153  | 39   | 41 | 29  | 1488 |
| 2003 | 469 | 339  | 303 | 125      | 155  | 39   | 42 | 29  | 1501 |
| 2004 | 473 | 342  | 307 | 125      | 157  | 39   | 42 | 29  | 1514 |
| 2005 | 477 | 345  | 311 | 126      | 158  | 39   | 42 | 29  | 1527 |
| 2006 | 480 | 348  | 315 | 126      | 160  | 38   | 43 | 29  | 1540 |
| 2007 | 484 | 350  | 319 | 127      | 162  | 38   | 43 | 29  | 1552 |
| 2008 | 487 | 353  | 323 | 127      | 164  | 38   | 43 | 29  | 1564 |
| 2009 | 491 | 356  | 327 | 127      | 165  | 38   | 44 | 29  | 1577 |
| 2010 | 494 | 358  | 331 | 128      | 167  | 38   | 44 | 29  | 1589 |
| 2011 | 498 | 361  | 334 | 128      | 169  | 37   | 44 | 29  | 1600 |
| 2012 | 501 | 363  | 338 | 128      | 170  | 37   | 44 | 29  | 1610 |
| 2013 | 504 | 365  | 342 | 129      | 172  | 37   | 45 | 29  | 1621 |
| 2014 | 507 | 368  | 345 | 129      | 173  | 36   | 45 | 29  | 1632 |
| 2015 | 510 | 370  | 349 | 129      | 175  | 36   | 45 | 29  | 1643 |
| 2016 | 512 | 372  | 352 | 129      | 176  | 36   | 46 | 29  | 1653 |
| 2017 | 515 | 374  | 356 | 130      | 178  | 36   | 46 | 28  | 1663 |
| 2018 | 518 | 376  | 359 | 130      | 180  | 35   | 46 | 28  | 1673 |
| 2019 | 521 | 378  | 363 | 130      | 181  | 35   | 46 | 28  | 1683 |
| 2020 | 524 | 381  | 366 | 130      | 183  | 35   | 47 | 28  | 1693 |
|      |     |      |     |          |      |      |    |     | _    |

a. Includes buses and motor cycles. Sources: BTRE estimates, Apelbaum Consulting Group (2001), ABARE (1999), ABS (2001a).

#### BTRE Report 107

# TABLE 3.5STATE AND TERRITORY CO2 EQUIVALENTEMISSIONS (END-USE)—AVIATION GASOLINE,<br/>ON A FUEL UPLIFT BASIS

|          |            |           |          | (Gigagr   | ams)      |           |           |     |       |
|----------|------------|-----------|----------|-----------|-----------|-----------|-----------|-----|-------|
| Year     | NSW        | Vic.      | Qld      | SA        | WA        | Tas.      | NT        | ACT | Total |
| 1990     | 65.0       | 48.7      | 71.5     | 29.2      | 45.5      | 9.7       | 26.0      | 3.2 | 298.8 |
| 1991     | 56.9       | 34.4      | 59.7     | 25.2      | 36.7      | 6.9       | 20.6      | 2.8 | 243.2 |
| 1992     | 49.7       | 34.I      | 49.9     | 22.7      | 34.1      | 9.1       | 27.2      | 2.5 | 229.3 |
| 1993     | 54.5       | 38.1      | 57.2     | 26.2      | 33.4      | 9.5       | 21.5      | 2.7 | 243.1 |
| 1994     | 52.8       | 33.7      | 57.8     | 24.1      | 33.7      | 9.6       | 21.7      | 2.6 | 236.0 |
| 1995     | 43.2       | 34.0      | 58.9     | 27.2      | 36.3      | 6.8       | 31.7      | 2.1 | 240.2 |
| 1996     | 46.2       | 30.0      | 62.4     | 18.5      | 39.3      | 4.6       | 27.7      | 2.3 | 231.0 |
| 1997     | 46.7       | 35.0      | 60.7     | 21.0      | 39.7      | 4.7       | 25.7      | 2.3 | 235.8 |
| 1998     | 48.3       | 32.2      | 64.4     | 20.7      | 36.8      | 6.9       | 25.3      | 2.3 | 236.9 |
| 1999     | 48.2       | 34.4      | 66.6     | 20.7      | 36.7      | 6.9       | 27.5      | 2.3 | 243.3 |
| 2000     | 46.9       | 32.1      | 62.I     | 21.4      | 36.4      | 6.4       | 30.0      | 2.3 | 237.6 |
| 2001     | 46.9       | 32.1      | 62.I     | 21.4      | 36.4      | 6.4       | 30.0      | 2.3 | 237.6 |
| 2002     | 48.6       | 31.8      | 61.5     | 21.2      | 36.1      | 6.4       | 29.7      | 2.3 | 237.6 |
| 2003     | 48.6       | 31.8      | 61.5     | 21.2      | 36.1      | 6.4       | 29.7      | 2.3 | 237.6 |
| 2004     | 48.6       | 31.8      | 61.5     | 21.2      | 36.1      | 6.4       | 29.7      | 2.3 | 237.6 |
| 2005     | 50.2       | 31.5      | 61.0     | 21.0      | 35.7      | 6.3       | 29.4      | 2.4 | 237.5 |
| 2006     | 50.3       | 31.5      | 61.0     | 21.0      | 35.7      | 6.3       | 29.4      | 2.3 | 237.5 |
| 2007     | 50.3       | 31.5      | 61.0     | 21.0      | 35.7      | 6.3       | 29.4      | 2.3 | 237.5 |
| 2008     | 51.8       | 31.3      | 60.4     | 20.8      | 35.4      | 6.3       | 29.2      | 2.4 | 237.6 |
| 2009     | 51.8       | 31.3      | 60.4     | 20.8      | 35.4      | 6.3       | 29.2      | 2.4 | 237.6 |
| 2010     | 51.4       | 31.0      | 62.0     | 20.7      | 35.1      | 6.2       | 28.9      | 2.3 | 237.6 |
| 2011     | 51.4       | 31.0      | 62.0     | 20.7      | 35.1      | 6.2       | 28.9      | 2.3 | 237.6 |
| 2012     | 52.9       | 30.7      | 61.4     | 20.5      | 34.8      | 6.1       | 28.7      | 2.4 | 237.5 |
| 2013     | 53.0       | 30.7      | 61.4     | 20.5      | 34.8      | 6.1       | 28.7      | 2.3 | 237.5 |
| 2014     | 53.0       | 30.7      | 61.4     | 20.5      | 34.8      | 6.1       | 28.7      | 2.3 | 237.5 |
| 2015     | 53.0       | 30.7      | 61.4     | 20.5      | 34.8      | 6.1       | 28.7      | 2.3 | 237.5 |
| 2016     | 53.0       | 30.7      | 61.4     | 20.5      | 34.8      | 6.1       | 28.7      | 2.3 | 237.5 |
| 2017     | 53.0       | 30.7      | 61.4     | 20.5      | 34.8      | 6.1       | 28.7      | 2.3 | 237.5 |
| 2018     | 53.0       | 30.7      | 61.4     | 20.5      | 34.8      | 6.1       | 28.7      | 2.3 | 237.5 |
| 2019     | 53.1       | 30.7      | 61.4     | 20.5      | 34.8      | 6.1       | 28.7      | 2.2 | 237.5 |
| 2020     | 53.1       | 30.7      | 61.4     | 20.5      | 34.8      | 6.1       | 28.7      | 2.2 | 237.5 |
| Sources: | BTRF estir | mates. Ap | elbaum C | onsulting | Group (20 | 001). ABA | RF (1999) | ).  |       |

## TABLE 3.6STATE AND TERRITORY CO2 EQUIVALENTEMISSIONS (END-USE)DOMESTIC AVIATIONTURBINE FUEL, ON A FUEL UPLIFT BASIS

Sources: BTRE estimates, Apelbaum Consulting Group (2001), ABARE (1999).

## TABLE 3.7STATE AND TERRITORY CO2 EQUIVALENTEMISSIONS (END-USE)— INTERNATIONALAVIATION, ON A FUEL UPLIFT BASIS

|      |              |           | (Gi   | igagrams) |      |      |     |       |
|------|--------------|-----------|-------|-----------|------|------|-----|-------|
| Year | NSWa         | Vic.      | QId   | SA        | WA   | Tas. | NT  | Total |
| 1990 | 1932         | 785       | 747   | 199       | 423  | 39   | 187 | 4312  |
| 1991 | 1951         | 800       | 884   | 232       | 435  | 42   | 143 | 4487  |
| 1992 | 2035         | 879       | 951   | 215       | 464  | 37   | 178 | 4759  |
| 1993 | 2231         | 838       | 1136  | 222       | 477  | 42   | 198 | 5144  |
| 1994 | 2212         | 828       | 1247  | 220       | 519  | 44   | 222 | 5292  |
| 1995 | 2371         | 923       | 1420  | 228       | 566  | 46   | 243 | 5795  |
| 1996 | 2722         | 982       | 1437  | 234       | 596  | 40   | 232 | 6243  |
| 1997 | 2798         | 1012      | 1477  | 239       | 642  | 48   | 237 | 6452  |
| 1998 | 3212         | 1186      | 1545  | 263       | 696  | 40   | 216 | 7159  |
| 1999 | 3048         | 1137      | 1420  | 273       | 690  | 37   | 215 | 6819  |
| 2000 | 2798         | 1029      | 1451  | 249       | 612  | 34   | 191 | 6363  |
| 2001 | 3351         | 1224      | 1732  | 265       | 732  | 40   | 229 | 7572  |
| 2002 | 3570         | 1313      | 1884  | 289       | 797  | 43   | 254 | 8151  |
| 2003 | 3845         | 1409      | 1930  | 307       | 861  | 45   | 274 | 8671  |
| 2004 | 4085         | 1494      | 2065  | 323       | 919  | 47   | 293 | 9226  |
| 2005 | 4331         | 1581      | 2207  | 341       | 981  | 50   | 315 | 9805  |
| 2006 | 4613         | 1671      | 2353  | 355       | 1041 | 51   | 332 | 10416 |
| 2007 | 4906         | 1767      | 2510  | 370       | 1107 | 54   | 351 | 11066 |
| 2008 | 5210         | 1869      | 2680  | 387       | 1178 | 56   | 375 | 11755 |
| 2009 | 5504         | 1978      | 2867  | 413       | 1260 | 59   | 406 | 12486 |
| 2010 | 5835         | 2093      | 3062  | 434       | 1343 | 62   | 434 | 13263 |
| 2011 | 6140         | 2216      | 3282  | 467       | 1445 | 66   | 474 | 14091 |
| 2012 | 6508         | 2346      | 3507  | 493       | 1542 | 71   | 508 | 14974 |
| 2013 | 6864         | 2484      | 3755  | 529       | 1654 | 75   | 552 | 15914 |
| 2014 | 7248         | 2630      | 4017  | 564       | 1773 | 81   | 599 | 16913 |
| 2015 | 7628         | 2788      | 4305  | 608       | 1906 | 85   | 654 | 17974 |
| 2016 | 8106         | 2963      | 4575  | 647       | 2026 | 91   | 695 | 19102 |
| 2017 | 8614         | 3148      | 486 I | 687       | 2153 | 97   | 739 | 20297 |
| 2018 | 9151         | 3344      | 5164  | 730       | 2287 | 103  | 785 | 21563 |
| 2019 | 9719         | 3552      | 5485  | 775       | 2429 | 109  | 834 | 22902 |
| 2020 | 10320        | 3772      | 5824  | 823       | 2579 | 116  | 885 | 24318 |
| a.   | ACT included | here with | NSW.  |           |      |      |     |       |

Sources: BTRE estimates, Apelbaum Consulting Group (2001), ABARE (1999).

# TABLE 3.8STATE AND TERRITORY CO2 EQUIVALENT<br/>EMISSIONS (END-USE)—INTERNATIONAL<br/>SHIPPING, ON A FUEL UPLIFT BASIS

|      |     |      | (Gi | gagrams) |     |      |    |       |
|------|-----|------|-----|----------|-----|------|----|-------|
| Year | NSW | Vic. | QId | SA       | WA  | Tas. | NT | Total |
| 1990 | 719 | 649  | 417 | 93       | 371 | 46   | 23 | 2319  |
| 1991 | 650 | 587  | 378 | 84       | 336 | 42   | 21 | 2098  |
| 1992 | 626 | 565  | 363 | 81       | 323 | 40   | 20 | 2019  |
| 1993 | 621 | 561  | 360 | 80       | 320 | 40   | 20 | 2002  |
| 1994 | 643 | 581  | 373 | 83       | 332 | 41   | 21 | 2075  |
| 1995 | 766 | 692  | 445 | 99       | 395 | 49   | 25 | 2470  |
| 1996 | 753 | 680  | 437 | 97       | 389 | 49   | 24 | 2430  |
| 1997 | 806 | 728  | 468 | 104      | 416 | 52   | 26 | 2599  |
| 1998 | 692 | 625  | 402 | 89       | 357 | 45   | 22 | 2232  |
| 1999 | 694 | 627  | 403 | 90       | 358 | 45   | 22 | 2239  |
| 2000 | 715 | 646  | 415 | 92       | 369 | 46   | 23 | 2308  |
| 2001 | 727 | 657  | 422 | 94       | 375 | 47   | 23 | 2346  |
| 2002 | 730 | 659  | 424 | 94       | 377 | 47   | 24 | 2354  |
| 2003 | 732 | 661  | 425 | 94       | 378 | 47   | 24 | 2362  |
| 2004 | 735 | 664  | 427 | 95       | 379 | 47   | 24 | 2370  |
| 2005 | 737 | 665  | 428 | 95       | 380 | 48   | 24 | 2376  |
| 2006 | 739 | 667  | 429 | 95       | 381 | 48   | 24 | 2382  |
| 2007 | 740 | 669  | 430 | 96       | 382 | 48   | 24 | 2388  |
| 2008 | 742 | 670  | 431 | 96       | 383 | 48   | 24 | 2393  |
| 2009 | 743 | 671  | 431 | 96       | 384 | 48   | 24 | 2397  |
| 2010 | 744 | 672  | 432 | 96       | 384 | 48   | 24 | 240 I |
| 2011 | 745 | 673  | 433 | 96       | 385 | 48   | 24 | 2404  |
| 2012 | 746 | 674  | 433 | 96       | 385 | 48   | 24 | 2407  |
| 2013 | 747 | 675  | 434 | 96       | 385 | 48   | 24 | 2409  |
| 2014 | 748 | 675  | 434 | 96       | 386 | 48   | 24 | 2411  |
| 2015 | 748 | 676  | 434 | 97       | 386 | 48   | 24 | 2413  |
| 2016 | 748 | 676  | 435 | 97       | 386 | 48   | 24 | 2414  |
| 2017 | 749 | 676  | 435 | 97       | 386 | 48   | 24 | 2415  |
| 2018 | 749 | 676  | 435 | 97       | 387 | 48   | 24 | 2416  |
| 2019 | 749 | 677  | 435 | 97       | 387 | 48   | 24 | 2417  |
| 2020 | 749 | 677  | 435 | 97       | 387 | 48   | 24 | 2417  |

Sources: BTRE estimates, Apelbaum Consulting Group (2001), ABARE (1999).

## TABLE 3.9 STATE AND TERRITORY CO2 EQUIVALENT EMISSIONS—PASSENGER RAIL

|      |     | (Gi  | gagrams) |    |    |      |       |
|------|-----|------|----------|----|----|------|-------|
| Year | NSW | Vic. | Qld      | SA | WA | Tas. | Total |
| 1990 | 607 | 300  | 120      | 32 | 24 | 0    | 1083  |
| 1991 | 641 | 297  | 134      | 29 | 31 | 0    | 1133  |
| 1992 | 595 | 306  | 130      | 26 | 38 | 0    | 1094  |
| 1993 | 551 | 290  | 133      | 27 | 46 | 0    | 1046  |
| 1994 | 607 | 284  | 147      | 30 | 53 | 0    | 1121  |
| 1995 | 640 | 296  | 147      | 28 | 58 | 0    | 1169  |
| 1996 | 650 | 320  | 150      | 29 | 55 | 0    | 1204  |
| 1997 | 663 | 347  | 155      | 29 | 67 | 0    | 1262  |
| 1998 | 660 | 334  | 150      | 29 | 65 | 0    | 1238  |
| 1999 | 672 | 348  | 162      | 29 | 67 | 0    | 1277  |
| 2000 | 689 | 362  | 155      | 29 | 68 | 0    | 1304  |
| 2001 | 683 | 353  | 157      | 30 | 66 | 0    | 1288  |
| 2002 | 688 | 357  | 158      | 30 | 68 | 0    | 1301  |
| 2003 | 697 | 361  | 159      | 30 | 69 | 0    | 1316  |
| 2004 | 703 | 366  | 161      | 30 | 69 | 0    | 1330  |
| 2005 | 712 | 371  | 161      | 30 | 70 | 0    | 1345  |
| 2006 | 720 | 375  | 163      | 30 | 71 | 0    | 1360  |
| 2007 | 728 | 380  | 164      | 31 | 72 | 0    | 1375  |
| 2008 | 737 | 385  | 166      | 31 | 73 | 0    | 1390  |
| 2009 | 745 | 389  | 167      | 31 | 74 | 0    | 1406  |
| 2010 | 754 | 394  | 168      | 31 | 74 | 0    | 1421  |
| 2011 | 762 | 399  | 170      | 31 | 75 | 0    | 1437  |
| 2012 | 771 | 404  | 171      | 31 | 76 | 0    | 1454  |
| 2013 | 780 | 409  | 172      | 31 | 77 | 0    | 1470  |
| 2014 | 789 | 414  | 174      | 31 | 78 | 0    | I 487 |
| 2015 | 798 | 419  | 175      | 32 | 79 | 0    | 1504  |
| 2016 | 808 | 425  | 177      | 32 | 80 | 0    | 1521  |
| 2017 | 817 | 430  | 178      | 32 | 81 | 0    | 1538  |
| 2018 | 827 | 435  | 180      | 32 | 82 | 0    | 1556  |
| 2019 | 836 | 441  | 181      | 32 | 83 | 0    | 1574  |
| 2020 | 846 | 446  | 183      | 32 | 84 | 0    | 1591  |
|      |     |      |          |    |    |      |       |

Estimates include power generation emissions for electric rail. Emissions for diesel rail relate to energy end-use. Notes:

ABARE data attribute no rail energy consumption to NT or ACT. Sources: BTRE estimates, Apelbaum Consulting Group (2001), ABARE (1999).

| TABLE 3.10             | TABLE 3.10       STATE AND TERRITORY CO2 EQUIVALENT         ENECTONS       ENECTONS |            |            |              |            |      |        |  |  |  |  |
|------------------------|-------------------------------------------------------------------------------------|------------|------------|--------------|------------|------|--------|--|--|--|--|
| EMISSIONS—FREIGHT RAIL |                                                                                     |            |            |              |            |      |        |  |  |  |  |
| (Gigagrams)            |                                                                                     |            |            |              |            |      |        |  |  |  |  |
| Year                   | NSW                                                                                 | Vic.       | Qld        | SA           | WA         | Tas. | Total  |  |  |  |  |
| 1990                   | 498.0                                                                               | 127.5      | 774.9      | 265.2        | 452.0      | 17.3 | 2134.9 |  |  |  |  |
| 1991                   | 473.7                                                                               | 123.8      | 757.3      | 244.8        | 463.4      | 16.7 | 2079.6 |  |  |  |  |
| 1992                   | 450.6                                                                               | 106.5      | 802.4      | 240.2        | 495.0      | 16.3 | 2111.0 |  |  |  |  |
| 1993                   | 475.9                                                                               | 118.4      | 786.4      | 257.8        | 462.6      | 16.0 | 2117.1 |  |  |  |  |
| 1994                   | 499.5                                                                               | 130.3      | 775.6      | 268.8        | 485.9      | 15.4 | 2175.5 |  |  |  |  |
| 1995                   | 487.7                                                                               | 102.6      | 789.3      | 252.6        | 496.2      | 14.8 | 2143.2 |  |  |  |  |
| 1996                   | 472.3                                                                               | 98.3       | 709.7      | 228.6        | 503.2      | 13.4 | 2025.5 |  |  |  |  |
| 1997                   | 530.0                                                                               | 106.5      | 793.0      | 227.0        | 533.4      | 13.7 | 2203.7 |  |  |  |  |
| 1998                   | 513.7                                                                               | 120.3      | 774.6      | 184.7        | 530.7      | 12.8 | 2136.7 |  |  |  |  |
| 1999                   | 502.6                                                                               | 120.0      | 807.I      | 174.3        | 504.I      | 12.7 | 2120.8 |  |  |  |  |
| 2000                   | 525.6                                                                               | 124.6      | 853.2      | 181.5        | 516.4      | 13.2 | 2214.5 |  |  |  |  |
| 2001                   | 527.9                                                                               | 124.2      | 868.4      | 180.9        | 555.8      | 13.1 | 2270.4 |  |  |  |  |
| 2002                   | 535.2                                                                               | 125.0      | 891.2      | 181.8        | 566.9      | 13.2 | 2313.2 |  |  |  |  |
| 2003                   | 542.7                                                                               | 125.8      | 914.8      | 182.7        | 578.3      | 13.3 | 2357.5 |  |  |  |  |
| 2004                   | 550.4                                                                               | 126.6      | 938.9      | 183.6        | 589.9      | 13.4 | 2402.7 |  |  |  |  |
| 2005                   | 558.I                                                                               | 127.5      | 963.5      | 184.5        | 601.7      | 13.4 | 2448.8 |  |  |  |  |
| 2006                   | 565.9                                                                               | 128.3      | 988.7      | 185.4        | 613.8      | 13.5 | 2495.7 |  |  |  |  |
| 2007                   | 573.8                                                                               | 129.1      | 1014.4     | 186.4        | 626.1      | 13.6 | 2543.5 |  |  |  |  |
| 2008                   | 581.9                                                                               | 130.0      | 1040.7     | 187.3        | 638.7      | 13.7 | 2592.3 |  |  |  |  |
| 2009                   | 590.0                                                                               | 130.8      | 1067.6     | 188.2        | 651.5      | 13.8 | 2642.0 |  |  |  |  |
| 2010                   | 598.3                                                                               | 131.7      | 1095.1     | 189.1        | 664.6      | 13.9 | 2692.7 |  |  |  |  |
| 2011                   | 606.6                                                                               | 132.6      | 1123.1     | 190.1        | 678.0      | 14.0 | 2744.3 |  |  |  |  |
| 2012                   | 615.1                                                                               | 133.4      | 1151.8     | 191.0        | 691.6      | 14.1 | 2797.0 |  |  |  |  |
| 2013                   | 623.7                                                                               | 134.3      | 1181.1     | 191.9        | 705.5      | 14.2 | 2850.7 |  |  |  |  |
| 2014                   | 632.3                                                                               | 135.2      | 1211.1     | 192.9        | 719.7      | 14.3 | 2905.4 |  |  |  |  |
| 2015                   | 641.1                                                                               | 136.0      | 1241.6     | 193.8        | 734.2      | 14.4 | 2961.2 |  |  |  |  |
| 2016                   | 650.1                                                                               | 136.9      | 1272.9     | 194.7        | 748.9      | 14.5 | 3018.0 |  |  |  |  |
| 2017                   | 659.1                                                                               | 137.8      | 1304.9     | 195.7        | 764.0      | 14.6 | 3076.0 |  |  |  |  |
| 2018                   | 668.2                                                                               | 138.7      | 1337.5     | 196.6        | 779.4      | 14.7 | 3135.1 |  |  |  |  |
| 2019                   | 677.5                                                                               | 139.6      | 1370.8     | 197.6        | 795.1      | 14.8 | 3195.4 |  |  |  |  |
| 2020                   | 686.9                                                                               | 140.6      | 1406.0     | 197.5        | 811.1      | 14.9 | 3256.8 |  |  |  |  |
| Notes: Estimate        | s include powe                                                                      | r generati | on emissio | ns for elect | tric rail. |      |        |  |  |  |  |
| Emission               | s for diesel rail                                                                   | relate to  | energy end | l-use        |            |      |        |  |  |  |  |

ABARE data attribute no rail energy consumption to NT or ACT. Sources: BTRE estimates, Apelbaum Consulting Group (2001), ABARE (1999).

| TABLE 3.11 | STATE AND TERRITORY CO <sub>2</sub> EQUIVALENT |
|------------|------------------------------------------------|
|            | EMISSIONS (END-USE)— COASTAL SHIPPING,         |
|            | ON A FREIGHT TASK BASIS                        |

|          |             |            | (6          | igagrams)  |        |       |      |        |
|----------|-------------|------------|-------------|------------|--------|-------|------|--------|
| Year     | NSW         | Vic.       | Qld         | SA         | WA     | Tas.  | NT   | Total  |
| 1990     | 512.5       | 174.5      | 460.5       | 144.9      | 552.6  | 70.6  | 23.1 | 1938.7 |
| 1991     | 478.6       | 163.0      | 430.0       | 135.3      | 516.1  | 66.0  | 21.6 | 1810.5 |
| 1992     | 460.6       | 156.9      | 413.9       | 130.2      | 496.7  | 63.5  | 20.7 | 1742.5 |
| 1993     | 445.I       | 151.6      | 399.9       | 125.8      | 480.0  | 61.4  | 20.0 | 1683.8 |
| 1994     | 439.8       | 149.8      | 395.2       | 124.3      | 474.2  | 60.6  | 19.8 | 1663.8 |
| 1995     | 493.4       | 168.0      | 443.3       | 139.5      | 532.0  | 68.0  | 22.2 | 1866.3 |
| 1996     | 468.0       | 159.4      | 420.5       | 132.3      | 504.6  | 64.5  | 21.1 | 1770.3 |
| 1997     | 461.7       | 162.3      | 462.4       | 122.2      | 516.4  | 62.5  | 23.9 | 1811.4 |
| 1998     | 430.8       | 140.7      | 376.3       | 119.2      | 460.4  | 58.4  | 27.9 | 1613.7 |
| 1999     | 367.8       | 140.5      | 362.9       | 107.3      | 409.6  | 57.6  | 29.6 | 1475.3 |
| 2000     | 341.1       | 133.0      | 434.3       | 120.1      | 372.3  | 73.4  | 30.5 | 1504.7 |
| 2001     | 326.9       | 127.5      | 416.2       | 115.1      | 356.9  | 70.4  | 29.3 | 1442.2 |
| 2002     | 323.9       | 126.3      | 412.4       | 114.0      | 353.6  | 69.7  | 29.0 | 1429.0 |
| 2003     | 321.2       | 125.2      | 408.9       | 113.1      | 350.6  | 69.1  | 28.7 | 1417.0 |
| 2004     | 318.8       | 124.3      | 405.8       | 112.2      | 347.9  | 68.6  | 28.5 | 1406.1 |
| 2005     | 316.5       | 123.4      | 403.0       | 111.4      | 345.5  | 68. I | 28.3 | 1396.3 |
| 2006     | 314.6       | 122.6      | 400.5       | 110.7      | 343.4  | 67.7  | 28.1 | 1387.6 |
| 2007     | 312.8       | 122.0      | 398.2       | 110.1      | 341.4  | 67.3  | 28.0 | 1379.9 |
| 2008     | 311.3       | 121.4      | 396.3       | 109.6      | 339.8  | 67.0  | 27.9 | 1373.2 |
| 2009     | 310.0       | 120.9      | 394.6       | 109.1      | 338.4  | 66.7  | 27.7 | 1367.4 |
| 2010     | 308.9       | 120.4      | 393.2       | 108.7      | 337.2  | 66.5  | 27.6 | 1362.6 |
| 2011     | 308.0       | 120.1      | 392.1       | 108.4      | 336.2  | 66.3  | 27.6 | 1358.6 |
| 2012     | 307.3       | 119.8      | 391.2       | 108.2      | 335.4  | 66. l | 27.5 | 1355.5 |
| 2013     | 306.8       | 119.6      | 390.6       | 108.0      | 334.9  | 66.0  | 27.4 | 1353.3 |
| 2014     | 306.4       | 119.5      | 390.1       | 107.9      | 334.5  | 65.9  | 27.4 | 1351.8 |
| 2015     | 306.3       | 119.4      | 390.0       | 107.8      | 334.3  | 65.9  | 27.4 | 1351.2 |
| 2016     | 306.3       | 119.4      | 390.0       | 107.9      | 334.4  | 65.9  | 27.4 | 1351.3 |
| 2017     | 306.5       | 119.5      | 390.3       | 107.9      | 334.6  | 66.0  | 27.4 | 1352.2 |
| 2018     | 306.9       | 119.7      | 390.7       | 108.1      | 335.0  | 66.0  | 27.5 | 1353.9 |
| 2019     | 307.5       | 119.9      | 391.4       | 108.2      | 335.6  | 66.2  | 27.5 | 1356.3 |
| 2020     | 308.2       | 120.2      | 392.3       | 108.5      | 336.4  | 66.3  | 27.6 | 1359.4 |
| Sources: | BTRE Coasta | l Shipping | Database, I | BTRE estir | nates. |       |      |        |

# TABLE 3.12STATE AND TERRITORY CO2 EQUIVALENT<br/>EMISSIONS (END-USE)—OTHER MINOR<br/>TRANSPORT SOURCESa

|      |            |             |            | (Gigagr      | ams)        |            |            |            |      |
|------|------------|-------------|------------|--------------|-------------|------------|------------|------------|------|
| (ear | NSW        | Vic.        | Qld        | SA           | WA          | Tas.       | NT         | ACT        | Tota |
| 990  | 172.1      | 118.7       | 78.8       | 38.8         | 43.8        | 12.5       | 4.4        | 0.8        | 470  |
| 991  | 173.9      | 119.6       | 80.4       | 39.1         | 44.3        | 12.6       | 4.5        | 0.8        | 475  |
| 992  | 175.6      | 120.4       | 82.3       | 39.3         | 44.9        | 12.7       | 4.5        | 0.8        | 480  |
| 993  | 177.1      | 120.9       | 84.5       | 39.5         | 45.5        | 12.8       | 4.6        | 0.8        | 486  |
| 994  | 178.8      | 121.4       | 86.5       | 39.6         | 46.2        | 12.8       | 4.7        | 0.8        | 491  |
| 995  | 180.5      | 122.1       | 88.5       | 39.7         | 47.0        | 12.8       | 4.8        | 0.8        | 496  |
| 996  | 182.5      | 123.0       | 90.2       | 39.7         | 47.7        | 12.8       | 4.9        | 0.8        | 502  |
| 997  | 184.1      | 124.1       | 91.6       | 39.8         | 48.5        | 12.7       | 5.0        | 0.8        | 507  |
| 998  | 185.9      | 125.4       | 93.0       | 40.0         | 49.3        | 12.7       | 5.1        | 0.8        | 512  |
| 999  | 186.0      | 125.3       | 93.3       | 39.7         | 49.5        | 12.5       | 5.1        | 0.8        | 512  |
| 2000 | 187.8      | 126.7       | 94.6       | 39.8         | 50. I       | 12.5       | 5.2        | 0.8        | 517  |
| 2001 | 189.3      | 127.9       | 95.8       | 39.9         | 50.8        | 12.4       | 5.3        | 0.8        | 522  |
| 2002 | 190.8      | 129.0       | 97.0       | 40. I        | 51.3        | 12.4       | 5.3        | 0.8        | 527  |
| 2003 | 192.3      | 130.1       | 98.3       | 40.2         | 51.9        | 12.3       | 5.3        | 0.8        | 531  |
| 2004 | 193.9      | 131.2       | 99.5       | 40.4         | 52.5        | 12.3       | 5.4        | 0.8        | 536  |
| 2005 | 195.4      | 132.3       | 100.8      | 40.5         | 53.I        | 12.2       | 5.4        | 0.8        | 540  |
| 2006 | 196.8      | 133.3       | 102.0      | 40.7         | 53.7        | 12.1       | 5.5        | 0.8        | 545  |
| 2007 | 198.3      | 134.3       | 103.2      | 40.8         | 54.2        | 12.1       | 5.5        | 0.8        | 549  |
| 2008 | 199.7      | 135.3       | 104.5      | 40.9         | 54.8        | 12.0       | 5.5        | 0.8        | 554  |
| 2009 | 201.2      | 136.3       | 105.7      | 41.1         | 55.4        | 11.9       | 5.6        | 0.8        | 558  |
| 2010 | 202.6      | 137.3       | 107.0      | 41.2         | 55.9        | 11.9       | 5.6        | 0.8        | 562  |
| 2011 | 203.8      | 138.2       | 108.1      | 41.3         | 56.4        | 11.8       | 5.7        | 0.8        | 566  |
| 2012 | 205.1      | 139.1       | 109.2      | 41.4         | 57.0        | 11.7       | 5.7        | 0.8        | 570  |
| 2013 | 206.3      | 139.9       | 110.4      | 41.4         | 57.5        | 11.6       | 5.7        | 0.8        | 574  |
| 2014 | 207.5      | 140.8       | 111.5      | 41.5         | 58.0        | 11.5       | 5.8        | 0.8        | 577  |
| 2015 | 208.7      | 141.7       | 112.7      | 41.6         | 58.5        | 11.4       | 5.8        | 0.8        | 581  |
| 2016 | 209.9      | 142.5       | 113.8      | 41.7         | 59.0        | 11.3       | 5.8        | 0.8        | 585  |
| 2017 | 211.0      | 143.3       | 114.9      | 41.8         | 59.5        | 11.2       | 5.9        | 0.8        | 588  |
| 2018 | 212.2      | 144.1       | 116.1      | 41.8         | 60.0        | 11.1       | 5.9        | 0.8        | 592  |
| 2019 | 213.3      | 144.9       | 117.2      | 41.9         | 60.6        | 11.0       | 5.9        | 0.8        | 596  |
| 2020 | 214.5      | 145.7       | 118.3      | 42.0         | 61.1        | 10.9       | 6.0        | 0.8        | 599  |
| ι.   | Includes s | mall mari   | ne pleasur | e craft, fei | rries and u | unregister | ed off-roa | d vehicles | i.   |
|      | Kough ind  | licative es | timates on | ily.         |             |            |            |            |      |

Sources: BTRE estimates.

#### **CAPITAL CITY TRANSPORT EMISSIONS**

Transport emissions from the Australian State and Territory capital cities (table 3.13) were based on BTRE estimates of the urban transport task. The metropolitan transport task is undertaken mainly by passenger cars, road freight vehicles, urban passenger rail and buses.

#### Road vehicles

Capital city emissions for passenger cars (table 3.14) were calculated from each State/Territory emission estimate—apportioned using the percentage of the State/Territory population residing in the capital, and a scale factor reflecting the different rate of fuel use between urban and non-urban areas for that State/Territory. Fuel use per person varies due to different vehicle utilisation patterns in urban and non-urban areas. In general, urban areas have higher vehicle fuel consumption rates (primarily as a result of traffic congestion).

Bus emissions (table 3.16) were apportioned between capital city and nonmetropolitan values using data on area of vehicle operation from the ABS SMVU.

For commercial vehicles, the BTRE estimated an econometric model of aggregate urban freight movement, and used the model to forecast urban freight movements for each capital city to 2020. The econometric model relates the road freight task in capital cities and provincial urban areas to national per capita gross product, population and real road freight rates. Changes in capital city population have been based on ABS projections of population from 1996 to 2020, as supplied to the BTRE by the AGO.

In estimating urban freight transport fuel use and emissions, the BTRE investigated the difference in fuel efficiency of urban operations relative to non-urban travel. Urban freight transport fuel efficiencies might be expected to be worse than non-urban, because of traffic congestion and the increased level of stop-start operations encountered in urban areas. The 1991 SMVU results, however, did not indicate a substantial difference between the average urban and non-urban fuel intensities. The average urban fuel intensity of LCVs was about 2 per cent higher than the average over all areas. For rigid and articulated trucks, the average fuel intensity in urban areas was estimated by the SMVU to be about 3 per cent lower than the average fuel intensity for all areas. It appears that non-urban trucks having either higher vehicle masses or higher average loads have counterbalanced the traffic effects for freight vehicle fuel consumption. Based on these results, the BTRE has assumed urban fuel intensities equal to the State/Territory average. Urban CO<sub>2</sub> equivalent emissions (end-use) by commercial road vehicles are listed in table 3.15.

#### Rail

Of urban rail operations, the BTRE has only included emissions from urban passenger rail transport. Rail freight movements within capital cities are likely to be a small proportion of the total rail freight task and therefore have not

been included.  $CO_2$  equivalent emissions for metropolitan passenger rail transport are listed in table 3.18.

|        |           |            |              | (Gigagr    | ams)        |             |          |            |       |
|--------|-----------|------------|--------------|------------|-------------|-------------|----------|------------|-------|
| Year   | Syd       | Mel        | Bne          | AdI        | Per         | Hob         | Dar      | Cbr        | Total |
| 1990   | 9786      | 8778       | 3504         | 2472       | 3114        | 460         | 210      | 806        | 29130 |
| 1991   | 9826      | 8765       | 345 I        | 2493       | 3219        | 45 I        | 214      | 796        | 29215 |
| 1992   | 9833      | 8844       | 3506         | 2504       | 3303        | 459         | 221      | 837        | 29508 |
| 1993   | 10073     | 9088       | 3606         | 2574       | 3418        | 472         | 228      | 872        | 30330 |
| 1994   | 10269     | 9226       | 3674         | 2612       | 3485        | 477         | 230      | 894        | 30866 |
| 1995   | 10674     | 9586       | 3815         | 2704       | 3629        | 493         | 238      | 922        | 32062 |
| 1996   | 11057     | 9947       | 3974         | 2794       | 3770        | 510         | 248      | 934        | 33233 |
| 1997   | 11176     | 10061      | 4010         | 2807       | 3817        | 511         | 249      | 946        | 33577 |
| 1998   | 11275     | 10274      | 4024         | 2907       | 3928        | 502         | 253      | 952        | 34114 |
| 1999   | 5         | 10550      | 4181         | 293 I      | 4015        | 517         | 257      | 979        | 34941 |
| 2000   | 11782     | 10712      | 4242         | 2983       | 4025        | 525         | 262      | 1017       | 35548 |
| 2001   | 12149     | 11045      | 4398         | 3057       | 4165        | 533         | 271      | 1036       | 36654 |
| 2002   | 12626     | 11501      | 4584         | 3165       | 4340        | 545         | 280      | 1070       | 38112 |
| 2003   | 12936     | 11786      | 4711         | 3228       | 4454        | 548         | 286      | 1090       | 39039 |
| 2004   | 13209     | 12033      | 4825         | 3281       | 4555        | 550         | 291      | 1105       | 39849 |
| 2005   | 13490     | 12284      | 4940         | 3335       | 4658        | 552         | 295      | 1118       | 40673 |
| 2006   | 13715     | 12482      | 5037         | 3375       | 4742        | 552         | 299      | 1128       | 41328 |
| 2007   | 13986     | 12724      | 5152         | 3425       | 4843        | 553         | 303      | 1141       | 42126 |
| 2008   | 14233     | 12940      | 5258         | 3468       | 4935        | 553         | 307      | 1151       | 42845 |
| 2009   | 14473     | 13150      | 5362         | 3509       | 5025        | 552         | 310      | 1161       | 43543 |
| 2010   | 14703     | 13348      | 5463         | 3546       | 5111        | 55 I        | 314      | 1170       | 44206 |
| 2011   | 14937     | 13551      | 5565         | 3585       | 5199        | 550         | 318      | 1179       | 44884 |
| 2012   | 15166     | 13748      | 5667         | 3622       | 5285        | 548         | 321      | 1188       | 45546 |
| 2013   | 15387     | 13937      | 5766         | 3657       | 5368        | 547         | 324      | 1196       | 46182 |
| 2014   | 15606     | 14122      | 5864         | 3690       | 545 I       | 545         | 327      | 1203       | 46807 |
| 2015   | 15814     | 14296      | 5959         | 3721       | 5530        | 542         | 330      | 1210       | 47402 |
| 2016   | 16021     | 14469      | 6054         | 3751       | 5608        | 539         | 333      | 1216       | 47991 |
| 2017   | 16230     | 14642      | 6149         | 3782       | 5687        | 536         | 336      | 1221       | 48584 |
| 2018   | 16437     | 14812      | 6246         | 3811       | 5766        | 533         | 339      | 1226       | 49170 |
| 2019   | 16633     | 14972      | 6337         | 3837       | 5840        | 530         | 342      | 1229       | 49721 |
| 2020   | 16820     | 15123      | 6426         | 3861       | 5911        | 526         | 344      | 1231       | 50241 |
| Notes: | Estimates | comprise   | emissions    | s from urb | oan railway | /s (includi | ng power | generatio  | on 👘  |
|        | emissions | for electr | ic rail), ca | rs, buses, | motorcyc    | les, LCVs   | and truc | ks. Emissi | ons   |

## TABLE 3.13CAPITAL CITY CO2 EQUIVALENT EMISSIONS—ALL MAJOR TRANSPORT SOURCES

page 67

otes: Estimates comprise emissions from urban railways (including power generation emissions for electric rail), cars, buses, motorcycles, LCVs and trucks. Emissions for modes other than electric rail relate to energy end-use. Minor sources (such as urban ferry services, outboard motors and unregistered motor vehicles) are excluded.

Sources: BTRE estimates.

|          | (END-USE)—PASSENGER CARS |            |          |           |           |           |          |     |       |  |  |
|----------|--------------------------|------------|----------|-----------|-----------|-----------|----------|-----|-------|--|--|
|          |                          |            |          | (Gigagı   | rams)     |           |          |     |       |  |  |
| Year     | Syd                      | Mel        | Bne      | Adl       | Per       | Hob       | Dar      | Cbr | Total |  |  |
| 1990     | 6604                     | 6344       | 2330     | 1790      | 2152      | 311       | 109      | 638 | 20279 |  |  |
| 1991     | 6666                     | 6374       | 2296     | 1826      | 2267      | 304       | 115      | 633 | 20480 |  |  |
| 1992     | 6740                     | 6463       | 2360     | 1848      | 2349      | 315       | 123      | 662 | 20861 |  |  |
| 1993     | 6921                     | 6641       | 2418     | 1895      | 2415      | 322       | 126      | 676 | 21413 |  |  |
| 1994     | 7063                     | 6782       | 2461     | 1931      | 2467      | 328       | 127      | 687 | 21847 |  |  |
| 1995     | 7363                     | 7077       | 2560     | 2010      | 2574      | 341       | 132      | 712 | 22770 |  |  |
| 1996     | 7570                     | 7282       | 2627     | 2063      | 2649      | 349       | 135      | 729 | 23404 |  |  |
| 1997     | 7674                     | 7373       | 2656     | 2083      | 2679      | 352       | 137      | 734 | 23687 |  |  |
| 1998     | 7766                     | 7589       | 2666     | 2185      | 2785      | 344       | 142      | 725 | 24203 |  |  |
| 1999     | 7936                     | 7806       | 2782     | 2202      | 2847      | 360       | 145      | 749 | 24826 |  |  |
| 2000     | 8194                     | 7956       | 2850     | 2260      | 2855      | 370       | 150      | 752 | 25389 |  |  |
| 2001     | 8406                     | 8166       | 2930     | 2301      | 2935      | 372       | 154      | 763 | 26028 |  |  |
| 2002     | 8798                     | 855 I      | 3076     | 2395      | 3076      | 382       | 162      | 790 | 27230 |  |  |
| 2003     | 9029                     | 8776       | 3166     | 2444      | 3161      | 385       | 165      | 801 | 27929 |  |  |
| 2004     | 9223                     | 8960       | 3243     | 2484      | 3233      | 386       | 168      | 807 | 28503 |  |  |
| 2005     | 9419                     | 9146       | 3320     | 2524      | 3306      | 386       | 171      | 813 | 29086 |  |  |
| 2006     | 9575                     | 9292       | 3384     | 2553      | 3364      | 385       | 173      | 816 | 29542 |  |  |
| 2007     | 9760                     | 9467       | 3459     | 2589      | 3433      | 385       | 176      | 820 | 30088 |  |  |
| 2008     | 9918                     | 9615       | 3524     | 2617      | 3492      | 384       | 178      | 822 | 30549 |  |  |
| 2009     | 10067                    | 9754       | 3585     | 2643      | 3548      | 382       | 180      | 822 | 30983 |  |  |
| 2010     | 10203                    | 9882       | 3643     | 2665      | 3600      | 380       | 182      | 822 | 31377 |  |  |
| 2011     | 10348                    | 10016      | 3704     | 2690      | 3655      | 378       | 184      | 822 | 31797 |  |  |
| 2012     | 10484                    | 10142      | 3761     | 2711      | 3707      | 375       | 186      | 821 | 32188 |  |  |
| 2013     | 10611                    | 10258      | 3816     | 2731      | 3756      | 373       | 187      | 819 | 32550 |  |  |
| 2014     | 10732                    | 10369      | 3869     | 2749      | 3802      | 369       | 189      | 817 | 32895 |  |  |
| 2015     | 10844                    | 10470      | 3918     | 2764      | 3845      | 366       | 190      | 814 | 33211 |  |  |
| 2016     | 10951                    | 10567      | 3966     | 2778      | 3887      | 362       | 192      | 810 | 33513 |  |  |
| 2017     | 11058                    | 10662      | 4014     | 2792      | 3928      | 358       | 193      | 807 | 33812 |  |  |
| 2018     | 11156                    | 10750      | 4058     | 2804      | 3966      | 354       | 194      | 802 | 34085 |  |  |
| 2019     | 11248                    | 10830      | 4101     | 2814      | 4002      | 350       | 195      | 797 | 34337 |  |  |
| 2020     | 11333                    | 10904      | 4140     | 2822      | 4035      | 346       | 196      | 792 | 34567 |  |  |
| Sources: | BTRE est                 | imates, Ap | elbaum C | onsulting | Group (20 | 001), ABS | (2001a). |     |       |  |  |

## TABLE 3.14CAPITAL CITY CO2 EQUIVALENT EMISSIONS<br/>(END-USE)—PASSENGER CARS

| TABL        | E 3.15   | (END-USE)—COMMERCIAL VEHICLES |             |      |       |     |       |     |       |  |  |
|-------------|----------|-------------------------------|-------------|------|-------|-----|-------|-----|-------|--|--|
|             |          | (END                          | -03E)-      | -COM | MERCI |     | HICLE | 3   |       |  |  |
| (Gigagrams) |          |                               |             |      |       |     |       |     |       |  |  |
| Year        | Syd      | Mel                           | Bne         | Adl  | Per   | Hob | Dar   | Cbr | Total |  |  |
| 1990        | 2413     | 1982                          | 989         | 592  | 865   | 130 | 92    | 144 | 7209  |  |  |
| 1991        | 2366     | 1943                          | 970         | 581  | 848   | 128 | 90    | 142 | 7068  |  |  |
| 1992        | 2345     | 1920                          | 970         | 572  | 845   | 126 | 89    | 154 | 7021  |  |  |
| 1993        | 2449     | 1999                          | 1023        | 594  | 887   | 131 | 93    | 175 | 7350  |  |  |
| 1994        | 2457     | 2000                          | 1037        | 592  | 895   | 131 | 94    | 186 | 7391  |  |  |
| 1995        | 2531     | 2055                          | 1081        | 606  | 928   | 134 | 97    | 188 | 7619  |  |  |
| 1996        | 2699     | 2186                          | 1170        | 642  | 997   | 142 | 104   | 183 | 8121  |  |  |
| 1997        | 2698     | 2180                          | 1172        | 635  | 1000  | 140 | 103   | 191 | 8119  |  |  |
| 1998        | 2704     | 2189                          | 1181        | 632  | 1006  | 138 | 102   | 205 | 8157  |  |  |
| 1999        | 2759     | 2233                          | 1208        | 639  | 1030  | 139 | 103   | 208 | 8319  |  |  |
| 2000        | 2757     | 2232                          | 1209        | 633  | 1031  | 136 | 102   | 243 | 8342  |  |  |
| 2001        | 2916     | 2362                          | 1281        | 665  | 1093  | 142 | 107   | 251 | 8818  |  |  |
| 2002        | 2994     | 2426                          | 1320        | 680  | 1123  | 144 | 110   | 258 | 9054  |  |  |
| 2003        | 3062     | 248 I                         | 1353        | 692  | 1150  | 145 | 111   | 267 | 9262  |  |  |
| 2004        | 3133     | 2538                          | 1388        | 705  | 1178  | 146 | 113   | 276 | 9476  |  |  |
| 2005        | 3206     | 2596                          | 1424        | 719  | 1207  | 147 | 114   | 283 | 9697  |  |  |
| 2006        | 3265     | 2642                          | 1454        | 729  | 1231  | 148 | 115   | 290 | 9875  |  |  |
| 2007        | 3342     | 2703                          | 1492        | 743  | 1261  | 149 | 117   | 299 | 10106 |  |  |
| 2008        | 3421     | 2765                          | 1530        | 758  | 1292  | 151 | 119   | 307 | 10342 |  |  |
| 2009        | 3502     | 2829                          | 1570        | 772  | 1324  | 152 | 120   | 316 | 10586 |  |  |
| 2010        | 3583     | 2894                          | 1611        | 787  | 1356  | 153 | 122   | 325 | 10832 |  |  |
| 2011        | 3662     | 2956                          | 1650        | 801  | 1387  | 154 | 123   | 335 | 11070 |  |  |
| 2012        | 3745     | 3021                          | 1691        | 816  | 1420  | 155 | 125   | 345 | 11319 |  |  |
| 2013        | 3829     | 3087                          | 1733        | 83 I | 1453  | 157 | 127   | 354 | 11571 |  |  |
| 2014        | 3915     | 3155                          | 1776        | 847  | 1487  | 158 | 128   | 364 | 11830 |  |  |
| 2015        | 400 I    | 3222                          | 1819        | 862  | 1521  | 159 | 130   | 374 | 12087 |  |  |
| 2016        | 4089     | 3291                          | 1863        | 878  | 1556  | 160 | 131   | 383 | 12352 |  |  |
| 2017        | 4180     | 3362                          | 1909        | 894  | 1592  | 161 | 133   | 393 | 12623 |  |  |
| 2018        | 4278     | 3438                          | 1957        | 911  | 1630  | 162 | 135   | 402 | 12914 |  |  |
| 2019        | 4371     | 3511                          | 2004        | 928  | 1667  | 163 | 136   | 410 | 13190 |  |  |
| 2020        | 4462     | 3581                          | 2050        | 944  | 1703  | 164 | 138   | 417 | 13458 |  |  |
| Sources:    | BTRE est | imates, AE                    | 3S (2001a). |      |       |     |       |     |       |  |  |

BTRE Report 107

|          |            | (END-      | USE)–     | -BUSE       | s         |           |          |     |       |
|----------|------------|------------|-----------|-------------|-----------|-----------|----------|-----|-------|
|          |            |            |           | (Gigagra    | ıms)      |           |          |     |       |
| Year     | Syd        | Mel        | Bne       | Adl         | Per       | Hob       | Dar      | Cbr | Total |
| 1990     | 211        | 158        | 72        | 58          | 68        | 16        | 7        | 19  | 611   |
| 1991     | 209        | 157        | 72        | 58          | 68        | 16        | 7        | 19  | 606   |
| 1992     | 209        | 157        | 72        | 58          | 68        | 16        | 7        | 19  | 606   |
| 1993     | 209        | 157        | 72        | 58          | 68        | 16        | 7        | 19  | 606   |
| 1994     | 211        | 158        | 72        | 58          | 68        | 16        | 7        | 19  | 611   |
| 1995     | 212        | 160        | 73        | 59          | 69        | 16        | 7        | 20  | 616   |
| 1996     | 214        | 161        | 73        | 59          | 69        | 16        | 8        | 20  | 621   |
| 1997     | 216        | 162        | 74        | 60          | 70        | 16        | 8        | 20  | 626   |
| 1998     | 218        | 164        | 74        | 60          | 70        | 17        | 8        | 20  | 631   |
| 1999     | 219        | 165        | 75        | 61          | 71        | 17        | 8        | 20  | 636   |
| 2000     | 218        | 164        | 74        | 60          | 70        | 17        | 8        | 20  | 631   |
| 2001     | 220        | 165        | 75        | 61          | 71        | 16        | 8        | 20  | 636   |
| 2002     | 221        | 167        | 76        | 61          | 72        | 16        | 8        | 20  | 642   |
| 2003     | 223        | 168        | 77        | 61          | 73        | 16        | 8        | 20  | 647   |
| 2004     | 225        | 170        | 78        | 61          | 74        | 16        | 8        | 20  | 652   |
| 2005     | 227        | 171        | 79        | 61          | 75        | 16        | 8        | 20  | 658   |
| 2006     | 228        | 172        | 80        | 62          | 75        | 16        | 8        | 20  | 663   |
| 2007     | 230        | 174        | 81        | 62          | 76        | 16        | 8        | 20  | 668   |
| 2008     | 232        | 175        | 82        | 62          | 77        | 16        | 8        | 20  | 673   |
| 2009     | 233        | 176        | 83        | 62          | 78        | 16        | 8        | 20  | 678   |
| 2010     | 235        | 178        | 84        | 63          | 79        | 16        | 8        | 20  | 683   |
| 2011     | 236        | 179        | 85        | 63          | 79        | 16        | 8        | 20  | 687   |
| 2012     | 238        | 180        | 86        | 63          | 80        | 16        | 8        | 20  | 691   |
| 2013     | 239        | 181        | 87        | 63          | 81        | 15        | 8        | 20  | 695   |
| 2014     | 241        | 182        | 88        | 63          | 82        | 15        | 9        | 20  | 700   |
| 2015     | 242        | 183        | 89        | 63          | 82        | 15        | 9        | 20  | 704   |
| 2016     | 244        | 184        | 90        | 63          | 83        | 15        | 9        | 20  | 708   |
| 2017     | 245        | 186        | 91        | 63          | 84        | 15        | 9        | 20  | 712   |
| 2018     | 246        | 187        | 92        | 64          | 84        | 15        | 9        | 20  | 716   |
| 2019     | 248        | 188        | 93        | 64          | 85        | 15        | 9        | 20  | 720   |
| 2020     | 249        | 189        | 94        | 64          | 86        | 14        | 9        | 20  | 724   |
| Sources: | BTRE estir | nates. Ape | elbaum Co | onsulting ( | Group (20 | 001), ABS | (2001a). |     |       |

## TABLE 3.16 CAPITAL CITY CO2 EQUIVALENT EMISSIONS

| TABL | E 3.17 | CAPI | TAL CI | тү со    | 2 EQU         | IVALE |     | IISSIO | NS    |
|------|--------|------|--------|----------|---------------|-------|-----|--------|-------|
|      |        | (END | -USE)– | -мото    | <b>D</b> RCY0 | CLES  |     |        |       |
|      |        |      |        |          |               |       |     |        |       |
|      |        |      |        | (Gigagro | ıms)          |       |     |        |       |
| Year | Syd    | Mel  | Bne    | Adl      | Per           | Hob   | Dar | Cbr    | Total |
| 1990 | 35.8   | 28.6 | 22.0   | 5.5      | 7.3           | 2.3   | 1.4 | 2.1    | 105.0 |
| 1991 | 35.8   | 28.6 | 22.0   | 5.5      | 7.3           | 2.3   | 1.4 | 2.1    | 105.0 |
| 1992 | 35.8   | 28.6 | 22.0   | 5.5      | 7.3           | 2.3   | 1.4 | 2.1    | 105.0 |
| 1993 | 35.8   | 28.6 | 22.0   | 5.5      | 7.3           | 2.3   | 1.4 | 2.1    | 105.0 |
| 1994 | 35.8   | 28.6 | 22.0   | 5.5      | 7.3           | 2.3   | 1.4 | 2.1    | 105.0 |
| 1995 | 35.8   | 28.6 | 22.0   | 5.5      | 7.3           | 2.3   | 1.4 | 2.1    | 105.0 |
| 1996 | 35.8   | 28.6 | 22.0   | 5.5      | 7.3           | 2.3   | 1.4 | 2.1    | 105.0 |
| 1997 | 35.8   | 28.6 | 22.0   | 5.5      | 7.3           | 2.3   | 1.4 | 2.1    | 105.0 |
| 1998 | 35.8   | 28.6 | 22.0   | 5.5      | 7.3           | 2.3   | 1.4 | 2.1    | 105.0 |
| 1999 | 35.8   | 28.6 | 22.0   | 5.5      | 7.3           | 2.3   | 1.4 | 2.1    | 105.0 |
| 2000 | 36.2   | 28.9 | 22.3   | 5.5      | 7.4           | 2.3   | 1.5 | 2.1    | 106.1 |
| 2001 | 36.5   | 29.2 | 22.5   | 5.5      | 7.5           | 2.3   | 1.5 | 2.1    | 107.1 |
| 2002 | 36.7   | 29.4 | 22.8   | 5.5      | 7.6           | 2.3   | 1.5 | 2.1    | 108.0 |
| 2003 | 37.0   | 29.7 | 23.I   | 5.5      | 7.6           | 2.3   | 1.5 | 2.1    | 108.9 |
| 2004 | 37.3   | 29.9 | 23.4   | 5.6      | 7.7           | 2.3   | 1.5 | 2.1    | 109.8 |
| 2005 | 37.6   | 30.2 | 23.7   | 5.6      | 7.8           | 2.3   | 1.5 | 2.1    | 110.8 |
| 2006 | 37.9   | 30.4 | 24.0   | 5.6      | 7.9           | 2.3   | 1.5 | 2.1    | 111.7 |
| 2007 | 38.2   | 30.6 | 24.3   | 5.6      | 8.0           | 2.3   | 1.5 | 2.1    | 112.6 |
| 2008 | 38.4   | 30.9 | 24.6   | 5.6      | 8.1           | 2.2   | 1.6 | 2.1    | 113.5 |
| 2009 | 38.7   | 31.1 | 24.9   | 5.7      | 8.2           | 2.2   | 1.6 | 2.1    | 114.4 |
| 2010 | 39.0   | 31.3 | 25.2   | 5.7      | 8.2           | 2.2   | 1.6 | 2.1    | 115.3 |
| 2011 | 39.2   | 31.5 | 25.4   | 5.7      | 8.3           | 2.2   | 1.6 | 2.1    | 116.0 |
| 2012 | 39.4   | 31.7 | 25.7   | 5.7      | 8.4           | 2.2   | 1.6 | 2.1    | 116.8 |
| 2013 | 39.7   | 31.9 | 26.0   | 5.7      | 8.5           | 2.2   | 1.6 | 2.1    | 117.6 |
| 2014 | 39.9   | 32.1 | 26.2   | 5.7      | 8.5           | 2.1   | 1.6 | 2.1    | 118.4 |
| 2015 | 40. I  | 32.3 | 26.5   | 5.7      | 8.6           | 2.1   | 1.6 | 2.1    | 119.1 |
| 2016 | 40.4   | 32.5 | 26.8   | 5.7      | 8.7           | 2.1   | 1.6 | 2.1    | 119.9 |
| 2017 | 40.6   | 32.7 | 27.0   | 5.8      | 8.8           | 2.1   | 1.6 | 2.1    | 120.6 |
| 2018 | 40.8   | 32.9 | 27.3   | 5.8      | 8.8           | 2.1   | 1.7 | 2.1    | 121.4 |
| 2019 | 41.0   | 33.0 | 27.6   | 5.8      | 8.9           | 2.1   | 1.7 | 2.1    | 122.1 |
| 2020 | 41.2   | 33.2 | 27.8   | 5.8      | 9.0           | 2.0   | 1.7 | 2.1    | 122.8 |

Sources: BTRE estimates, ABS (2001a).

| TABLE 3.18 |           | CAPITAL CITY CO <sub>2</sub> EQUIVALENT |                            |           |            |            |       |     |        |  |
|------------|-----------|-----------------------------------------|----------------------------|-----------|------------|------------|-------|-----|--------|--|
|            |           | EMIS                                    | SIONS                      | — PAS     | SENG       | ER RAI     | L     |     |        |  |
|            |           |                                         |                            | (Gigagr   | ams)       |            |       |     |        |  |
| Year       | Syd       | Mel                                     | Bne                        | Adl       | Per        | Hob        | Dar   | Cbr | Total  |  |
| 1990       | 522.0     | 265.2                                   | 90.9                       | 25.1      | 21.6       | 0.0        | 0.0   | 0.0 | 924.9  |  |
| 1991       | 550.4     | 262.5                                   | 92.1                       | 22.5      | 28.3       | 0.0        | 0.0   | 0.0 | 955.8  |  |
| 1992       | 502.5     | 274.9                                   | 82.5                       | 20.4      | 34. I      | 0.0        | 0.0   | 0.0 | 914.5  |  |
| 1993       | 458.2     | 262.1                                   | 72.1                       | 22.1      | 41.5       | 0.0        | 0.0   | 0.0 | 856. I |  |
| 1994       | 502.2     | 256.3                                   | 81.2                       | 25.2      | 47.8       | 0.0        | 0.0   | 0.0 | 912.6  |  |
| 1995       | 532.2     | 266.7                                   | 78.4                       | 23.4      | 51.3       | 0.0        | 0.0   | 0.0 | 952.0  |  |
| 1996       | 538.9     | 289.6                                   | 81.6                       | 24.0      | 48.2       | 0.0        | 0.0   | 0.0 | 982.4  |  |
| 1997       | 552.3     | 316.8                                   | 86.5                       | 24.0      | 60.3       | 0.0        | 0.0   | 0.0 | 1039.9 |  |
| 1998       | 550.6     | 304. I                                  | 81.0                       | 24.2      | 58.6       | 0.0        | 0.0   | 0.0 | 1018.5 |  |
| 1999       | 560.3     | 317.1                                   | 93.8                       | 24.1      | 59.9       | 0.0        | 0.0   | 0.0 | 1055.2 |  |
| 2000       | 577.1     | 331.8                                   | 86.8                       | 24.2      | 61.0       | 0.0        | 0.0   | 0.0 | 1080.8 |  |
| 2001       | 571.1     | 321.9                                   | 88.2                       | 24.3      | 59.I       | 0.0        | 0.0   | 0.0 | 1064.7 |  |
| 2002       | 576.2     | 326.9                                   | 89.4                       | 24.5      | 61.2       | 0.0        | 0.0   | 0.0 | 1078.2 |  |
| 2003       | 584.8     | 330.7                                   | 90.6                       | 24.6      | 61.8       | 0.0        | 0.0   | 0.0 | 1092.6 |  |
| 2004       | 591.5     | 335.8                                   | 92.5                       | 24.8      | 62.4       | 0.0        | 0.0   | 0.0 | 1107.0 |  |
| 2005       | 600.2     | 340.7                                   | 92.6                       | 25.0      | 63.2       | 0.0        | 0.0   | 0.0 | 1121.7 |  |
| 2006       | 608.5     | 344.6                                   | 94.3                       | 25.2      | 64. I      | 0.0        | 0.0   | 0.0 | 1136.6 |  |
| 2007       | 616.4     | 349.3                                   | 95.6                       | 25.3      | 65.I       | 0.0        | 0.0   | 0.0 | 1151.8 |  |
| 2008       | 624.8     | 354.0                                   | 96.9                       | 25.5      | 65.9       | 0.0        | 0.0   | 0.0 | 67.    |  |
| 2009       | 633.I     | 358.9                                   | 98.3                       | 25.6      | 66.8       | 0.0        | 0.0   | 0.0 | 1182.7 |  |
| 2010       | 641.8     | 363.7                                   | 99.5                       | 25.8      | 67.7       | 0.0        | 0.0   | 0.0 | 1198.5 |  |
| 2011       | 650.6     | 368.5                                   | 100.9                      | 25.9      | 68.6       | 0.0        | 0.0   | 0.0 | 1214.6 |  |
| 2012       | 659.5     | 373.5                                   | 102.3                      | 26.0      | 69.6       | 0.0        | 0.0   | 0.0 | 1230.9 |  |
| 2013       | 668.5     | 378.6                                   | 103.7                      | 26.1      | 70.5       | 0.0        | 0.0   | 0.0 | 1247.4 |  |
| 2014       | 677.6     | 383.7                                   | 105.1                      | 26.2      | 71.5       | 0.0        | 0.0   | 0.0 | 1264.1 |  |
| 2015       | 686.9     | 388.9                                   | 106.5                      | 26.4      | 72.4       | 0.0        | 0.0   | 0.0 | 1281.1 |  |
| 2016       | 696.3     | 394.2                                   | 108.0                      | 26.4      | 73.4       | 0.0        | 0.0   | 0.0 | 1298.3 |  |
| 2017       | 705.8     | 399.5                                   | 109.5                      | 26.5      | 74.4       | 0.0        | 0.0   | 0.0 | 1315.8 |  |
| 2018       | 715.5     | 404.9                                   | 111.0                      | 26.6      | 75.5       | 0.0        | 0.0   | 0.0 | 1333.5 |  |
| 2019       | 725.3     | 410.4                                   | 112.5                      | 26.7      | 76.5       | 0.0        | 0.0   | 0.0 | 1351.4 |  |
| 2020       | 735.2     | 416.0                                   | 114.0                      | 26.8      | 77.5       | 0.0        | 0.0   | 0.0 | 1369.6 |  |
| Notes:     | Estimates | include p                               | ower gene<br>I rail relate | ration em | issions fo | r electric | rail. |     |        |  |

page 72

Sources: BTRE estimates, Apelbaum Consulting Group (2001), ABARE (1999).

# chapter

#### IMPACT OF TRANSPORT SECTOR GREENHOUSE ABATEMENT MEASURES ON TRANSPORT EMISSIONS

As a part of the analysis of transport sector greenhouse emissions, the AGO commissioned the BTRE to review the impact on greenhouse emissions of four existing transport sector greenhouse gas abatement initiatives:

- Compressed Natural Gas Infrastructure Program (CNGIP)
- Alternative Fuels Conversion Program (AFCP)
- Environmental Strategy for the Motor Vehicle Industry (ESMVI)
- Diesel and Alternative Fuels Grants Scheme (DAFGS).

This chapter outlines the possible impacts of the CNGIP, AFCP, ESMVI and DAFGS on road vehicle emissions. Because of the complementary nature of the CNGIP and AFCP, the BTRE has estimated only the combined impact of the two programs.

#### **SUMMARY OF FINDINGS**

The BTRE's estimates of the impact of the measures on greenhouse gas emissions in 2010 are outlined in table 4.1. The main findings are summarised below.

The BTRE estimates that the CNGIP and AFCP would reduce carbon dioxide equivalent (CO<sub>2</sub>-e) end-use emissions by 0.04 million tonnes per annum, or 0.05 million tonnes on a full fuel cycle (FFC) basis, in 2004 (given current funding commitments). These savings are based on BTRE assumptions about the average cost of conversion and the number of vehicles converting to LPG and CNG under CNGIP and AFCP, and conclusions drawn by Beer et al. (2001) that CNG vehicles produce 17 per cent less CO<sub>2</sub>-e emissions per kilometre than an equivalent diesel vehicle. The BTRE has included estimates of emissions savings for two earlier alternative scenarios for natural gas (NG) vehicle penetration rates (NELA 1999 and ANGVC 2001), which give estimated CO<sub>2</sub>-e

abatement of 0.05 million tonnes and 0.19 million tonnes respectively in 2010.

- The ESMVI encompasses a range of measures aimed at reducing emissions from passenger motor vehicles. Assuming the proposed NAFC targets under the ESMVI succeed in reducing new passenger car fuel consumption by 15 per cent over base case levels by 2010, the BTRE estimates that this measure would reduce CO<sub>2</sub>-e emissions by close to 2 million tonnes in 2010 (about 2.4 million tonnes FFC).
- Introduction of the DAFGS, in July 2001, reduced the cost of diesel and alternative fuels to heavy vehicle transport operators. The BTRE estimates that the reduction in the cost of diesel fuel to heavy vehicle transport will increase emissions from freight vehicles in 2010 by 0.247 million tonnes (0.3 million tonnes FFC) above the level that would have been expected in the absence of the fuel rebate.

#### TABLE 4.1 SUMMARY OF IMPACTS ON EMISSIONS OF CURRENT TRANSPORT SECTOR ABATEMENT MEASURES

|                                                                                                                 | (Gigagrams)                                                                                             |                 |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------|
|                                                                                                                 |                                                                                                         | CO2-e abated    |
| Policy instrument                                                                                               | Measure                                                                                                 | in 2010         |
| <ol> <li>CNG infrastructure program<br/>(CNGIP) and alternative fuels<br/>conversion program (AFCP).</li> </ol> | CNG infrastructure network<br>development and rebate payable<br>to eligible, alternative fuel vehicles. | 40 <sup>a</sup> |
| <ol> <li>Environmental strategy for<br/>the motor vehicle industry<br/>(ESMVI)<sup>b</sup>.</li> </ol>          | NAFC targets under the ESMVI.                                                                           | 1990            |
| <ol> <li>Diesel and alternative fuels<br/>grants scheme (DAFGS).</li> </ol>                                     | Grant payable to eligible<br>vehicles per litre of fuel used.                                           | -247            |
| a. CO <sub>2</sub> -e abated in 2004. Assu                                                                      | imed to remain constant for following year                                                              | ars.            |
| b. National average fuel consu<br>under negotiation.                                                            | mption (NAFC) targets under the ESMVI                                                                   | are currently   |

ALTERNATIVE FUELS PROGRAM

Source: BTRE estimates.

The Compressed Natural Gas Infrastructure Program (CNGIP) aims to establish a network of publicly accessible compressed natural gas (CNG) refuelling stations. The \$7.6 million program currently supports 19 sites in NSW (5 sites), Victoria (8), Queensland (2), SA (3) and the ACT (1).

The Alternative Fuels Conversion Program (AFCP) has two objectives: to reduce greenhouse emissions and significantly improve urban air quality. It intends to achieve this by facilitating heavier commercial road vehicles and

public transport buses to operate on either CNG or LPG (liquefied petroleum gas) fuels (AGO 2000)<sup>6</sup>. The AFCP currently offers a rebate for conversion of conventional fuelled vehicles to alternative fuels (AF), such as CNG or LPG. Eligible recipients must demonstrate their emissions savings through a chassis dynamometer test and, if eligible, can claim a 50 per cent rebate on the cost of vehicle conversion or, in the case of original equipment manufacturer (OEM) vehicles, half the difference in price between a new alternative fuel vehicle and a diesel-fuelled vehicle. The rebate is only applicable to vehicles over 3.5 tonnes gross vehicle mass (GVM), which excludes passenger cars and LCVs. The total budget for the AFCP is capped at \$15 million in 2000–2001 and \$20 million in each of the three subsequent years—a total program cost of \$75 million.

#### Vehicle conversions

The BTRE has estimated the potential reduction in greenhouse gas emissions for three separate cases, based on different assumptions about the number and type of vehicles converting to alternative fuels as a result of the CNGIP and AFCP.

- Case I This case has been based on assumptions by Nelson English, Loxton and Andrews Pty Ltd (NELA 1999) about the number of vehicles converting to CNG. NELA assumed that the AFCP would result in between 2000 and 2500 rigid trucks (of 3.5–15 tonnes GVM) converting to CNG in each year of the program<sup>7</sup>.
- Case 2 This case has been based on an estimate of total CNG vehicle conversions attributable to the AFCP and CNGIP by the Australasian Natural Gas Vehicles Council's (ANGVC). The estimated reductions in ANGVC's projections do not take into account the budget constraint of the AFCP program.
- Case 3 The third case has allowed for a 'budget-constrained' scenario that takes into account the average vehicle conversion cost and the number and mix of vehicles that have applied for funding in the first year of the AFCP program.

Given the level of funding proposed for the measure, Case 3 forms the BTRE's preferred estimates of the impact of the current AFCP and CNGIP programs. Cases I and 2 are based on previously published estimates of the number of vehicles expected to be converted under the AFCP and CNGIP programs (NELA 1999 and ANGVC 2001), and have been provided here for comparison with Case 3. (They may also help to give some indication of the emission benefits possible if the future CNG take-up rate is high enough to warrant extension of the measure's proposed budget.)

<sup>6</sup> The latter objective is frequently forgotten and Beer et al. (2001) indicates that there are substantial improvements in air quality to be gained from the use of LPG and CNG.

<sup>7</sup> NELA (1999) assumed an average conversion cost for rigid trucks between 3.5 and 15 tonnes GVM of \$15 000.

BTRE Report 107

Emission characteristics of CNG, LPG and diesel fuelled heavy vehicle engines

The effectiveness of the AFCP depends on the average emission savings from CNG and LPG vehicles relative to diesel vehicles. The CSIRO, on behalf of the AGO, has recently conducted a major review (Beer et al. 2001) of the emissions produced by diesel-fuelled heavy vehicles and a range of alternative-fuelled heavy vehicles, including CNG, LNG (liquefied natural gas) and LPG. Before presenting the BTRE estimates of emission savings for each of the three sets of vehicle conversion assumptions, the following section presents a brief overview of CNG and LPG heavy vehicle engine technology.

The potential reduction in greenhouse gas emissions from substitution of CNG and LPG vehicles for diesel-fuelled vehicles depends on the type of fuel, the size of the vehicle and the method of combustion. The empirical evidence on the emissions performance of heavy vehicle CNG engines exhibits a wide range of variation, from 27 per cent less CO<sub>2</sub>-e emissions per vehicle kilometre<sup>8</sup> (AGO, pers. comm., 15 October 2001) to 18 per cent higher CO<sub>2</sub>-e emissions<sup>9</sup> (Beer et al. 2001, p. 250 and AGO, pers. comm., 15 October 2001). Broadly, CNG-fuelled vehicles are currently less efficient at extracting the energy content of the fuel than comparable diesel fuelled vehicles. The CNG engines produce, on average, higher methane emissions but considerably lower particulate and CO emissions. Because CNG has less carbon per unit of energy than diesel, direct CO<sub>2</sub> emissions are generally lower per vehicle kilometre.

CNG fuel storage systems generally require high-pressure cylinders that are heavier and take up more space than diesel fuel tanks (per unit of energy stored). Typically, fuel tanks on CNG vehicles must be three to four times larger than those on conventional vehicles to achieve the same range. The extra weight imposes an additional fuel efficiency penalty on CNG vehicles and the space requirements limit the range of such vehicles between re-fuels. Currently, CNG re-fuelling stations are not widespread, although the CNGIP is increasing the number and distribution of refuelling sites. Consequently, the vehicles most likely to convert to CNG under the AFCP are fleets of specialised heavy vehicles operating close to the existing refuelling sites (e.g. urban bus fleets and urban waste management fleets).

LPG is currently widely available and the AGO believes that there is significant potential for increased penetration of LPG use in smaller commercial vehicles (just over 3.5 tonnes). The driving performance requirements of many heavy vehicles, however, may limit the take-up of LPG among trucks above 9 tonnes GVM (Whiting 2001b).

<sup>8</sup> Based on tests of a NSW State Transit 300 Mercedes-Benz 0405NH CNG powered bus.

<sup>9</sup> Based on tests of a Cummins C8.3G+ CNG engine with catalyst.

#### **Review of early research results**

There are a number of alternative engine technologies for utilising CNG and LPG in heavy vehicles. Each technology option has different energy efficiencies and, hence, emission rates. The IEA (1993) and Gaines et al. (1998) have identified five different NG-based heavy vehicle engine combustion technology options:

- diesel fuel produced from natural gas via the Fischer-Tropsch (F-T) process used in a conventional diesel engine
- stoichiometric combustion in a spark ignition engine (stoichiometric combustion occurs when the chemically exact amount of fuel is added to the air so that when combustion is completed the chemical formula for the fuel is completed)— stoichiometric combustion offers exceptionally clean combustion and exhaust gases (ANGVC 2001)
- lean-burn in spark ignition engine (lean burn strategies employ an air/gas mixture that has more air than the stoichiometric ratio)
- diesel fuel pilot injection in a compression ignition engine (the diesel pilot fuel injection engine delivers a small injection of diesel into the cylinder and when compression starts the NG is injected at high pressure— the diesel pilot then provides the spark to ignite the CNG)<sup>10</sup>
- direct injection in a high compression ignition engine with a glow plug.

F-T diesel fuel contains essentially no sulphur and no aromatic compounds. Improved processes for producing F-T diesel could yet produce lower full fuel cycle greenhouse gas emissions compared to LNG (Gaines et al., 1998). However, Beer et al. (2001) concluded that F-T diesel produces higher full fuel cycle emissions per vehicle kilometre than low sulphur diesel (LSD), LPG, CNG and LNG.

Stoichiometric and lean-burn combustion strategies are currently less energy efficient than conventional diesel engines. Stoichiometric combustion is only 80 per cent as efficient, while lean-burn spark-ignition combustion is up to 88 per cent as efficient as compression ignition diesel engines (Gaines et al. 1998 and Duggal 2001). The IEA (1992) reported that CNG spark-ignition engines might be up 22 per cent less fuel-efficient than conventional diesel engines.

While there have been a number of studies into compression ignition CNG combustion technology, the majority of them are relatively old and may not reflect the significant improvements in technology that have occurred over the last 5-10 years. The IEA (1993) estimated that compression ignition CNG engines offered combustion efficiencies equivalent to conventional diesel fuelled engines, but methane emissions were much higher. Older studies of the emission performance of heavy vehicles converted to CNG also reported

<sup>10</sup> Cummins Westport <www.westport.com/> offer such a system that has the same power and torque ratios of conventional diesel engines.

extremely high hydrocarbon (HC) emissions. For example, Gaines et al. (1993) report HC emissions 30–50 times higher than those of conventional diesel vehicles. Norton and Kelly (1996), in a study of spark-ignition CNG fuelled refuse trucks in New York city, reported HC emissions 5–10 times higher than equivalent diesel-fuelled vehicles.

LPG-fuelled heavy vehicles may also employ stoichiometric or lean-burn combustion in a spark-ignition engine. LPG may also be used with a diesel pilot in compression ignition engines. Beer et al. (2000) note that there have been very few studies of the emissions performance of LPG-fuelled heavy vehicles.

#### Recent heavy vehicles emissions test evidence

The CSIRO (Beer et al. 2001) undertook a comprehensive review of the emission performance of alternative fuel heavy vehicles for the AGO which captures the improvements in the technology that has occurred over the last 5-10 years. The BTRE has summarised the main findings below. The discussion focuses on CO<sub>2</sub>-e emissions from combustion (i.e. fuel end-use).

The BTRE has also referred to results from an earlier CSIRO study (Beer et al. 2000) which was prepared at the request of the AGO over a short timeframe and with little consultation with stakeholders. The purpose of this study was to provide a brief overview of the relative emissions between a range of transport fuels, but did not include a comprehensive examination of all transport fuels. By contrast, Beer et al. (2001) was prepared over six months and involved a more detailed analysis of full fuel cycle emissions with participation from some 90 stakeholders, including industry and government agencies.

Beer et al. (2001)

Beer et al. (2001) cited emissions test results from a range of heavy vehicle CNG tests:

- A Scania 113M was tested engine at the Millbrook Proving Ground (UK) in January 2001 (Andrew 2001). The study compared diesel, CNG and LNG emission performance. Direct CO<sub>2</sub> emissions, per unit of energy output, were 11 per cent lower for CNG vehicles compared to equivalent diesel vehicles.
- A Renault 620–45 CNG engine with catalyst was tested. The quoted test results do not include estimates of direct CO<sub>2</sub> emissions.
- A Cummins C8.3G CNG vehicle was compared with a Cummins ISC280 diesel vehicle. The test results reported emissions per unit of energy output. Direct CO2 emissions were marginally lower for the CNG-fuelled vehicle compared to its diesel counterpart. However, on a CO<sub>2</sub>-e emissions basis, CNG vehicle emissions were estimated to be 17 per cent and 7 per cent higher, with and without a catalyst respectively, than for equivalent diesel-powered vehicles.
- In South Australia emission tests were carried out on a MAN NL 202 bus with a D0826 LUH, 6.87 litre engine and a D2866 DUH, 11.97 natural gas engine. The test results did not report CO<sub>2</sub> emissions, but reported quite low hydrocarbon (HC) emissions.
- In New South Wales, EPA tests of a Scania 11 litre Turbo Euro2 technology CNG bus, with and without a catalyst, were conducted (Brown et al. 1999). The findings did not include CO<sub>2</sub> emissions. Methane emissions were between 2 and 3 grams per kilowatt-hour (g/kWh).

On the basis of these results, Beer et al. (2001) concluded that total  $CO_2$ -e combustion emissions would be 17 per cent less for a CNG fuelled heavy vehicle compared to the same LSD-fuelled vehicle. However, Beer et al. (2001) noted that the tailpipe emission results were subject to uncertainty, and they quote the uncertainty ranges given by the preliminary work included in Beer et al. (2000). These are presented in table 4.2.

The estimated savings in  $CO_2$ -e emissions arising from switching from diesel to CNG presented in Beer et al. (2001) are significantly different from BTRE analysis based on vehicle test data reported in the first CSIRO study (Beer et al. 2000)—17 per cent compared with 2 per cent. Beer et al. (2001) suggest that recent advances in CNG vehicle technology may account for emission improvements. They cite recent engine dynamometer test results for a Daimler–Chrysler M447G CNG engine. This engine produced 7 per cent less  $CO_2$  per unit of energy output than the Scania engine test results (Andrew 2001) and significantly less methane than early CNG engines tested by Motta et al. (1996). Emissions tests undertaken by Daimler–Chrysler (2000), however, reported direct  $CO_2$  emissions 15 per cent higher for a CNG powered bus with a M447 hLAG engine—which appears a similar vehicle to that tested by Andrew (2001)—compared with a Euro III compliant diesel powered bus (OM906 hLA engine).

| IABL            | E 4.2 ESTIMATED ONE S<br>UNCERTAINTIES IN<br>EMISSIONS | I HEAVY VEHICI | E CNG      |
|-----------------|--------------------------------------------------------|----------------|------------|
|                 | (þe                                                    | r cent)        |            |
|                 |                                                        | grams þer      | grams þer  |
|                 |                                                        | tonne-         | þassenger— |
| Gas             | grams per MJ                                           | kilometre      | kilometre  |
| со <sub>2</sub> | 10                                                     | 2              | 12         |
| NMHC            | 135                                                    | 135            | 135        |
| NO <sub>x</sub> | 50                                                     | 29             | 72         |
| со              | 15                                                     | 11             | 22         |
| PM10            | 60                                                     | 17             | 108        |
| Source:         | Beer et al. (2001, table 8.20, p. 267).                |                |            |

## FOTIMATED ONE CTANDADD DEVUA

page 80

Other factors that may contribute to differences between the findings of more recent test results and those from earlier studies are differences in test cycle and the type of test. Some of the recent evidence, for example, is based on engine dynamometer tests whereas much of the earlier evidence, cited in Beer et al. (2000), was based on chassis dynamometer tests. Much of the earlier test evidence from the United States appears to be based on different test cycles to that of more recent European tests. Beer et al. (2001, p. 251) note that certification procedures based on engine dynamometers may report values that differ substantially from those calculated by chassis dynamometers.

#### Summary

In summary, the evidence on the net reduction in CO2-e emissions attributable to CNG heavy vehicles and LPG heavy vehicles over diesel vehicles appears mixed—technology is continually changing and test conditions can vary. Much of the older evidence, such as that quoted by the ERG (1998), Motta et al. (1996) and DOE (2001) was based on chassis dynamometer tests of similar vehicles and reported only modest reductions in CO2-e emissions from CNG over diesel vehicles when averaged across all vehicles tested. Comparison of emissions test results reported by Motta et al. (1996) and the DOE (2001) for similar-sized engines, however, shows that American CNG heavy vehicles actually produced higher CO2-e emissions than their diesel counterparts, largely attributable to higher methane emissions. By contrast, more recent emissions test data performed on later generation European CNG engines, also based on chassis dynamometer tests, report significantly lower  $CO_2$ -e emissions than for equivalent diesel vehicles. Of course, the emissions performance under on-road driving conditions may differ significantly from test cycle results—depending on traffic conditions, driver behaviour and other factors.

The level of CH<sub>4</sub> emissions from CNG heavy vehicles appears to be critical to the greenhouse benefit of CNG over diesel. The recent European vehicle test results report quite low total hydrocarbon (THC) emissions, including methane from CNG heavy vehicles. The American heavy vehicle test results, in contrast, report quite high methane emissions. The higher methane emissions from American CNG-fuelled urban buses more than offset the slightly lower direct CO<sub>2</sub> emissions to produce higher total CO<sub>2</sub>-e emissions in those vehicles.

The CNGIP/AFCP testing procedure employs a chassis dynamometer test to determine eligibility for the grant. Although there is significant uncertainty about the average level of emissions savings, because each vehicle has to demonstrate emissions savings, the AGO is confident the program reduces greenhouse gas emissions.

#### **Total emission reduction estimates**

For the NELA (Case 1) and ANGVC (Case 2) based estimates of the impact on greenhouse emissions of the AFCP, the BTRE assumed CNG-fuelled vehicles are 12 per cent less efficient than the equivalent diesel vehicle and assumed no difference in CH<sub>4</sub> emissions. These assumptions are equivalent to assuming CNG vehicles produce 14 per cent lower CO<sub>2</sub>-e emissions per kilometre than the equivalent diesel vehicle. For the 'budget-constrained' case (Case 3), the BTRE based the analysis on the estimated reduction in CO<sub>2</sub>-e attributable to CNG vehicles by Beer et al. (2001). The text also provides a comparison using the earlier research reviewed in Beer et al. (2000).

| EMISSIONS ABATEMENT FOR CNGIP/AFCP                                       |              |                  |                 |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------|--------------|------------------|-----------------|--|--|--|--|--|--|--|
|                                                                          |              |                  | Case 3          |  |  |  |  |  |  |  |
|                                                                          | Case I       | Case 2           | (Budget-        |  |  |  |  |  |  |  |
|                                                                          | (NELA)       | (ANGVC)          | constrained)    |  |  |  |  |  |  |  |
| Number of vehicles converted per annum                                   | 2000         | 2900             | 1280            |  |  |  |  |  |  |  |
| Total number of vehicles converted                                       |              |                  |                 |  |  |  |  |  |  |  |
| over full program                                                        | 8000         | 29000            | 5121            |  |  |  |  |  |  |  |
| Assumed emissions savings per vehicle kilometre (%)                      | 14           | 14               | 10-17           |  |  |  |  |  |  |  |
| Total abatement in 2010 (Gg)                                             | 53           | 189              | 40 <sup>a</sup> |  |  |  |  |  |  |  |
| Total abatement in 2020 (Gg)                                             | 98           | 323              | 40 <sup>a</sup> |  |  |  |  |  |  |  |
| a. Annual emissions savings in 2004, the final ye<br>CNGIP/AFCP program. | ear of fundi | ing under the cu | rrent           |  |  |  |  |  |  |  |

## TABLE 4.3 SUMMARY OF ESTIMATED CO<sub>2</sub> EQUIVALENT

Case I: NELA (1999) assumed heavy vehicle CNG/LPG conversions

NELA (1999) assumed that the AFCP and the CNGIP, together, would result in 2000 to 2500 CNG rigid truck conversions per annum. The BTRE computed the reduction in emissions over the period 2001 to 2020, assuming that 2000 rigid trucks would be converted from diesel to CNG each year to 2020. The total number of vehicles converted and the total stock of converted CNG vehicles remaining in the fleet at the end of each year to 2020 are listed in table 4.4. In computing the number of CNG vehicles remaining in the vehicle fleet, the BTRE assumed that most of the CNG vehicle conversions were to new, or near new, vehicles and that these vehicles were scrapped at the same rate as other rigid trucks of the same vintage.

Table 4.4 also lists the total number of rigid trucks in the fleet under the base case assumptions and the share of CNG rigid trucks as a proportion of total fuel use by all rigid trucks. The share of CNG fuel used is required in order to estimate the emissions reduction within the TRUCKMOD fleet model. TRUCKMOD calculates emissions by apportioning the share of energy use by fuel type. The share of fuel use attributable to CNG-fuelled rigid trucks entered into TRUCKMOD is the equivalent amount of energy that would be required to power a diesel vehicle.

Total CNG energy use, and emissions, were estimated by adjusting the TRUCKMOD results to account for the difference in relative fuel efficiency between CNG and diesel vehicles. As stated above, the BTRE assumed that CNG vehicles were 88 per cent as efficient as their diesel counterparts. Overall, these assumptions imply CNG vehicles produce approximately 14 per cent less direct CO<sub>2</sub> emissions per vehicle kilometre.

The energy density of natural gas sourced from Australian fields ranges from 37.4 MJ/m<sup>3</sup> to 40.8 MJ/m<sup>3</sup> (NGGIC 1998). In calculating emissions from CNG use in road vehicles, the BTRE used the 1998 NGGI estimate of the average energy density for CNG, 39.5 MJ/m<sup>3</sup> (NGGIC 1998). The energy density of diesel is 38.6 MJ/L (BTCE 1995a).

Under these assumptions, the BTRE estimates that CNG use by rigid trucks will increase to just under 9 per cent of total rigid truck fuel energy use by 2020. Under the base case, CNG-fuelled vehicles were assumed to be a negligible share of the total rigid truck energy use.

The BTRE assumed the average load and average VKT of the converted vehicles were equal to fleet-wide average load and average VKT of rigid trucks.

For Case I, the AFCP measures are estimated to reduce annual  $CO_2$  equivalent emissions by approximately 27 000 tonnes, about 0.1 per cent of total commercial vehicle emissions in 2005, the year after cessation of the current AFCP. If extended to 2020, the expected annual reduction in  $CO_2$ -e emissions is approximately 98 000 tonnes, approximately 0.3 per cent of projected commercial vehicle emissions (excluding buses).

## TABLE 4.4 CASE I (NELA 1999): ESTIMATED REDUCTION IN CO2 EQUIVALENT EMISSIONS ATTRIBUTABLE TO CNGIP/AFCP CNGIP/AFCP

|      | Annual      | Total          | Total  | Share of     | R      | igid truck er | nissions  |
|------|-------------|----------------|--------|--------------|--------|---------------|-----------|
|      | number      | number         | number | energy use   |        | With          |           |
|      | vehicle     | converted      | rigid  | by converted | Base   | CNGIP         |           |
|      | conversions | vehicles       | trucks | vehicles     | case   | /AFCP         | Reduction |
| Year | (nı         | umber of vehic | :les)  | (%)          |        | Gigagram      | s         |
| 2001 | 2000        | 2000           | 372866 | 0.54         | 4800.8 | 4795.3        | 5.5       |
| 2002 | 2000        | 3991           | 375899 | 1.06         | 4836.9 | 4825.9        | 11.0      |
| 2003 | 2000        | 5970           | 380546 | 1.57         | 4896.5 | 4880.0        | 16.5      |
| 2004 | 2000        | 7938           | 385207 | 2.06         | 4955.9 | 4934.0        | 21.9      |
| 2005 | 2000        | 9893           | 386123 | 2.56         | 4968.7 | 4941.4        | 27.3      |
| 2006 | 2000        | 11833          | 389823 | 3.04         | 4998.3 | 4965.7        | 32.6      |
| 2007 | 2000        | 13756          | 392395 | 3.51         | 5032.7 | 4994.8        | 37.9      |
| 2008 | 2000        | 15659          | 394967 | 3.96         | 5067.0 | 5023.9        | 43.1      |
| 2009 | 2000        | 17541          | 397221 | 4.42         | 5098.7 | 5050.4        | 48.3      |
| 2010 | 2000        | 19398          | 399336 | 4.86         | 5125.9 | 5072.5        | 53.4      |
| 2011 | 2000        | 21226          | 402041 | 5.28         | 5145.4 | 5087.I        | 58.3      |
| 2012 | 2000        | 23024          | 404171 | 5.70         | 5171.7 | 5108.5        | 63.2      |
| 2013 | 2000        | 24786          | 406018 | 6.10         | 5195.0 | 5127.0        | 68.0      |
| 2014 | 2000        | 26508          | 407651 | 6.50         | 5214.2 | 5141.5        | 72.7      |
| 2015 | 2000        | 28182          | 408950 | 6.89         | 5220.0 | 5142.9        | 77.1      |
| 2016 | 2000        | 29804          | 409749 | 7.27         | 5229.4 | 5147.9        | 81.5      |
| 2017 | 2000        | 31367          | 409953 | 7.65         | 5230.3 | 5144.6        | 85.7      |
| 2018 | 2000        | 32868          | 409468 | 8.03         | 5242.7 | 5152.6        | 90.1      |
| 2019 | 2000        | 34302          | 408203 | 8.40         | 5223.9 | 5129.9        | 94.0      |
| 2020 | 2000        | 35666          | 406306 | 8.78         | 5195.8 | 5098. I       | 97.7      |
| C    |             |                |        |              |        |               |           |

Source: BTRE estimates.

#### Case 2: ANGVC estimates of heavy vehicle CNG/LPG conversions

The Australasian Natural Gas Vehicles Council (ANGVC) projected that the number of CNG-fuelled vehicles would grow to 22 330 vehicles by 2005, attributable largely to the impact of the CNGIP and AFCP (AGO, pers. comm., 4 July 2001). Of those 22 000 vehicles, the ANGVC projects 3825 would be LCVs (25 per cent of total CNG passenger cars and LCVs), 2750 rigid trucks, 1450 articulated trucks and 2720 urban buses. Given that the programs began in January 2001, these estimates imply a total of 957 LCV, 687 rigid truck, 362 articulated truck and 680 urban bus CNG conversions per annum.

In estimating the impact on emissions, the BTRE assumed that the AFCP would continue beyond December 2004 and that the annual number of new and converted CNG vehicles entering the fleet would grow by 2 per cent per annum. The assumed growth in the annual number of CNG vehicles entering

the fleet simulates increased rates of adoption as the presence of CNG vehicles becomes more common. For simplicity, the impact of vehicle scrappage and the age profile of vehicle use were ignored for this case. Inclusion of these factors would have minimal effect on the emissions estimates in the early years of the program, but are likely to be significant by 2020. All conversions were assumed to be from diesel-fuelled vehicles. The assumed number of commercial vehicle CNG conversions under these assumptions and the implied fuel share of the vehicle fleet used in TRUCKMOD to estimate emissions from commercial vehicles are listed in table 4.5. Under the base case the share of CNG-fuelled LCVs was assumed to increase to 2.5 per cent of total LCV energy use by 2020; but for rigid and articulated trucks CNG use was assumed to be only a negligible share of total energy use. The assumed number of vehicles converted to CNG, as a result of the CNG measures, were added to the base case assumptions. For buses, the BTRE assumed that all CNG bus conversions were for buses used in urban areas. Each CNG bus was assumed to travel 60 000 kilometres per annum and to have an average fuel consumption rate of 0.52 litres per kilometre.

Table 4.6 lists the estimated impact of the CNG measures on CO2 equivalent emissions from commercial vehicles. The BTRE assumed that CNG vehicles, including buses, were 88 per cent as efficient as their diesel counterparts.

For Case 2, the AFCP measures are estimated to reduce total annual  $CO_2$  equivalent emissions from commercial (freight) vehicles by 63 000 tonnes and from buses by 43 000 tonnes in 2005, the first year after the cessation of the current AFCP.

# TABLE 4.5 CASE 2 (ANGVC): ADDITIONAL NUMBER OF CNGVEHICLES AND IMPLIED SHARE OF ENERGY USEBY COMMERCIAL VEHICLES UNDER THE CNGIP/AFCP

|               | Numb                              | er of Veł | nicle Conve | rsions | Share o | f energy u | se by CNG | Vehicles |  |  |
|---------------|-----------------------------------|-----------|-------------|--------|---------|------------|-----------|----------|--|--|
| Year          | LCV                               | Rigid     | Artic       | Buses  | LCV     | Rigid      | Artic     | Buses    |  |  |
|               | (nu                               | mber of   | vehicles)   |        |         | (%)        |           |          |  |  |
| 2001          | 934                               | 671       | 384         | 680    | 0.05    | 0.18       | 0.59      | nc       |  |  |
| 2002          | 953                               | 684       | 392         | 694    | 0.10    | 0.36       | 1.16      | nc       |  |  |
| 2003          | 972                               | 698       | 400         | 708    | 0.15    | 0.54       | 1.67      | nc       |  |  |
| 2004          | 991                               | 712       | 408         | 722    | 0.19    | 0.71       | 2.12      | nc       |  |  |
| 2005          | 1011                              | 726       | 416         | 736    | 0.23    | 0.90       | 2.51      | nc       |  |  |
| 2006          | 1031                              | 741       | 424         | 751    | 0.27    | 1.07       | 2.81      | nc       |  |  |
| 2007          | 1052                              | 756       | 432         | 766    | 0.31    | 1.25       | 3.05      | nc       |  |  |
| 2008          | 1073                              | 771       | 441         | 781    | 0.35    | 1.43       | 3.21      | nc       |  |  |
| 2009          | 1094                              | 786       | 450         | 797    | 0.38    | 1.61       | 3.31      | nc       |  |  |
| 2010          | 1116                              | 802       | 459         | 813    | 0.41    | 1.79       | 3.35      | nc       |  |  |
| 2011          | 1138                              | 818       | 468         | 829    | 0.44    | 1.97       | 3.34      | nc       |  |  |
| 2012          | 1161                              | 834       | 477         | 846    | 0.47    | 2.14       | 3.29      | nc       |  |  |
| 2013          | 1184                              | 851       | 487         | 863    | 0.49    | 2.32       | 3.22      | nc       |  |  |
| 2014          | 1208                              | 868       | 497         | 880    | 0.52    | 2.50       | 3.13      | nc       |  |  |
| 2015          | 1232                              | 885       | 507         | 898    | 0.54    | 2.68       | 3.02      | nc       |  |  |
| 2016          | 1257                              | 903       | 517         | 916    | 0.56    | 2.87       | 2.91      | nc       |  |  |
| 2017          | 1282                              | 921       | 527         | 934    | 0.58    | 3.06       | 2.80      | nc       |  |  |
| 2018          | 1308                              | 939       | 538         | 953    | 0.60    | 3.25       | 2.69      | nc       |  |  |
| 2019          | 1334                              | 958       | 549         | 972    | 0.62    | 3.46       | 2.59      | nc       |  |  |
| 2020          | 1361                              | 977       | 560         | 991    | 0.64    | 3.67       | 2.49      | nc       |  |  |
| nc<br>Source: | not calculated.<br>BTRE estimates |           |             |        |         |            |           |          |  |  |

page 86

## TABLE 4.6 CASE 2 (ANGVC): ESTIMATED REDUCTION IN CO2 EQUIVALENT EMISSIONS ATTRIBUTABLE TO CNGIP/AFCP CNGIP/AFCP

(Gigagrams)

|         |              |                    |           |             | All       |
|---------|--------------|--------------------|-----------|-------------|-----------|
|         |              | Commercial vehicle | es        | Urban buses | vehicles  |
|         | Base         | With               | Emissions | Emissions   | Emissions |
|         | case         | CNGIP/AFCP         | reduction | reduction   | reduction |
| 2001    | 21329.4      | 21312.1            | 17.3      | 8.2         | 25.5      |
| 2002    | 21798.3      | 21768.9            | 29.4      | 16.6        | 46.0      |
| 2003    | 22386.0      | 22344.9            | 41.1      | 25.2        | 66.3      |
| 2004    | 22991.7      | 22939.4            | 52.3      | 33.9        | 86.2      |
| 2005    | 23398.6      | 23335.9            | 62.7      | 42.8        | 105.5     |
| 2006    | 23901.5      | 23829.5            | 72.0      | 51.9        | 123.9     |
| 2007    | 24445.3      | 24365.0            | 80.3      | 61.1        | 141.4     |
| 2008    | 25010.2      | 24922.6            | 87.6      | 70.6        | 158.2     |
| 2009    | 25583.2      | 25489.3            | 93.9      | 80.2        | 174.1     |
| 2010    | 26152.8      | 26053.6            | 99.2      | 90.0        | 189.2     |
| 2011    | 26767.6      | 26664.1            | 103.5     | 100.0       | 203.5     |
| 2012    | 27378.7      | 27271.6            | 107.1     | 110.3       | 217.4     |
| 2013    | 27990.5      | 27880.3            | 110.2     | 120.7       | 230.9     |
| 2014    | 28609.5      | 28496.8            | 112.7     | 131.3       | 244.0     |
| 2015    | 29216.1      | 29101.3            | 114.8     | 142.2       | 257.0     |
| 2016    | 29816.5      | 29699.8            | 116.7     | 153.3       | 270.0     |
| 2017    | 30395.8      | 30277.3            | 118.5     | 164.6       | 283.1     |
| 2018    | 30961.8      | 30841.6            | 120.2     | 176.1       | 296.3     |
| 2019    | 31459.0      | 31337.2            | 121.8     | 187.8       | 309.6     |
| 2020    | 31874.0      | 31750.9            | 123.1     | 199.8       | 322.9     |
| Source: | BTRE estimat | 20                 |           |             |           |

Source: BIRE estimates.

#### Case 3: 'Budget-constrained' case

Under the 'budget-constrained' scenario the number of vehicle conversions is restricted by the overall AFCP budget—\$75 million over four years. The assumed average cost of vehicle conversion for each vehicle type is listed in table 4.7 (in the case of urban buses, the additional cost of an OEM CNG engine over that of an equivalent diesel-powered engine).

Based on the average cost estimates and the number of vehicle conversions in the first year of the program (AGO, pers. comm., 11 July 2001), the BTRE estimates that a total of just over 4800 commercial vehicles and buses could be converted to alternative fuels under the AFCP. Table 4.8 lists the BTRE estimates of the total number of vehicle conversions, by type of vehicle and type of fuel, under the AFCP program to 2005.

## TABLE 4.7 CASE 3 (BUDGET-CONSTRAINED): ASSUMED AVERAGE COST OF VEHICLE CONVERSION

#### (\$ per vehicle)

|                    | Existing | Average                      | AFCP                |
|--------------------|----------|------------------------------|---------------------|
|                    | fuel     | conversion                   | eligible            |
|                    | system   | cost                         | grant               |
| LPG Conversions    |          |                              |                     |
| Articulated trucks | Diesel   | 45 000 <sup>b</sup>          | 22 500              |
| Rigid trucks       | Diesel   | 9 800 or 32 000 <sup>c</sup> | 10 000 <sup>e</sup> |
| Buses              | Diesel   | 35 000 <sup>d</sup>          | 17 500              |
| Other <sup>a</sup> | ns       | 40 500                       | 20 225 <sup>f</sup> |
| CNG Conversions    |          |                              |                     |
| Articulated trucks | Diesel   | 45 000 <sup>b</sup>          | 22 500              |
| Rigid trucks       | Diesel   | 24 000 <sup>e</sup>          | 12 000              |
| Buses              | Diesel   | 35 000 <sup>d</sup>          | 17 500              |

ns not specified.

a. According to the AGO (pers. comm., AFCP Program Officer, 17 October 2001) 'Other' vehicles are predominantly forklifts.

b. BTRE assumption, based on Whiting (2001a, p. 28).

c. Conversion cost of \$9 800 for dual-fuel vehicle and \$32 000 for a dedicated LPG rigid truck.

 NSW State Transit (pers. comm. G. Weston, Senior Adviser, Bus Fleet Management, 15 October 2001), Adelaide Metro (pers. comm., R. Mouveri, 15 October 2001).

e. AGO estimate.

f. BTRE estimates based on year I AFCP cost data supplied by the AGO.

Sources: NSW State Transit (pers. comm. G. Weston, Senior Advisor, Bus Fleet Management, 15 October 2001), Adelaide Metro (pers. comm. R. Mouveri, 15 October 2001), AGO (pers. comm. L. Arundell, AFCP Program Officer, 17 October 2001), Whiting (2001a and 2001b).

#### TABLE 4.8 CASE 3 (BUDGET-CONSTRAINED): ASSUMED NUMBER OF VEHICLES CONVERTED UNDER THE AFCP AND THE TOTAL PROGRAM COST

|          |                                 |                                  | Number                                   |                      |            |
|----------|---------------------------------|----------------------------------|------------------------------------------|----------------------|------------|
|          |                                 | Existing                         | of vehicle                               | Average AFCP         |            |
|          |                                 | fuel                             | conversions                              | grant payable        | Total cost |
|          |                                 | system                           | (no. of vehicles)                        | (\$ per vehicle)     | (\$m)      |
| LPG Cor  | nversions                       |                                  |                                          |                      |            |
| Arti     | culated trucks                  | Diesel                           | -                                        | 22 500               | -          |
| Rigio    | l trucks                        | Diesel                           | 524                                      | 10 000               | 15.24      |
| Buse     | s                               | Diesel                           | 4                                        | 17 500               | 0.07       |
| Oth      | er <sup>a</sup>                 | ns                               | 20                                       | 225                  | 16.18      |
| CNG Co   | onversions                      |                                  |                                          |                      |            |
| Arti     | culated trucks                  | Diesel                           | 24                                       | 22 500               | 0.54       |
| Rigio    | l trucks                        | Diesel                           | 136                                      | 12 000               | 1.63       |
| Buse     | s                               | Diesel                           | 2 362                                    | 17 500               | 41.34      |
| Total    |                                 |                                  | 4 850                                    |                      | 75.00      |
| ns<br>a. | not specified.<br>Forklifts.    |                                  |                                          |                      |            |
| Sources: | NSW State Tran<br>Management 15 | sit (pers. comm<br>October 2001) | n. G. Weston, Senio<br>Adelaide Metro (n | r Advisor, Bus Fleet | eri        |

Management, 15 October 2001), Adelaide Metro (pers. comm. R. Mouveri, 15 October 2001), AGO (pers. comm. L. Arundell, AFCP Program Officer,

17 October 2001), Whiting (2001a and 2001b), BTRE estimates.

page 89

#### LPG Conversions

Total LPG conversions are expected to save 4000 tonnes of  $CO_2$ -e emissions in 2004 with the majority of emission savings from rigid truck conversions.

#### Net reduction in emissions from rigid truck conversions to LPG

Recent conversions of diesel fuelled rigid and articulated trucks to LPG, eligible for funding under the AFCP, have been predominantly to dual-fuel (diesel pilot compression ignition) LPG engines. A small number of vehicles have sought funding for converting to LPG spark-ignition engines (AGO, pers. comm., 17 October 2001). The BTRE was unable to obtain estimates of the fuel efficiency and emissions characteristics of LPG use in diesel-pilot compression ignition engines. Consequently, the BTRE has estimated emissions savings based on assuming that all conversions are to spark-ignition engines. Because dual-fuel LPG engines still consume diesel, the effect of this assumption is that the estimated emissions savings will tend to overstate the actual reduction in emissions achievable from the LPG rigid truck conversions.

Beer et al. (2001) have noted that it is rare for LPG to be used in heavy vehicles and that there is a general lack of published data on LPG-fuelled heavy vehicle emissions. They report the findings of one study into the emissions performance of a LPG-fuelled stoichiometric combustion bus, the results of which are listed in table 4.9. The DAF<sup>11</sup> manufactured LPG-fuelled bus produced
significantly lower total hydrocarbon emissions (including methane), but fuel consumption was significantly higher than for an equivalent diesel bus, consistent with the lower efficiency of stoichiometric combustion. Based on the fuel consumption rates resulting from the trial, direct  $CO_2$  emissions are broadly similar for LPG and diesel fuelled buses. Default emission factors for LPG-fuelled spark-ignition, medium-sized trucks (BTCE 1995a) are reproduced in table 4.10.

### TABLE 4.9 EMISSIONS FROM LPG-FUELLED STOICHIOMETRIC COMBUSTION BUS

|                 |                  |      |                 |       |         | Direct          |
|-----------------|------------------|------|-----------------|-------|---------|-----------------|
|                 | СО               | тнс  | NO <sub>x</sub> | PM    | FC      | со <sub>2</sub> |
|                 |                  | (g/l | kWh)            |       | L/km    | (g/km)          |
| DAF GG170LPC    | G 0.25           | 0.01 | 0.4             | 0.015 | 0.5–0.9 | 763–1373        |
| Diesel comparis | on 4             | 1.1  | 7               | 0.15  | 0.3–0.5 | 807-1345        |
| THC to          | tal hydrocarbon  | s    |                 |       |         |                 |
| PM DO           | rticulato mattor |      |                 |       |         |                 |

FC fuel consumption

Sources: Beer et al. (2001, table 10.2), BTRE estimates.

| TABLE 4.10         | EMISSION FACTORS FOR LPG FUELLED<br>MEDIUM TRUCKS |
|--------------------|---------------------------------------------------|
| Gas                | Medium trucks (g/km)                              |
| CH <sub>4</sub>    | 0.13                                              |
| N <sub>2</sub> O   | 0.011                                             |
| со                 | 24.00                                             |
| NMVOC              | 2.46                                              |
| NO <sub>x</sub>    | 2.82                                              |
| Source: BTCE (1995 | a)                                                |

Based on the evidence available, Beer et al. (2001, table 10.11, p. 301) concluded that total  $CO_2$ -e combustion emissions from LPG-fuelled heavy vehicles would be approximately 10 per cent less than for an equivalent LSD powered vehicle. In computing the emissions savings attributable to LPG-fuelled rigid truck conversions, the BTRE has assumed that new LPG-fuelled rigid trucks would

II Dutch bus manufacturer

produce 10 per cent less CO2-e emissions per kilometre than equivalent diesel trucks.

The BTRE assumed an average diesel fuel consumption rate for small rigid trucks, less than 8 tonnes GVM, of 18.6 litres per 100 kilometres-based on SMVU (ABS 2000a) estimates. The SMVU contains estimates of on-road fleet average fuel efficiencies for rigid trucks by fuel type. LPG/CNG/dual-fuel light commercial vehicles (LCVs) and rigid trucks are generally less fuel-efficient, on a per kilometre basis, than their diesel counterparts. Table 4.11 lists average fuel consumption rates for LCVs and rigid trucks. The SMVU only obtained fuel consumption data for LPG/CNG/dual-fuel vehicles under 8 tonnes GVM. As can be seen in table 4.11, there is significant variation in the average LPG fuel consumption rate for rigid trucks, between the 1998 SMVU and 1999 SMVU. This is probably attributable to sampling variability-LPG-fuelled rigid trucks are only a small proportion of the vehicle fleet.

#### FUEL CONSUMPTION FOR RIGID TRUCKS AND TABLE 4.11 LCVS

| (L/100km)    |                |        |         |        |         |
|--------------|----------------|--------|---------|--------|---------|
|              |                | 199    | 9 SMVU  | 1998   | B SMVU  |
| Vehicle      | GVM/GCM        | Diesel | LPG/CNG | Diesel | LPG/CNG |
| LCVs         |                | 12     | 16      | 12.1   | 16.1    |
| Rigid trucks | < 8t           | 18.7   | 28.2    | 18.6   | 21.9    |
|              | 8–20t          | 25.7   | na      | 26.5   | na      |
|              | > 20t          | 43.4   | na      | 43.3   | na      |
|              | All            | 28.0   | 28.2    | 27.4   | 21.9    |
| na           | not available. |        |         |        |         |

GVM/GCM

Gross Vehicle Mass / Gross Combination Mass Sources: ABS (2000a, 2000b).

## TABLE 4.12 CASE 3: EMISSION REDUCTIONS FROM LPG CONVERSIONS OF RIGID TRUCKS ATTRIBUTABLE TO CNGIP/AFCP

|       | Annual        | Cumulative       |                |                      |           |                    |                    |
|-------|---------------|------------------|----------------|----------------------|-----------|--------------------|--------------------|
|       | number of LPG | LPG              | Average        | Ave                  | rage      | Average            | Total              |
|       | rigid truck   | rigid truck      | vehicle        | С0 <sub>2</sub> -е е | emissions | С0 <sub>2</sub> -е | С0 <sub>2</sub> -е |
|       | conversions   | conversions      | utilisation    | Diesel               | LPG       | reduction          | savings            |
| Year  | (vehicles)    | (vehicles)       | (km/veh/yr)    | (g/km)               | (g/km)    | (g/km)             | (Gg)               |
| 2001  | 437           | 437              | 33000          | 506. I               | 455.5     | 50.6               | 0.73               |
| 2002  | 362           | 799              | 33000          | 506. I               | 455.5     | 50.6               | 1.33               |
| 2003  | 362           | 1161             | 33000          | 506. I               | 455.5     | 50.6               | 1.94               |
| 2004  | 363           | 1524             | 33000          | 506. I               | 455.5     | 50.6               | 2.55               |
| Note: | CO2-e reduct  | tion relative to | o conventional | diesel fuel          | up to end | 2002 theres        | fter               |

relative to LSD.

Sources: Beer et al. (2001), AGO (pers. comm. 2001), BTRE estimates.

Average utilisation was assumed equal to that of the fleet average for a new rigid truck—33 000 kilometres per annum.

Based on these assumptions, the BTRE estimates that the AFCP would reduce annual  $CO_2$ -e emissions by 2500 tonnes in 2004.

Net reduction in emissions from LPG forklift conversions

In the first year of the program, there were a significant number of forklifts converted to LPG that qualified for an AFCP grant. Based on the first year of the program, the BTRE has assumed that there will be 800 forklifts converted over the four years of the AFCP—approximately 15 per cent of the total number of vehicles converted under the program.

The BTRE could not, in the time available, undertake a detailed analysis of the impact of these conversions on  $CO_2$ -e emissions, but has provided some approximate estimates (table 4.13). The estimates are based on assuming that conversion to LPG would give the same absolute reduction in emissions, per vehicle, as a rigid truck converted to LPG. These assumptions imply annual  $CO_2$ -e emissions would be reduced by 1300 tonnes in 2004.

## TABLE 4.13 CASE 3: EMISSION REDUCTIONS FROM LPG CONVERSIONS OF FORKLIFTS ATTRIBUTABLE TO CNGIP/AFCP

|      | Annual number   | Cumulative   | Average                   | Total              |
|------|-----------------|--------------|---------------------------|--------------------|
|      | of LPG Forklift | LPG forklift | annual CO <sub>2</sub> -e | С0 <sub>2</sub> -е |
|      | conversions     | conversions  | reductions                | savings            |
| Year | (vehicles)      | (vehicles)   | (t /vehicle p.a.)         | (gigagrams)        |
| 2001 | 180             | 180          | 1.67                      | 0.30               |
| 2002 | 207             | 387          | 1.67                      | 0.64               |
| 2003 | 207             | 594          | 1.67                      | 0.99               |
| 2004 | 207             | 800          | 1.67                      | 1.34               |

*Note:* CO<sub>2</sub>-e reduction relative to conventional diesel fuel up to end 2002, thereafter relative to Low Sulphur Diesel (LSD).

Sources: Beer et al. (2001), AGO (pers. comm. 2001), BTRE estimates.

### **CNG** Conversions

Total CNG conversions are expected to save around 35 000 tonnes, with the majority of emission savings from urban buses.

### Emission reductions from urban bus conversions to CNG

Australian urban bus operators have committed to major investments in CNG buses over the next three to four years:

- NSW State Transit has ordered 300 Mercedes-Benz 0405NH CNG buses using the Mercedes-Benz M447LG engine
- Brisbane City Council has ordered 120 Scania CNG buses
- Adelaide Metro has ordered 90 CNG buses (MAN NL202) to be added to the fleet over the next three years
- Transperth has plans to use new CNG Daimler-Chrysler buses in place of diesel buses.

In calculating the reduction in  $CO_2$ -e emissions from the introduction of CNG- powered buses the BTRE has assumed that 2362 new CNG buses will enter urban bus fleets over the four year period of the AFCP (see table 4.14) and that each bus will travel an average distance of 60 000 kilometres per annum. Based on Beer et al. (2001), the BTRE assumes that, on average,  $CO_2$ -e emissions from CNG buses will be 17 per cent less than for the equivalent diesel-powered bus. Based on these assumptions, the BTRE estimates that CNG bus conversions carried out under the AFCP would reduce total  $CO_2$ -e emissions by approximately 34 000 tonnes in 2004, the last year of the program (see table 4.14). This represents a saving of approximately 5 per cent of total base case emissions attributable to urban bus operations in capital cities.

| CONVERSIONS OF URBAN BUSES |                                                                                      |            |             |                    |                    |                    |                    |  |
|----------------------------|--------------------------------------------------------------------------------------|------------|-------------|--------------------|--------------------|--------------------|--------------------|--|
| ATTRIBUTABLE TO CNGIP/AFCP |                                                                                      |            |             |                    |                    |                    |                    |  |
|                            | Assumed 17% Assumed 2                                                                |            |             |                    |                    |                    |                    |  |
|                            | saving in CO <sub>2</sub> -e savi                                                    |            |             |                    |                    |                    |                    |  |
|                            | Numb                                                                                 | er of CNG  | Average     | Average            | <u> </u>           | Average            | Total              |  |
|                            | bus co                                                                               | onversions | utilisation | С0 <sub>2</sub> -е | С0 <sub>2</sub> -е | С0 <sub>2</sub> -е | С0 <sub>2</sub> -е |  |
|                            | Annual                                                                               | Cumulative | ('000 km/   | reduction          | reduction          | reduction          | reduction          |  |
| Year                       | (V                                                                                   | ehicles)   | veh p.a.)   | (g/km)             | (Gg)               | (g/km)             | (Gg)               |  |
| 2001                       | 575                                                                                  | 575        | 60          | 242.4              | 8.36               | 31.1               | 1.07               |  |
| 2002                       | 595                                                                                  | 1170       | 60          | 242.4              | 17.02              | 31.1               | 2.18               |  |
| 2003                       | 596                                                                                  | 1766       | 60          | 242.4              | 25.68              | 21.9               | 2.32               |  |
| 2004                       | 596                                                                                  | 2362       | 60          | 242.4              | 34.35              | 21.9               | 3.10               |  |
| Note:                      | CO <sub>2</sub> -e reduction relative to conventional diesel fuel up to end of 2002, |            |             |                    |                    |                    |                    |  |
|                            | thereafter relative to Low Sulphur Diesel (LSD).                                     |            |             |                    |                    |                    |                    |  |
| Sources:                   | Beer et al. (2001; 2000), AGO (pers. comm., 11 July 2001), BTRE estimates.           |            |             |                    |                    |                    |                    |  |

## TABLE 4.14 CASE 3 – EMISSION REDUCTIONS FROM CNG

The AGO requested that the BTRE use the assumption that CNG buses produced 17 per cent less CO<sub>2</sub>-e emissions than an equivalent diesel bus, based on Beer et al. (2001). If the older data (Beer et al. 2000) are used, with a reduction of only 2 per cent in  $CO_2$ -e emissions per kilometre, the abatement would be an order of magnitude lower, at 3000 tonnes in 2004 (see table 4.14).

### Net reduction in emissions from truck conversions to CNG

The BTRE has assumed 160 rigid and articulated trucks will be converted or replaced with new CNG vehicles as a result of the AFCP. The CNG engine technology options available for rigid and articulated trucks are similar to those used in buses. The BTRE has assumed that all rigid and articulated truck CNG conversions will be to spark-ignition CNG engine technology.

In the absence of information about the number and type of trucks converting to CNG under the first year of the AFCP, the BTRE decided to assume that the number of trucks switching from diesel to CNG would be proportional to the current stock of registered rigid and articulated trucks: 85 per cent rigid trucks and 15 per cent articulated trucks. The BTRE also assumed that average kilometres travelled by CNG rigid trucks would be equal to the average distance travelled by new rigid trucks- 33 000 kilometres per annum. For articulated trucks, the BTRE assumed that range constraints and a lack of refuelling options will tend to prevent CNG trucks being used on long-distance (inter-capital) routes. Consequently, the BTRE has assumed that the average distance travelled is equal to that of newer articulated trucks undertaking largely urban operations—approximately 70 000 kilometres per annum (K. Hassall, pers. comm., 23 July 2001).

As for the case of CNG bus conversions, the BTRE calculated two sets of  $CO_2$ -e reduction estimates. The first was based on Beer et al. (2001)—that CNG heavy vehicles produce approximately 17 per cent lower CO2-e emissions per km than diesel vehicles. The second set was based on earlier data from Beer et al. (2000)—that CNG heavy vehicles produce 2 per cent lower CO<sub>2</sub>-e emissions. The average fuel consumption for new diesel-fuelled rigid and articulated trucks, 26.2 litres per 100 kilometres and 48.1 litres per 100 kilometres respectively, were used to compute the diesel reference CO<sub>2</sub>-e emissions. When Low Sulphur Diesel (LSD) is introduced (by the beginning of 2003), it will probably slightly reduce the CO<sub>2</sub> emission benefit from converting to diesel (Beer et al. 2000).

## TABLE 4.15 CASE 3: EMISSION REDUCTIONS FROM CNG CONVERSIONS OF RIGID AND ARTICULATED TRUCKS ATTRIBUTABLE TO CNGIP/AFCP

|             |          |            |             | Base case          | saving ir<br>emissions | n CO <sub>2</sub> -e<br>per km | Assum<br>saving ii<br>emissions | ea 2%<br>1 CO <sub>2</sub> -e<br>per km |
|-------------|----------|------------|-------------|--------------------|------------------------|--------------------------------|---------------------------------|-----------------------------------------|
|             | No of    | CNG bus    | Average     | diesel fuel        | Average                | Total                          | Average                         | Total                                   |
|             | con      | versions   | utilisation | С0 <sub>2</sub> -е | С0 <sub>2</sub> -е     | С0 <sub>2</sub> -е             | С0 <sub>2</sub> -е              | С0 <sub>2</sub> -е                      |
|             | Annual   | Cumulative | ('000 km/   | emissions          |                        | reduction                      | <u>reduction</u>                | reduction                               |
|             | (veh     | icles)     | veh p.a)    | (g/km)             | (g/km)                 | (Gg)                           | (g/km)                          | (Gg)                                    |
| Rigid truck | s        |            |             |                    |                        |                                |                                 |                                         |
| 2001        | 33       | 33         | 33          | 704.9              | 119.8                  | 0.130                          | 17.6                            | 0.019                                   |
| 2002        | 35       | 68         | 33          | 704.9              | 119.8                  | 0.269                          | 17.6                            | 0.040                                   |
| 2003        | 34       | 102        | 33          | 704.9              | 119.8                  | 0.403                          | 12.4                            | 0.042                                   |
| 2004        | 34       | 136        | 33          | 704.9              | 119.8                  | 0.538                          | 12.4                            | 0.056                                   |
| Articulated | l trucks |            |             |                    |                        |                                |                                 |                                         |
| 2001        | 6        | 6          | 70          | 1294.1             | 220.0                  | 0.092                          | 32.4                            | 0.014                                   |
| 2002        | 6        | 12         | 70          | 1294.1             | 220.0                  | 0.185                          | 32.4                            | 0.027                                   |
| 2003        | 6        | 18         | 70          | 1294.1             | 220.0                  | 0.277                          | 22.8                            | 0.029                                   |
| 2004        | 6        | 24         | 70          | 1294.1             | 220.0                  | 0.370                          | 22.8                            | 0.038                                   |
| All trucks  |          |            |             |                    |                        |                                |                                 |                                         |
| 2001        | 39       | 39         | nc          | nc                 | nc                     | 0.223                          | nc                              | 0.033                                   |
| 2002        | 41       | 80         | nc          | nc                 | nc                     | 0.454                          | nc                              | 0.067                                   |
| 2003        | 40       | 120        | nc          | nc                 | nc                     | 0.681                          | nc                              | 0.070                                   |
| 2004        | 40       | 160        | nc          | nc                 | nc                     | 0.907                          | nc                              | 0.094                                   |

nc not calculated.

Note: CO<sub>2</sub>-e reduction relative to conventional diesel fuel up to end of 2002,

thereafter relative to Low Sulphur Diesel (LSD).

Sources: Beer et al. (2000), AGO (pers. comm., 11 July 2001), BTRE estimates.

Under the assumption that CNG use results in 17 per cent lower emissions than the equivalent diesel vehicle, the BTRE estimates that the total reduction in *annual*  $CO_2$ -e emissions, from conversion of rigid and articulated trucks, will be approximately 900 tonnes in 2004 (table 4.15).

**Overall reduction in emissions** 

For Case 3, the AFCP measures are estimated to reduce total annual  $CO_2$ -e emissions by nearly 40 thousand tonnes in 2004 (table 4.16), assuming CNG bus and truck engines produce 17 per cent less  $CO_2$ -e emissions per kilometre than equivalent diesel engines. If, however, the reduction in  $CO_2$ -e emissions from CNG vehicles are approximately 2 per cent per vehicle kilometre, the annual reduction in emissions from the AFCP would be only 7500 tonnes in 2004.

## TABLE 4.16 CASE 3: TOTAL REDUCTION IN EMISSIONS ATTRIBUTABLE TO CNGIP/AFCP

|      | CNG col | nversions | LPG co | nversions |              |
|------|---------|-----------|--------|-----------|--------------|
| Year | Buses   | Trucks    | Trucks | Forklifts | All vehicles |
| 2001 | 8.36    | 0.22      | 0.73   | 0.30      | 9.61         |
| 2002 | 17.02   | 0.45      | 1.33   | 0.64      | 19.45        |
| 2003 | 25.68   | 0.68      | 1.94   | 0.99      | 29.29        |
| 2004 | 34.35   | 0.91      | 2.55   | 1.34      | 39.14        |

(Gigagrams)

Source: BTRE estimates.

### ENVIRONMENTAL STRATEGY FOR THE MOTOR VEHICLE INDUSTRY (ESMVI)

The Environmental Strategy for the Motor Vehicle Industry (ESMVI), encompasses a range of measures aimed at significantly enhancing the environmental performance of the automotive industry.

The strategy includes:

- the negotiation with the automotive industry of improved National Average Fuel Consumption (NAFC) targets for new passenger vehicles for 2005 and 2010
- extension of the NAFC framework (particularly to include 4WDs and LCVs)
- continuation of the Fuel Consumption Guide and publication of fuel consumption data on the Internet

- negotiations with individual car manufacturers on initiatives they might take to improve the fuel efficiency of the models they produce
- model specific fuel efficiency labels for new passenger motor vehicles
- fuel efficiency targets for the Commonwealth fleet
- the development of partnerships with consumer groups (both private and fleet) to encourage attention to fuel efficiency
- harmonisation of vehicle emission standards.

The only parts of the ESMVI that has been quantified explicitly to date are those relating to the NAFC. Negotiations over extensions to the NAFC aim to obtain at least a 15 per cent improvement in the NAFC of new passenger vehicles (over 'business-a-usual' projections) by 2010.

The BTRE estimates for this measure (following the AGO's proposed scenario) were derived by running CARMOD with an input projection of new car fuel intensity falling by 15 per cent (relative to the base case trend) by 2010, and remaining at 15 per cent below the base case trend-line up to 2020 (see table 4.17A). It should be noted that the base case projections already incorporate a significant declining trend in new car fuel consumption—the BAU drop in average litres per 100 kilometres forecast for 2000 to 2020 is similar in magnitude to that experienced over the last 20 years. Given the Australian public's preference for relatively large, high performance vehicles, the NAFC values used in this ESMVI–NAFC scenario probably form a quite challenging target.

### TABLE 4.17A PROJECTED TREND FOR NAFC TO 2020

### (L/100 km)

| Year     | Bas                                     | e case | ESMVI–NAFC scenario |
|----------|-----------------------------------------|--------|---------------------|
| 2000     |                                         | 8.34   | 8.34                |
| 2005     |                                         | 7.91   | 7.45                |
| 2010     |                                         | 7.42   | 6.31                |
| 2015     |                                         | 7.00   | 5.95                |
| 2020     |                                         | 6.70   | 5.70                |
| Sources: | AGO (2001, pers. com.), BTRE estimates. |        |                     |

The lower fuel consumption of the passenger vehicle fleet (table 4.17B), resulting from the improved new car fuel efficiency assumed above, yields an estimated annual emission reduction of around 2 million tonnes of  $CO_2$  equivalent in 2010 (about 4.2 per cent of projected 2010 passenger vehicle emissions) and around 5.4 million tonnes in 2020 (10.8 per cent reduction)—see table 4.18.

## TABLE 4.17B ESTIMATED ON-ROAD FUEL CONSUMPTION FOR CAR FLEET, UNDER ASSUMED NAFC CHANGES

|                         | (L/100 km) |                     |
|-------------------------|------------|---------------------|
| Year                    | Base case  | ESMVI–NAFC scenario |
| 2000                    | 11.48      | 11.48               |
| 2001                    | 11.46      | 11.46               |
| 2002                    | 11.45      | 11.43               |
| 2003                    | 11.44      | 11.40               |
| 2004                    | 11.42      | 11.34               |
| 2005                    | 11.41      | 11.28               |
| 2006                    | 11.38      | 11.20               |
| 2007                    | 11.35      | 11.11               |
| 2008                    | 11.31      | 10.99               |
| 2009                    | 11.27      | 10.87               |
| 2010                    | 11.21      | 10.72               |
| 2011                    | 11.19      | 10.60               |
| 2012                    | 11.16      | 10.48               |
| 2013                    | 11.12      | 10.37               |
| 2014                    | 11.09      | 10.25               |
| 2015                    | 11.04      | 10.13               |
| 2016                    | 11.00      | 10.02               |
| 2017                    | 10.96      | 9.92                |
| 2018                    | 10.92      | 9.81                |
| 2019                    | 10.87      | 9.71                |
| 2020                    | 10.82      | 9.60                |
| Source: BTRE estimates. |            |                     |

Chapter 4

### TABLE 4.18 **ESTIMATED IMPACT OF FUEL EFFICIENCY MEASURES UNDER GOVERNMENT EXPECTATION OF CHANGES TO NAFC** TREND

|              | (Gigagram | s)         |                     |
|--------------|-----------|------------|---------------------|
| Year         | Base case | ESMVI–NAFC | Emissions reduction |
| 2000         | 40696     | 40696      |                     |
| 2001         | 41491     | 41476      | 15                  |
| 2002         | 43 87     | 43113      | 75                  |
| 2003         | 44070     | 43901      | 169                 |
| 2004         | 44748     | 44451      | 297                 |
| 2005         | 45431     | 44966      | 464                 |
| 2006         | 45910     | 45234      | 676                 |
| 2007         | 46523     | 45587      | 935                 |
| 2008         | 46999     | 45756      | 1243                |
| 2009         | 47426     | 45833      | 1594                |
| 2010         | 47792     | 45801      | 1991                |
| 2011         | 48189     | 45787      | 2402                |
| 2012         | 48540     | 45746      | 2793                |
| 2013         | 48843     | 45672      | 3171                |
| 2014         | 49116     | 45585      | 3531                |
| 2015         | 49342     | 45463      | 3878                |
| 2016         | 49547     | 45338      | 4208                |
| 2017         | 49742     | 45216      | 4527                |
| 2018         | 49898     | 45065      | 4833                |
| 2019         | 50021     | 44897      | 5125                |
| 2020         | 50110     | 44711      | 5398                |
| not applicab | le        |            |                     |

No rebound travel, due to reduced operating costs from improved fuel efficiency, is Note:

accounted for in this scenario. Source: BTRE estimates.

As a sensitivity scenario, CARMOD was also run by setting the future growth in Australian car ownership unconstrained (i.e. the base case trend towards eventual saturation in cars per person was relaxed) and with the NAFC changes given in table 4.17. The resulting emission reduction estimates (again assuming no rebound travel) were similar to those derived versus the base case (see table 4.19).

## TABLE 4.19SENSITIVITY OF ESTIMATED IMPACT OF<br/>ESMVI-NAFC SCENARIO TO FUTURE TREND<br/>IN CAR OWNERSHIP

|              | (Gigagi         | rams)           |           |
|--------------|-----------------|-----------------|-----------|
|              | BAU–            | NAFC scenario   |           |
|              | with no vehicle | with no vehicle | Emission  |
|              | saturation      | saturation      | reduction |
| 2000         | 40696           | 40696           |           |
| 2001         | 41600           | 41550           | 50        |
| 2002         | 43551           | 43462           | 89        |
| 2003         | 44534           | 44357           | 178       |
| 2004         | 45453           | 45147           | 306       |
| 2005         | 46419           | 45938           | 481       |
| 2006         | 47345           | 46639           | 706       |
| 2007         | 48361           | 47375           | 987       |
| 2008         | 49238           | 47906           | 1332      |
| 2009         | 50131           | 48401           | 1730      |
| 2010         | 50996           | 48805           | 2192      |
| 2011         | 51953           | 49272           | 2681      |
| 2012         | 52915           | 49757           | 3158      |
| 2013         | 53881           | 50249           | 3631      |
| 2014         | 54860           | 50763           | 4097      |
| 2015         | 55837           | 51277           | 4559      |
| 2016         | 56847           | 51832           | 5015      |
| 2017         | 57892           | 52425           | 5468      |
| 2018         | 58940           | 53023           | 5918      |
| 2019         | 59997           | 53636           | 6361      |
| 2020         | 61058           | 54265           | 6793      |
| not applical | ble             |                 |           |

Source: BTRE estimates.

### DIESEL AND ALTERNATIVE FUELS GRANTS SCHEME

The Diesel and Alternative Fuels Grants Scheme (DAFGS) pays a rebate on all on-road diesel and alternative fuel use by eligible vehicles. Vehicles eligible for the DAFGS include all vehicles above 20 tonnes gross vehicle mass (GVM) and

all vehicle use outside major metropolitan centres of commercial vehicles between 4.5 tonnes GVM and 20 tonnes GVM.

Under the DAFGS, the grant rates for diesel and alternative fuels were set at rates that attempted to maintain the then retail price relativities between different fuels. The DAFGS grant rates at 1 February 2001 were:

- compressed natural gas (CNG) 12.617 cents per cubic metre
- liquefied petroleum gas (LPG) 11.925 cents per litre
- ethanol
   20.809 cents per litre
- diesel 18.510 cents per litre

The estimates of the change in emissions resulting from the DAFGS, presented below, are relative to the pre-tax reform circumstances. Note that the impact of the DAFGS on freight demand and fuel use (diesel, CNG and LPG), has already been included in the BTRE's base case emission projections—so the values given in table 4.21 are not to be added to base case results (e.g. table 1.3) when compiling composite 'With Measures' projections.

The greenhouse measure component of the DAFGS is the rebate to alternative fuels. The BTRE has not separately estimated the impact on emissions of inclusion of alternative fuels in the DAFGS scheme. The BTRE would expect, however, that inclusion of alternative fuels in the DAFGS would have had only a very small effect on total emissions. This is because the pay-back period for conversion to an alternative fuel vehicle will have increased.

The DAFGS may also have induced some slight shift between vehicle classes. Those vehicle operators just under the 4.5 tonne or 20 tonne cut-off points, for whom the extra cost of a larger vehicle would now be more than offset by the reduction in fuel costs arising from the DAFGS, will make the switch. The BTRE has not explicitly estimated the impact on emissions of any shift to larger vehicles. The impact of vehicle switching on emissions is likely to be small relative to the increase in emissions resulting from the reduction in all fuel costs due to the DAFGS.

At the time of the analysis, the DAFGS paid 18.51 cents per litre for diesel. The terminal gate price of diesel, including GST, as at 1 August 2001 was around 85–89 cents per litre. Distribution and retail costs and margins add around 5–6 cents to this amount (AIP 2001). Commercial operators can claim excise credits for the GST paid on fuel (one eleventh of the final price) and receive the DAFGS rebate on top of this. Currently, the DAFGS is approximately 28 per cent of the effective fuel cost of commercial operators (table 4.20). Of course, the relative impact of the DAFGS on the price of diesel varies with fluctuations in the world price of oil.

For long-distance (high utilisation) articulated truck operations, fuel can be up to 30 per cent of total operating costs. For articulated trucks as a group, undertaking a mix of long-distance and short-distance (urban) freight task, fuel was assumed to contribute 20 per cent of total costs. The BTRE has estimated

the long-run road freight rate elasticity of -0.9 (BTCE 1995a). Based on these assumptions, the BTRE estimates the DAFGS has served to increase the articulated truck freight task by approximately 5 per cent.

### TABLE 4.20APPROXIMATE PRICE OF DIESEL FUEL TO<br/>COMMERCIAL VEHICLE OPERATORS

(cents per litre)

| Estimated terminal gate price                                                      | 87.0   |
|------------------------------------------------------------------------------------|--------|
| Estimated distribution & retail costs and margins                                  | 6.0    |
| less GST                                                                           | -8.45  |
| less DAFGS                                                                         | -18.51 |
| Effective price to operator                                                        | 66.04  |
| Sources: Mobil (2001), Shell (2001), BP (2001), AIP (2001), AGO (2001), BTRE estir | nates. |

For rigid trucks, fuel costs are assumed to be approximately 15 per cent of total costs. Only a subset of the total kilometres driven by rigid trucks are eligible for the DAFGS. As at 31 October 1999, 21 per cent of rigid trucks were under 4.5 tonnes GVM while 15 per cent were above 20 tonnes GVM (ABS 2000a). Further, approximately half of all rigid truck vehicle kilometres travelled (VKT) are undertaken in urban areas (ABS 2000a). The BTRE assumed that urban/non-urban vehicle use by rigid trucks were reasonably uniform across different vehicle weights and that about 45 per cent of total rigid truck kilometres would be eligible for the rebate. These assumptions imply the DAFGS has increased the rigid truck freight task by approximately 1.8 per cent above the level it would have been prior to the tax changes.

Together then, these results imply the DAFGS has increased the total road freight task by 4.25 per cent above what it would otherwise have been had the DAFGS not been introduced. Rigid and articulated trucks undertook 17.5 per cent and 78.7 per cent respectively of the total tonne-kilometre road freight task in 2000–01.

Based on these assumptions, the BTRE estimates that in the absence of the reduction in the cost of diesel fuel to operators in the DAFGS,  $CO_2$ -e emissions from commercial vehicles would have been about 200 000 tonnes less in 2000–01. By 2010 and 2020, the BTRE estimates that the DAFGS would have increased annual emissions by approximately 250 000 tonnes and 300 000 tonnes (see table 4.21), respectively. The increase in emissions may have been marginally higher if alternative fuels had been excluded from the DAFGS. These estimates also ignore any reduction in rail freight emissions arising from substitution of freight from rail to road as a result of the DAFGS.

Chapter 4

## TABLE 4.21 ESTIMATED IMPACT OF DAFGS ON COMMERCIAL VEHICLE CO2 EQUIVALENT EMISSIONS

(Gigagrams)

| Year | Absence of DAFGS | Base case | Emissions difference |
|------|------------------|-----------|----------------------|
| 2000 | 20761.9          | 20761.9   |                      |
| 2001 | 21122.1          | 21329.4   | -207.3               |
| 2002 | 21588.8          | 21798.3   | -209.5               |
| 2003 | 22171.3          | 22386.0   | -214.7               |
| 2004 | 22771.6          | 22991.7   | -220.I               |
| 2005 | 23175.1          | 23398.6   | -223.5               |
| 2006 | 23672.9          | 23901.5   | -228.6               |
| 2007 | 24212.2          | 24445.3   | -233.I               |
| 2008 | 24772.4          | 25010.2   | -237.8               |
| 2009 | 25340.7          | 25583.2   | -242.5               |
| 2010 | 25905.5          | 26152.8   | -247.3               |
| 2011 | 26514.6          | 26767.6   | -253.0               |
| 2012 | 27120.7          | 27378.7   | -258.0               |
| 2013 | 27727.3          | 27990.5   | -263.2               |
| 2014 | 28341.1          | 28609.5   | -268.4               |
| 2015 | 28942.0          | 29216.1   | -274. I              |
| 2016 | 29537.4          | 29816.5   | –279. I              |
| 2017 | 30111.8          | 30395.8   | -284.0               |
| 2018 | 30673.6          | 30961.8   | -288.2               |
| 2019 | 31166.6          | 31459.0   | -292.4               |
| 2020 | 31578.0          | 31874.0   | -296.0               |

Source: BTRE estimates.

## 'WITH MEASURES' PROJECTIONS OF CO<sub>2</sub> EQUIVALENT EMISSIONS

Table 4.22 presents the resulting 'With Measures' projections (i.e. the base case plus the measures scenarios) using the emission reductions estimated in the above sections. If the Government emission abatement measures (currently in train for the transport sector) manage to reach their full proposed potential, then the values in table 4.22 comprise the likely alterations to the base case emission projections (set out in table 1.3).

The base case projections have total transport emissions growing by 2 per cent per annum between 2000 and 2010. The 'With Measures' scenario assumptions reduce this forecast growth to 1.76 per cent per annum.

The 'base case with measures' scenario has 2.3 per cent less total transport emissions in 2010 than the base case (composed of a 2.28 per cent reduction if the NAFC targets within the ESMVI can be met, and a further 0.05 per cent from the Alternative Fuels programs).

The base case emission result for 2010 would be 0.3 per cent lower in the absence of the fuel price reductions following the introduction of the DAFGS.

### TABLE 4.22 'WITH MEASURES' EMISSION PROJECTIONS BY TYPE OF TRANSPORT, FOR ENERGY END-**USE BY AUSTRALIAN DOMESTIC CIVIL TRANSPORT 1990–2020**

|         |                    |       |                | Rail (non- | Coastal  | Other   |       |
|---------|--------------------|-------|----------------|------------|----------|---------|-------|
| Year    | Cars               | Road  | Air            | electric)  | shipping | (minor) | Total |
| 1990    | 34220              | 17321 | 2565           | 1741       | 1939     | 1890    | 59676 |
| 1991    | 34351              | 16982 | 3142           | 1727       | 1811     | 1885    | 59897 |
| 1992    | 34847              | 16810 | 3393           | 1673       | 1742     | 1890    | 60357 |
| 1993    | 35600              | 17607 | 3553           | 1641       | 1684     | 1896    | 61980 |
| 1994    | 36148              | 17722 | 3707           | 1769       | 1664     | 1911    | 62921 |
| 1995    | 37496              | 18329 | 4274           | 1708       | 1866     | 1926    | 65600 |
| 1996    | 38355              | 19018 | 4636           | 1672       | 1770     | 1942    | 67393 |
| 1997    | 38607              | 19203 | 4840           | 1806       | 1811     | 1957    | 68223 |
| 1998    | 39170              | 20268 | 4846           | 1743       | 1614     | 1972    | 69612 |
| 1999    | 40009              | 20537 | 4781           | 1717       | 1475     | 1982    | 70502 |
| 2000    | 40696              | 20762 | 4996           | 1782       | 1505     | 1980    | 71720 |
| 2001    | 41476              | 21328 | 5280           | 1840       | 1442     | 1989    | 73355 |
| 2002    | 43113              | 21796 | 5541           | 1875       | 1429     | 1998    | 75752 |
| 2003    | 43901              | 22383 | 5789           | 1911       | 1417     | 2007    | 77409 |
| 2004    | 44451              | 22988 | 6050           | 1948       | 1406     | 2016    | 78859 |
| 2005    | 44966              | 23395 | 6313           | 1986       | 1396     | 2033    | 80090 |
| 2006    | 45234              | 23898 | 6584           | 2025       | 1388     | 2050    | 81178 |
| 2007    | 45587              | 24441 | 6868           | 2064       | 1380     | 2067    | 82407 |
| 2008    | 45756              | 25006 | 7164           | 2104       | 1373     | 2084    | 83486 |
| 2009    | 45833              | 25579 | 7471           | 2145       | 1367     | 2100    | 84495 |
| 2010    | 45801              | 26149 | 7792           | 2186       | 1363     | 2117    | 85408 |
| 2011    | 45787              | 26764 | 8130           | 2229       | 1359     | 2131    | 86400 |
| 2012    | 45746              | 27375 | 8485           | 2272       | 1356     | 2146    | 87379 |
| 2013    | 45672              | 27987 | 8856           | 2316       | 1353     | 2160    | 88344 |
| 2014    | 45585              | 28606 | 9245           | 2361       | 1352     | 2175    | 89323 |
| 2015    | 45463              | 29212 | 9650           | 2407       | 1351     | 2189    | 90274 |
| 2016    | 45338              | 29813 | 10073          | 2454       | 1351     | 2203    | 91233 |
| 2017    | 45216              | 30392 | 10513          | 2502       | 1352     | 2217    | 92191 |
| 2018    | 45065              | 30958 | 10968          | 2551       | 1354     | 2231    | 93125 |
| 2019    | 44897              | 31455 | 11437          | 2600       | 1356     | 2244    | 93990 |
| 2020    | 44711              | 31870 | 11922          | 2651       | 1359     | 2258    | 94772 |
| Madaa 9 | Atu? to total date |       | . (: . in also | din        |          |         |       |

(Gigagrams of direct CO<sub>2</sub> equivalent)

Notes:

'Air' is total domestic aviation (i.e. including general aviation). 'Other (minor)' includes buses, motorcycles, small marine pleasure craft, ferries and unregistered off-road motor vehicles.

Source: BTRE estimates.

# chapter

### IMPACT OF ALTERNATIVE TRANSPORT MEASURES ON TRANSPORT EMISSIONS

### **SUMMARY**

As part of this and previous studies, the Bureau has estimated the likely change in future emission levels due to the implementation of a range of possible transport policy scenarios. These scenarios will typically relate to hypothetical courses of action, and not be indicative of any particular policy options currently under government consideration. Rather, they are purely intended to augment any current research programs investigating the efficiency of emission reduction measures – particularly those looking into possible '*no regrets*' (i.e. no net cost to society) or *low cost* emission abatement options for the transport sector.

Of the various policy scenarios investigated to date, the most significant scope for abatement appears to be offered by traffic congestion reductions through *optimal road pricing* (ORP).

Emission abatement strategies will generally tend to involve:

- increased take-up of technological innovation (e.g. promotion of greater sales of efficient hybrid-fuel motor vehicles);
- improvements to infrastructure or transport services (e.g. construction of high capacity roads, to smooth traffic flows, or enhanced public transport systems);
- transport demand management (in particular, encouraging travellers to change inefficient commuter behaviour through pricing mechanisms or education campaigns);

or a combination of these various elements.

The use of Intelligent Transport Systems (ITS) to apply optimal road user charges (i.e. charges that vary, to be higher in more congested areas) across metropolitan road networks offers a particularly effective combination of transport demand management (TDM) and advanced technology use.

The estimated emission reductions for a (nationwide) urban road pricing scenario (along with the estimated social costs associated with such a policy) are presented in this chapter. Table 5.1 summarises the key findings of the Bureau's modelling of congestion pricing scenarios – with optimal road pricing having the potential for significant reductions in  $CO_2$ -e emissions from road transport. The BTRE estimates that close to 6800 gigagrams (i.e. 6.8 million tonnes) of  $CO_2$ -e emissions from urban traffic could be abated annually by 2010 (under the assumed charge levels of the scenario being levied across the eight State and Territory capitals).

### TABLE 5.1 ESTIMATED ABATEMENT COST AND REDUCTION IN EMISSIONS FOR ORP SCENARIO

|             |                   |                                              | Average         | СО <sub>2</sub> -е |
|-------------|-------------------|----------------------------------------------|-----------------|--------------------|
|             |                   |                                              | abatement       | abated in          |
|             |                   |                                              | cost            | 2010               |
| Policy inst | trument           | Abatement strategy                           | (\$/t)          | (Gg)               |
| Optimal     | road pricing      | Use Intelligent Transport Systems to charge  | ge              |                    |
| (ORP)       |                   | road users appropriately for the costs res   | ulting          |                    |
|             |                   | from their travel decisions.                 | -1300           | 6766               |
| Note:       | For this scenario | o, ORP charges are levied across the eight A | ustralian State | and                |
|             | Territory capita  | ls.                                          |                 |                    |
| Source:     | BTRE estimates    | , BTCE 1996b.                                |                 |                    |

Note that there are considerable unknowns in this type of analysis and the results should only be taken as indicative of possible benefits. For example, elasticity values for responses to many of the price changes involved in such policy setting are, at best, only poorly quantified. Abatement cost estimates have been computed on the basis of net national economic cost to Australian residents.

Note also that a previous Bureau publication – BTCE Report 94, *Transport and Greenhouse: Costs and options for reducing emissions* — gives a detailed presentation of the cost elements and likely emission benefits of not only ORP, but also a wide range of possible abatement measures (e.g. accelerated penetration of fuel saving technology in new motor vehicles, increased urban parking charges, alternative fuel use, road surface improvement, freight mode switching, encouraging more urban public transit use, accelerating turnover of transport fleets through increased vehicle scrappage).

### CONGESTION REDUCTIONS THROUGH OPTIMAL ROAD PRICING

Policy instrument: Use Intelligent Transport Systems (ITS) to charge road users appropriately for the costs resulting from their travel decisions.

Road systems in Australian cities are becoming progressively more crowded and urban traffic congestion becoming an increasingly important problem. Large proportions of Australian urban car trips occur during morning and evening peak times. Significant portions of the road networks of major

Australian cities (particularly Sydney) increasingly experience heavy traffic volumes throughout much of the day. Consequently, approximately half of total urban vehicle kilometres travelled (VKT) are currently performed under congested traffic conditions (BTCE 1996b: p. 312). That is, the travel is typically done on roads with either heavy congestion (involving average traffic speeds of less than a third of that possible on those roads under free-flow traffic conditions) or interrupted flow (where traffic is moving at around half that of free-flow or unimpeded speeds).

Congestion, as an economic externality, imposes significant costs on society. Road users incur higher private costs when joining a congested traffic stream, through increased vehicle-operating costs and trip travel times. In addition, road users do not typically take account of the fact that their decisions to travel serve to increase congestion, and therefore impose additional delays and costs on other road users. Depending on how close the traffic volume is to a road's designed traffic capacity, increases in overall delays can rise sharply as traffic increases.

Rough (order of magnitude) social costs due to urban traffic congestion are presented in BTE (1999b). The Bureau estimates a total cost of approximately 12.8 billion dollars per year due to traffic congestion in major Australian cities (with Sydney currently experiencing costs of around 6.0 billion dollars per annum, Melbourne 2.7, Brisbane 2.6, Adelaide 0.8, Perth 0.6 and Canberra 0.05). If nothing is done, the total cost of Australian urban congestion could rise to about 29.7 billion dollars per year by 2015 (BTE 1999b: table 1).

Fuel consumption per vehicle (e.g. litres per 100 kilometres) under congested traffic conditions is approximately twice that of the vehicles' fuel use under free-flow conditions. Therefore, congestion has the potential to double the output of greenhouse gas emissions from a stream of vehicle traffic. Emission rates of noxious pollutants (e.g. carbon monoxide, volatile organic compounds and particulates) also tend to be approximately twice as high under congested conditions.

BTRE estimates, based on the Bureau's modelling of urban network congestion (detailed in BTCE 1996a and BTCE 1996b: ch. 18), suggest that as much as 40 per cent of the fuel used by road vehicles in Australia's major cities is the result of interruptions to the traffic flow.

As well as being practically impossible for urban traffic to flow completely free from interruption and delay, it would be extremely expensive (and economically inefficient) to attempt to remove urban congestion entirely. However, congestion levels can be efficiently reduced (and social amenity improved) by a variety of measures. Since congestion is typically such a diverse problem, varying significantly both spatially and temporally, the most effective policies aimed at reducing it will tend to be those that can target particular city areas or particular times of travel. Besides the construction of new infrastructure to handle higher traffic volumes, examples of options aimed at encouraging people to avoid congested areas include parking surcharges, freeway tolls, cordon charges for entering the CBD, and continuous electronic road pricing.

ITS applications, such as electronic toll collection technologies and traffic monitoring systems, offer technically achievable ways of determining appropriate road user costs and charging motorists in real time.

For example, BTCE (1996a) estimated that levying optimal road user charges within the major Australian cities could reduce peak hour travel by the order of 20 per cent, while reducing overall travel time by close to 40 per cent, and total traffic fuel consumption by close to 30 per cent. ('Optimal' here refers to the charges being structured to vary between different parts of the city according to requirements, so that they would be higher in the more congested areas and lower in less congested areas.)

Such optimal congestion charges could significantly reduce greenhouse gas emissions from road vehicle use within major Australian cities (by a combination of reducing overall travel and by spreading the remaining travel more evenly across networks). The BTRE estimates that optimal road congestion charges within the eight State and Territory capitals (i.e. Sydney, Melbourne, Brisbane, Adelaide, Perth, Hobart, Darwin and Canberra) could reduce Australian  $CO_2$ -e emissions by around 6.8 million tonnes per annum by 2010 (see table 5.2). The annual emission reduction from the optimal charges (applied to the eight capital cities) could grow to nearly 7 million tonnes of  $CO_2$ -e by 2020.

The cumulative emission reductions estimated for this optimal road pricing (ORP) scenario total 31.6 million tonnes of  $CO_2$ -e (37.9 million tonnes FFC) by 2010, and around 100.5 million tonnes (120.5 million tonnes FFC) by 2020 (versus the 'base case plus measures' projected emissions for the metropolitan car fleet).

Estimates of the average and marginal costs of implementing congestion charges are detailed in BTCE Report 94 (1996b: ch. 18) — which, along with BTCE Report 92 (1996a), still form part of the state-of-the-art in this field, as few national studies dealing with the costs and benefits of optimal road pricing have been conducted since.

The marginal social costs derived in BTCE (1996a) for ORP (taking infrastructure costs, welfare effects, congestion reductions and externality benefits into account) range over -\$1807 per tonne abated (for Melbourne) to -\$380 per tonne (for Perth). That is, the BTRE expects this measure to yield net economic benefits. The results of BTCE (1996b) imply that the average cost (over a 20-year time frame) of ORP applied across Australian metropolitan travel is of the order of -\$1300 per tonne of CO<sub>2</sub>-e abated (i.e. a substantial social benefit).

Chapter 5

## TABLE 5.2CHANGE IN CO2 EQUIVALENT EMISSIONS<br/>BETWEEN BAU METROPOLITAN ESTIMATES AND<br/>THE SCENARIO FOR OPTIMAL CONGESTION<br/>CHARGES

|      | (gigagrams)   |            |           |
|------|---------------|------------|-----------|
|      | Base case     | ORP policy | Emission  |
| Year | plus measures | scenario   | reduction |
| 2000 | 25389         | 25389      |           |
| 2001 | 26018         | 26018      |           |
| 2002 | 27183         | 27183      |           |
| 2003 | 27822         | 27509      | 313       |
| 2004 | 28314         | 27199      | 1115      |
| 2005 | 28789         | 26522      | 2267      |
| 2006 | 29107         | 25505      | 3602      |
| 2007 | 29483         | 24508      | 4975      |
| 2008 | 29741         | 23719      | 6023      |
| 2009 | 29941         | 23373      | 6568      |
| 2010 | 30071         | 23305      | 6766      |
| 2011 | 30213         | 23415      | 6798      |
| 2012 | 30336         | 23510      | 6826      |
| 2013 | 30437         | 23589      | 6848      |
| 2014 | 30530         | 23661      | 6869      |
| 2015 | 30600         | 23715      | 6885      |
| 2016 | 30667         | 23767      | 6900      |
| 2017 | 30735         | 23820      | 6915      |
| 2018 | 30784         | 23857      | 6926      |
| 2019 | 30820         | 23885      | 6934      |
| 2020 | 30843         | 23904      | 6940      |

not applicable

Note: Emission estimates refer to car travel within the 8 Australian capital cities. Source: BTRE estimates.

#### buree. Drive estimate

### **OTHER TDM MEASURES**

Some measures, such as ORP, appear likely to be quite effective even if implemented independently of any other abatement policies. Yet often, emission abatement will tend to be most successful when a combination of interacting measures are implemented together. As an example, consider a policy instrument that encourages car manufacturers to progressively reduce the average fuel consumption of their new vehicles over the coming years. The effectiveness of such a measure will be aided by any other policy instruments that serves to:

- encourage higher new vehicle sales to improve the fleet penetration rate of the new technology (e.g. through vehicle price reductions, especially if targeted at fuel-efficient models, or through incentives to scrap more older vehicles)
- improve the efficiency of the remaining portion of the fleet (e.g. mandatory inspection and maintenance campaigns, or tightening of emissions standards for in-service vehicles).

Optimal road pricing belongs to a set of measures that attempts to make individuals face more accurate price signals in their travel behaviour – prompting them to make more efficient transport decisions. Since the costs

imposed on society by transport will typically depend on the volume and composition of its traffic flows, charges levied on road users will tend to be more efficient the more accurately they vary to reflect the time, location, amount and method of travel. As well as electronic road pricing, an important option for improving such price signals is 'variablisation' – that is, increasing the variable proportion of motoring costs and reducing the fixed proportion.

Vehicle registration and insurance comprise significant proportions of total motoring costs in Australia, but as fixed costs do not provide any disincentive to excessive car use. Charging insurance and registration fees on a variable basis – so as to be proportional to the amount of car travel performed – will not only more accurately reflect road user costs (for registration purposes) and accident exposure levels (for insurance purposes), but will encourage reductions in vehicle kilometres and subsequent greenhouse emission levels.

Global Positioning Systems (GPS) and other related advanced technologies even allow the variation of such 'vehicle use pricing' by the area of travel, and could be readily combined with a system levying optimal congestion charges. (An added advantage of GPS-based insurance schemes is improved vehicle recovery rates following car thefts.)

A range of policy strategies can be naturally allied with the introduction of major pricing mechanisms such as ORP or variablisation, with the aim of achieving the best possible reduction in emissions at the least social cost. For example, synergies between measures could be obtained by combining the introduction of city-wide electronic road pricing with strategies to:

- improve the efficiency or cost of the public transit system
- improve access for non-motorised transport
- restructure parking charges to further discourage car travel to congested areas
- encourage the replacement of urban car trips with public transport or non-motorised travel through information provision and education campaigns targeting transport options.

Strategies to improve transport demand management by educating the public about their travel options (such as the 'TravelSmart' program) can result in very cost-effective emission abatement – but the overall success of such campaigns will vary from centre to centre and will depend crucially on a variety of demographic factors (such as average trip distances required by the targeted population, amount of spare capacity on the public transport system, and the adequacy of local infrastructure to handle greater non-motorised trip levels).

'TravelSmart' is the name given to a set of transport awareness initiatives run by the Western Australian Department of Environmental Protection and Department of Planning and Infrastructure.

TravelSmart is a community-based program that encourages people to use alternatives to travelling in their private car, especially as a single occupant driver. It provides information, motivation and skills to help people choose alternatives to driving for personal travel. This is done through a program

called 'Individualised Marketing' that reaches households through schools, businesses and local government. TravelSmart also collaborates with organisations or community groups involved with environmental, health, cycling and transport access issues.

The rest of this section will discuss the sorts of issues that should be considered when assessing the feasibility of introducing location-specific policy options such as Individualised Marketing – options which could serve as useful adjuncts to a complete TDM package of measures, but will need to be assessed separately for each target community considered. Nationwide 'average abatement costs' will typically not be very meaningful when derived for such area-specific measures, so this section will use Individualised Marketing as an example (following the experience of TravelSmart in South Perth) for examining the cost elements that could be involved in a detailed implementation analysis for a given city.

Some initial applications of individualised marketing programs (such as the South Perth Pilot Project in 1997) have achieved reductions in overall car travel of between 10 and 17 per cent through a combination of increased walking, cycling, public transit use and car pooling. These changes in travel behaviour were found to be maintained reasonably well when measured one or two years later. For example, over a small, random sample for the pilot project in South Perth in 1997, TDM via individualised marketing achieved a 10 per cent reduction in car trips (with a 14 per cent reduction in overall car VKT across participants), a 16 per cent increase in walking, a 21 per cent increase in public transit use, and a 91 per cent increase in cycling (Ker & James 1999). Recent large-scale application of the program across South Perth (over 15 300 households) has apparently achieved similar levels of success (Litman 2001a).

If an Individualised Marketing campaign was introduced to other Australian metropolitan areas, it is hard to know whether similar VKT reductions would be obtained as for South Perth. For such a scenario, any VKT reduction occurring during times of heavy traffic congestion would be particularly beneficial, since heavily congested driving has around twice the average fuel consumption of free-flow conditions.

As well as the direct costs of program implementation, the assessment of the costs and benefits (of any policy measures aimed at reducing urban VKT) should also consider the likely changes in transport externality levels and in consumer surplus. A range of externality unit cost estimates and transport elasticities that can be used in such calculations are presented in BTCE (1995a), Luk & Thoresen (1996), Litman (2001b), Bray & Tisato (1998), and BTRE (2002b).

The upfront costs for the South Perth Pilot Project were around \$40 per person. Annualising this cost over 10 years (the assessment period typically chosen for the pilot projects) gives an estimated basic implementation cost of about \$4 per year per person for Individualised Marketing. It is probable that for widespread application of the measure, extra spending would be required

each year for marketing maintenance or follow-up programs (to ensure a reasonable durability for the travel changes). Depending on the particular neighbourhood, even further spending could be required for improvements to cycling/walking access and public transit capacity (to service commuter mode changes). Benefits would include savings in vehicle operating costs (with a likely non-fuel cost rate of around 9 cents per kilometre, for utilisation related depreciation and maintenance, such as tyre replacement and vehicle servicing), fuel use (at around 40 cents per litre), air pollution costs (indicative rate of 1 cent per kilometre), congestion costs (possible average rate of 15 cents per kilometre), road accident costs (indicative average rate of 10 cents per kilometre), roadway costs (in the order of 2 cents per kilometre for utilisation related expenditure such road maintenance and traffic control) and other externality costs (possibly in the order of 0.2 cents per kilometre for traffic noise and water pollution from road run-off).

Average travel times would be expected to increase slightly. This time increase should probably not be costed at the 'value of time' usually included in costbenefit analyses of vehicle use, with perhaps a nominal value of \$1 per hour being suitable. Literature figures for the 'value of time' are often given to be of the order of \$10 per hour. However, such values are not likely to be valid in these circumstances since many travellers freely choose to switch to slower modes as a result of the individualised marketing programs. Therefore, it is likely that the individuals involved either did not value the time they gave away (by the greater travel duration) at such high levels, or that there are uncaptured benefits balancing the extra time costs (e.g. many people could be finding that, once they have experienced them, they actually prefer the less stressful conditions of non-motorised modes or public transit). The extra costs involved in more cycling are probably more than balanced by the benefit to society of improved health from greater exercise levels.

If the VKT reductions experienced by the South Perth program are maintained over time, this application of Individualised Marketing will have generated a reasonable level of emission abatement at relatively low overall cost (in fact, using the above unit cost estimates implies that the program is likely to have been a 'no regrets' measure, involving net social gains).

While these estimated gains appear encouraging, there are a number of factors that should be kept in mind before generalising these results more widely. In particular, increased travel time could be a significant issue for some users. For example:

- Problems with mode switching may emerge if working times are inflexible.
- Sufficient capacity in public transport services and reasonable levels of infrastructure for non-motorised commuting have to exist (to carry the trips generated by the TDM mode shifts).
- Even for transport users wishing to switch modes, there will remain many trips still heavily favouring the use of a private vehicle (e.g. transporting small children or bulky loads).

Another possible problem with generalising from such studies is the issue of whether the VKT reductions seen by the pilot projects will be representative of *total network* travel changes, rather than simply those of the targeted individuals. As well as the VKT reductions (quoted for the study population) possibly not being obtained across all areas upon city-wide application of the measure, the estimated reduction may also not incorporate allowance for subsequent increases in general car travel due to reduced congestion levels on the network (from the TDM measure) attracting an *'induced traffic'* effect. The abatement success of such TDM marketing measures would be reduced if such effects generated significant volumes of extra car travel.

To date, the support for personalised travel programs has relied heavily on the generally favourable results of the South Perth trials. Yet there are various factors that raise doubts as to the extent it is valid to extrapolate these results across the wider community. Firstly, the lack of a control group means that it is difficult to determine whether the increase in public transport patronage that followed the introduction of personalised travel planning in South Perth could be attributed to it or to other factors, such as a general improvement in bus services.

In fact, the use of a control group is rare in such pilot assessment studies. A trip reduction pilot program in Denver used a pilot group and a control group to isolate the impact of the training (in trip reduction strategies) from any external factors. The study found no change in solo driving that could be definitely attributed to the program (Higgins 1995, p. 37).

A second issue with many such programs concerns the relatively large drop out rate often exhibited by personalised travel planning. While there may be significant reductions in car use for people that complete the program, the success of the program should be assessed in terms of the total population of the targeted area rather that just those completing the program. Such programs typically have highly variable retention rates.

In an objective review of the effectiveness of personalised travel planning, the UK Department of Transport and Local Government and the Regions (DTLR) concluded:

"... it is apparent that while there is evidence to suggest that this type of approach can be very effective in changing travel behaviour, there is, as yet, no conclusive pattern emerging as to when and where it is most useful. This highlights the complexity of processes leading to travel behaviour change, and our only partial understanding of those processes" (DTLR 2002).

The DTLR considered personalised travel planning programs to work best where there was a gap between the perception of public transport services and reality:

"For public transport, where services and travel quality is much higher than is perceived, personalised approaches can have very large effects, but where BTRE Report 107

such a gap does not exist the travel behaviour effects could be negligible" (DTLR 2002).

DTLR (2002) concluded that more trials need to be conducted before a full evaluation of the effectiveness of personalised journey planning techniques can be made, especially in terms of their ability to encourage lasting mode shifts.

Hence, while it is constructive that trials of TDM measures such as individualised marketing are being performed in Australia, it would be simplistic to conclude that the scale of the mode shifts so far experienced can be duplicated everywhere. Also, some technological developments (many making use of a variety of Intelligent Transport Systems) could reduce the case for individualised marketing and make other TDM measures more effective. For example, an increasing number of cities have established web sites where individuals can nominate their trip requirements (e.g. origin and destination), and the site then presents a range of travel options for different modes or a combination of modes. A range of information is often provided, including public transport details, travel times and travel costs associated with the various options.

Examples of such systems include:

- CityPlanner <www.travelinfosystems.com>, which allows travellers in the United Kingdom to check the availability of services and door-todoor journey times for different travel modes. It even suggests alternative ways to travel using all the available services (based on journey planner software that includes timetables for buses, the National Rail network and the London Underground).
- Transperth's Journey Planner,

<www.transperth.wa.gov.au/generalcontent.aspx?documentinstanceid=311>.

The SNCF (Société Nationale des Chemins de fer Français) site for "Travelling in the Paris Region: Timetables and routes", <idf.sncf.fr/GB/default.htm>.

Of course, as for other abatement strategies, TDM marketing measures and traveller information systems will tend to be more effective if they are allied with other, related measures such as integrated transport and land-use planning (including provision for non-motorised travel), parking policies, public transit improvements and road pricing.

A range of other ITS technologies could lead to reductions in transport emissions: including more widespread application of advanced traffic light coordination (to smooth traffic flows), public transport priority systems, incident management systems, and freight-distribution management systems; yet do not offer the same scale of abatement as optimal road pricing.

While electronic road pricing set-up costs could be relatively small, yet offer significant emission and economic benefits, a critical issue is how to achieve sufficient community support to enable ORP to become politically and socially acceptable.

a p p e n d i x

### **CARMOD MAJOR INPUT ASSUMPTIONS**

### PASSENGER VEHICLES: RESULTS USING BTRE CARMOD

CARMOD is a model of the dynamics of the Australian car fleet. The model incorporates age-specific characteristics (based on the year of manufacture of the vehicle), and calculates vehicle utilisation for each vintage over time, allowing for vehicle ageing and scrappage.

Estimating fuel consumption forms the main segment of the model framework. The model decomposes annual fleet fuel consumption into four components:

| Fuel consumption =      | Vehicles   | x Population x | VKT x        | Average Fuel Intensity |
|-------------------------|------------|----------------|--------------|------------------------|
| (litres)                | Population | ('000 persons) | (km þer car) | 100                    |
| (cars per '000 persons) |            |                |              | (litres per km)        |

Note: VKT is vehicle kilometres travelled per vehicle (per annum), and the factor of 100 is included because average fuel intensity is usually quoted in terms of litres consumed per 100 kilometres travelled (i.e. L/100 km).

Once the model has estimated fuel consumption and total vehicle kilometres travelled for each vintage, emissions of  $CO_2$ , methane (CH<sub>4</sub>), nitrous oxide (N<sub>2</sub>O), other oxides of nitrogen (NO<sub>x</sub>), carbon monoxide (CO), and nonmethane volatile organic compounds (NMVOCs, both exhaust and evaporative) are calculated using vintage-specific emission rates. (Emission levels for particulate matter (PM) and sulphur oxides (SO<sub>x</sub>) can also be roughly estimated by the model.)

To partially represent the effect from the emissions of several different gases, emissions of the directly radiative greenhouse gases (CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O) are also expressed in terms of a common unit—CO<sub>2</sub> equivalent emissions. The calculation of CO<sub>2</sub> equivalent emissions uses scale factors known as Global Warming Potentials (GWPs), which basically compare the radiative effect of an emitted gas over a specified period (commonly 100 years) with that of an equivalent mass of CO<sub>2</sub>. Due to the difficulty in quantifying such a global average value for gases that only reside in the atmosphere for a relatively short time (such as CO, NO<sub>x</sub> and NMVOCs), the indirect greenhouse gases do not currently have GWPs assigned to them, even though their greenhouse

contributions can be substantial (as well as often being noxious air pollutants). The current  $CO_2$  equivalent approach thus underestimates the total radiative effect of anthropogenic emissions.

The newly estimated version of CARMOD has been revised to take into account the surge in vehicle ownership experienced over the past five years. CARMOD is now based on a function that relates total private vehicle travel to real income growth. Car ownership rates are then derived from a base trend in annual vehicle travel per person and estimates of annual VKT per car.

Previous versions of CARMOD based total vehicle numbers on the product of population and vehicle ownership. Vehicle ownership was assumed to follow a simple logistic function over time. For Australia, the estimated car ownership saturation rate implied by pre-1995 data was around 0.52 vehicles per person. More recently, however, vehicle ownership has drifted off the trend logistic function. It appears GDP growth and decreases in real vehicle prices have stimulated higher car ownership levels those than originally implied by the historical data.

In fact, current car ownership is now actually above the old saturation estimate of around 0.52 vehicles per person. Refitting the logistic curve (including the data for recent years), implies that the trend saturation level for the Australian passenger vehicle fleet has shifted upwards to at least 0.54 cars per person, and could possibly be even significantly higher. Since there are only a few data points for the new trend (i.e. since the divergence from the originally estimated logistic curve), statistics using the original (logistic curve) methodology do not allow reasonable convergence to an updated estimate of the trend in cars per person over time. It was seen necessary to develop an alternative structural equation on which to base the modelling. As a result, a new projection method—of relating the trend in per capita vehicle travel to the trend in per capita GDP—was pursued for this study.

Though growth in vehicle ownership will tend to be related partly to increasing income levels, the Australian car market has also seen significant reductions in vehicle prices over recent years. Reduction in tariffs on imported motor vehicles and, more recently, the replacement of a 22 per cent wholesale tax on motor vehicles by the GST has seen vehicle prices fall significantly. Between June 1995 and June 2000, the CPI index of motor vehicle purchase costs has fallen, in nominal terms, by 3.4 per cent per annum. Over the same period, the total CPI index increased by 2.2 per cent per annum.

### Revised CARMOD: base case assumptions

Car ownership

As mentioned above, passenger vehicle travel per person was modelled as a saturating curve of real Australian GDP per person. Weibull, Gompertz and Logistic curves were fit to the data—and all gave similar formulations (i.e. similar fits to the data and similar forecast levels over the next 20 years). The

117

fit for the simplest of the derived forms (the logistic function), for data covering the second half of the twentieth century, is displayed in figure 1.1 below.



The per capita VKT functions all asymptote to about 9000 kilometres per person (for the total Australian population. The specification of the logistic function plotted in figure 1.1 is given by:

VKT per person = -6.8 + 15.8 / (1 + EXP(-(GDP per person - 9.6)/8))

using real Australian GDP (thousand dollars per capita) in 1999 prices.

The AGO specified GDP forecasts (to 2020) can then be used to derive trend curves into the future for the various equations. The three best fitting formulations (i.e. Weibull, Gompertz and Logistic) are plotted for the GDP forecasts in figure I.2. For this study, the logistic curve values were chosen as the underlying trend for projecting VKT per person to 2020.

Projections of average car utilisation (thousand kilometres per annum) were then estimated using the trend in annual GDP change (with an elasticity of 0.12), the trend in household ownership of vehicles (with an elasticity of -0.4), and projected changes in the proportion of the population of working age as a proxy for a variety of demographic factors that tend to reduce average VKT as the average age of the population increases—assumed elasticity of 0.75). Where possible, elasticities were estimated using regression analyses on BTRE long-term data sets for Australian vehicle characteristics. Where data limitations prevented such data fitting, assumed elasticities were based on literature values—especially those given in the Bureau's *Transport Elasticities Database* (2002b) and in NELA (2000), quoting Pickrell (1995).



The result of the various input assumptions (GDP trend as specified by AGO, cars per household assumed to continue current trends and increase from about 1.4 to about 1.5 by 2020, and ABS projections of the proportion of the population between the ages of 15 and 64 falling from about 67 per cent to about 65 per cent by 2020), are estimates of average VKT per car that remain fairly steady over the forecast period.

This estimated base trend in VKT per car was then combined with the estimated base trend in VKT per person (from the logistic formulation) to give a base trend for cars per person to 2020. This base trend was then modified for changes in vehicle prices over time (with an elasticity of -0.1), to derive the final base case estimates for Australian car ownership (given in table l.1).

Average VKT per car estimates for each projection year were then adjusted for projected fuel price changes (using an elasticity of -0.1) to give the final estimates for base case vehicle utilisation. These values (which are roughly

constant at a level of about 15 850 kilometres per vehicle per annum from 2010 onwards), along with the final base case projections of VKT per person, are also given in table I.1. Though the estimation process is dependent on the chosen elasticity values, the final utilisation trends derived by this formulation are not highly sensitive to variations in those elasticity values. For example, making the above relationship, between average VKT and the various underlying factors, doubly elastic would result in an estimated final trend only slightly higher than the current base case, at about 16 200 kilometres per vehicle per annum. Whereas making the relationship half as elastic gives an average VKT trend centred on about 15 700 kilometres.

Australian population projections and urban versus non-urban splitting factors.

Total population projections are as specified by the AGO (and to 2020 follow a similar trend to Series III of current ABS long-term population projections).

|                       | VKT/person | Vehicle ownership | Average VKT per car |
|-----------------------|------------|-------------------|---------------------|
| Financial year        | ('000 km)  | (cars per person) | ('000 km)           |
| 2000                  | 8.001      | 0.5152            | 15.530              |
| 2001                  | 8.059      | 0.5235            | 15.395              |
| 2002                  | 8.317      | 0.5277            | 15.760              |
| 2003                  | 8.416      | 0.5325            | 15.802              |
| 2004                  | 8.487      | 0.5367            | 15.812              |
| 2005                  | 8.552      | 0.5406            | 15.819              |
| 2006                  | 8.592      | 0.5438            | 15.800              |
| 2007                  | 8.641      | 0.5469            | 15.799              |
| 2008                  | 8.694      | 0.5496            | 15.819              |
| 2009                  | 8.741      | 0.5519            | 15.839              |
| 2010                  | 8.782      | 0.5541            | 15.849              |
| 2011                  | 8.818      | 0.5561            | 15.858              |
| 2012                  | 8.850      | 0.5581            | 15.858              |
| 2013                  | 8.876      | 0.5598            | 15.855              |
| 2014                  | 8.899      | 0.5613            | 15.854              |
| 2015                  | 8.918      | 0.5626            | 15.852              |
| 2016                  | 8.934      | 0.5636            | 15.850              |
| 2017                  | 8.947      | 0.5645            | 15.849              |
| 2018                  | 8.958      | 0.5653            | 15.847              |
| 2019                  | 8.967      | 0.5659            | 15.846              |
| 2020                  | 8.975      | 0.5664            | 15.844              |
| Source: BTRE estimate |            |                   |                     |

### TABLE I.I BASE CASE VKT AND VEHICLE OWNERSHIP ASSUMPTIONS

ABS long-term projections (Series II and Series III) have the proportion of the population in capital cities increasing from about 64 per cent in 2000 to about 65 per cent and 66 per cent respectively by 2020. Based on these trends, the CARMOD input assumption regarding the urban versus non-urban population split has been changed (from a constant 70/30 split) to an input of the urban population share increasing slightly to be about 71.5 per cent by 2020.

### Vehicle scrappage rates

The vehicle scrappage curves in CARMOD were checked against results from the latest ABS vehicle census data and, across grouped vehicle cadres, no statistically significant differences in vehicle survival trends were apparent. The base curves used in the model are plotted below.



120

### Fuel efficiency

Future rate of fuel use (L/100 km) assumptions for passenger vehicles are given in table 1.2 for both NAFC and 'on-road' values. National Average Fuel Consumption (NAFC) is a sales-weighted average of new passenger cars, which currently does not include all 4WD passenger vehicles.

## TABLE I.2 CURRENT CARMOD BASE CASE SCENARIO FOR FUEL INTENSITY

(L/100 km)

|       |                                              | Base case intensity— adjusted for     |
|-------|----------------------------------------------|---------------------------------------|
|       |                                              | 'on-road' fuel consumption,           |
| Year  | NAFC                                         | and for inclusion of 4WDs             |
| 2000  | 8.34                                         | 10.25                                 |
| 2005  | 7.91                                         | 9.79                                  |
| 2010  | 7.42                                         | 9.02                                  |
| 2015  | 7.00                                         | 8.44                                  |
| 2020  | 6.70                                         | 8.01                                  |
| Note: | 'on road' values given here are not adjusted | for future traffic congestion effects |

Note:'on road' values given here are not adjusted for future traffic congestion effects.Sources:BTRE estimates, AGO (pers. comm. 1 May 2001).

### Deterioration rates in vehicle fuel consumption and emissions

Currently, CARMOD assumes no deterioration in fuel consumption during a vehicle's first two years, with 1 per cent deterioration (in L/100 km) per annum thereafter for each vehicle cadre (until reaching a plateau for each vintage of 10 per cent worse than when new).

For emissions, CARMOD assumes some deterioration in emissions performance for different vintage vehicles (as outlined in table I.3 below).

### TABLE I.3 EMISSION DETERIORATION RATES FOR CARS

|                 | (g/km/annum) |           |           |
|-----------------|--------------|-----------|-----------|
|                 | Pre-1986     | Post-1986 | Post-1997 |
| со              | 1.2          | 1.0       | 0.5       |
| НС              | 0.07         | 0.06      | 0.03      |
| NO <sub>x</sub> | 0.05         | 0.05      | 0.05      |

Sources: BTRE estimates, FORS National In-Service Vehicle Emissions Study (1996).

BTRE Report 107

### **Emission factors**

Average emission factors derived from CARMOD results will differ slightly from current NGGI emission rates, due to inclusions in CARMOD for the differences between on-road driving (particularly in urban areas) and cycle test values, and to the emission methodology in CARMOD being substantially more detailed than the NGGI default processes. Only N<sub>2</sub>O emissions have a significantly different rate between CARMOD and the current NGGI methodology—all other emission outputs would have similar totals and, apart from N<sub>2</sub>O, estimated CO<sub>2</sub> equivalent emissions would not be affected at all (since AGO have requested only direct CO<sub>2</sub>-e be reported, and the effects of indirect greenhouse gases are not included in any totals).

CARMOD, however, uses a substantially lower rate for N<sub>2</sub>O emissions from three-way catalyst petrol vehicles than the NGGI. This is because the Bureau regards the default value used in the NGGI to be overestimated. The CARMOD value is based on data collated for BTCE Report 88 (1995a) and on rates used by the United States Environmental Protection Agency—e.g. Table D-12 of <http://yosemite.epa.gov/OAR/globalwarming.nsf /uniquekeylookup/shsu5bnglk/\$file/annex-d.pdf>

Sensitivity of the results to this issue is addressed in Chapter 2 of the report.

#### (g/km) NMVOCs NMVOCs Vintage $CH_4$ N20 NO<sub>x</sub> CO exhaust evaporative 1970s 3.33 0.210 0.0041 2.16 37.82 2.87 1985 0.150 0.0041 1.71 28.92 2.38 2.40 1989 0.100 0.0375 1.21 7.82 0.50 1.23 1990s 0.060 0.0375 0.69 4.50 0.32 1.23 2015 0.044 0.0375 0.43 1.76 0.22 1.00 2020 0.044 0.0375 0.43 1.76 0.22 1.00

FACTORS (REPRESENTATIVE VALUES)

**TABLE I.4 CARMOD PETROL VEHICLE AVERAGE EMISSION** 

Sources: BTRE estimates, FORS National In-Service Vehicle Emissions Study (1996), MAQS Air Emissions Inventory (EPANSW 1995), NGGIC (1996), Air Emissions Inventory Port Phillip Bay Control Region (EPAV 1991).

### **Global Warming Potentials**

GWP values are as specified by AGO (and are based on previously published IPCC rates).

| TABLE     | 1.5             | GWP VALUES                | USED IN B         | ASE CASE            |             |                 |
|-----------|-----------------|---------------------------|-------------------|---------------------|-------------|-----------------|
|           | со <sub>2</sub> | CH4                       | N <sub>2</sub> O  | со                  | NMVOC       | NO <sub>X</sub> |
| Urban     | I               | 21                        | 310               | na                  | na          | na              |
| Non-urban | l I             | 21                        | 310               | na                  | na          | na              |
| na n      | ot ava          | ulable (due to difficulty | in quantifying gl | obal radiative effe | ect of rela | tively short-   |

lived gaseous species that are not well-mixed in the atmosphere). Source: AGO (pers. comm. | May 2001) based on IPCC (1996).

### Other assumptions

### Traffic congestion

Current BTRE assumptions (roughly based on work for Bureau information sheets on congestion) have urban traffic congestion increasing the rate of fuel consumption by urban vehicles by 17 per cent by 2020. Sensitivity analysis on this factor appears in Chapter 2.

### Vehicle size distribution

CARMOD currently assumes a roughly constant size distribution of the vehicle fleet. In particular, it is assumed that the passenger vehicle fleet will continue to include a similar share of 4WD vehicles in the future.

### Alternative fuels market penetration rates

Based on current growth trends, and likely levels of annual registrations for new motor vehicles, CARMOD currently has base case assumed values of LPG accounting for 7 per cent fuel consumption by cars, diesel for 4 per cent and NG for 1.5 per cent by 2020.

### Base case emission projections: passenger cars

Table I.6 lists the base case  $CO_2$  equivalent emissions from passenger cars (for direct greenhouse gases), from 1990 to 2020. End-use and full fuel-cycle estimates are presented.

Under the revised BTRE base case,  $CO_2$  equivalent emissions from Australian passenger vehicles are projected to increase by around 28 per cent between 1998 and 2020.

Table I.7 lists the projected base case emissions by gas type.

Base case projections for major characteristics of the Australian car fleet are given in table I.8.

BTRE Report 107

## TABLE I.6PROJECTED BASE CASE CO2 EQUIVALENT<br/>EMISSIONS FROM PASSENGER CARS

### (Gigagrams)

| CO <sub>2</sub><br>33275<br>33339<br>33764 | End-use<br>34220<br>34351                                                                                                                                                                                                                                                                                                                                                         | Full fuel cycle<br>41064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 33275<br>33339<br>33764                    | 34220<br>34351                                                                                                                                                                                                                                                                                                                                                                    | 41064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 33339<br>33764                             | 34351                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3764                                       |                                                                                                                                                                                                                                                                                                                                                                                   | 41221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                            | 34847                                                                                                                                                                                                                                                                                                                                                                             | 41816                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 84438                                      | 35600                                                                                                                                                                                                                                                                                                                                                                             | 42720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 84909                                      | 36148                                                                                                                                                                                                                                                                                                                                                                             | 43378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 86155                                      | 37496                                                                                                                                                                                                                                                                                                                                                                             | 44995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 86926                                      | 38355                                                                                                                                                                                                                                                                                                                                                                             | 46026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 87124                                      | 38607                                                                                                                                                                                                                                                                                                                                                                             | 46328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 37619                                      | 39170                                                                                                                                                                                                                                                                                                                                                                             | 47004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 88379                                      | 40009                                                                                                                                                                                                                                                                                                                                                                             | 48011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8998                                       | 40696                                                                                                                                                                                                                                                                                                                                                                             | 48835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 39729                                      | 41491                                                                                                                                                                                                                                                                                                                                                                             | 49789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1327                                       | 43187                                                                                                                                                                                                                                                                                                                                                                             | 51824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12150                                      | 44070                                                                                                                                                                                                                                                                                                                                                                             | 52884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12778                                      | 44748                                                                                                                                                                                                                                                                                                                                                                             | 53698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13415                                      | 45431                                                                                                                                                                                                                                                                                                                                                                             | 54517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13858                                      | 45910                                                                                                                                                                                                                                                                                                                                                                             | 55092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14360                                      | 46523                                                                                                                                                                                                                                                                                                                                                                             | 55828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4815                                       | 46999                                                                                                                                                                                                                                                                                                                                                                             | 56399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 15223                                      | 47426                                                                                                                                                                                                                                                                                                                                                                             | 56911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 15570                                      | 47792                                                                                                                                                                                                                                                                                                                                                                             | 57350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1595                                       | 48189                                                                                                                                                                                                                                                                                                                                                                             | 57827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 16287                                      | 48540                                                                                                                                                                                                                                                                                                                                                                             | 58248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 16574                                      | 48843                                                                                                                                                                                                                                                                                                                                                                             | 58612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 16832                                      | 49116                                                                                                                                                                                                                                                                                                                                                                             | 58939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 17042                                      | 49342                                                                                                                                                                                                                                                                                                                                                                             | 59210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 17231                                      | 49547                                                                                                                                                                                                                                                                                                                                                                             | 59456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 17412                                      | 49742                                                                                                                                                                                                                                                                                                                                                                             | 59690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 17553                                      | 49898                                                                                                                                                                                                                                                                                                                                                                             | 59878                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 17661                                      | 50021                                                                                                                                                                                                                                                                                                                                                                             | 60025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 17735                                      | 50110                                                                                                                                                                                                                                                                                                                                                                             | 60132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                            | 34909         34909         36155         36926         37124         37619         38379         38379         38998         39729         41327         42150         42778         43415         43858         44360         44815         45570         45951         46287         46574         46832         47042         47231         47553         47661         47735 | 34909       36148         36155       37496         36155       37496         36926       38355         37124       38607         37619       39170         38379       40009         38379       40009         38379       40696         39729       41491         41327       43187         42150       44070         42778       44748         43415       45431         43858       45910         44360       46523         44815       46999         45223       47426         45570       47792         45951       48189         46287       48540         46574       48843         46832       49116         47042       49342         47231       49547         47412       49742         47553       49898         47661       50021         47735       50110 |

Appendix I

| TABLE I.7 | PROJECTED BASE CASE NON-CO <sub>2</sub> EMISSIONS |
|-----------|---------------------------------------------------|
|           | (END-USE) FOR PASSENGER VEHICLES                  |

(Gigagrams)

|             |                |                 |                 |      |         | NMVOCs      |       |
|-------------|----------------|-----------------|-----------------|------|---------|-------------|-------|
| Financial y | ear CO         | NO <sub>x</sub> | СН <sub>4</sub> | N20  | Exhaust | Evaporative | Total |
| 1990        | 3152           | 210             | 17.59           | 1.86 | 257.8   | 268.7       | 526.5 |
| 1991        | 3146           | 212             | 17.44           | 2.09 | 246.2   | 257.3       | 503.4 |
| 1992        | 3136           | 216             | 17.47           | 2.31 | 241.8   | 243.6       | 485.5 |
| 1993        | 3125           | 217             | 17.44           | 2.57 | 238.0   | 241.1       | 479.I |
| 1994        | 3083           | 218             | 17.28           | 2.83 | 231.7   | 237.0       | 468.7 |
| 1995        | 3098           | 223             | 17.43           | 3.15 | 230.0   | 238.2       | 468.I |
| 1996        | 3040           | 225             | 17.26           | 3.44 | 223.3   | 235.2       | 458.6 |
| 1997        | 2957           | 222             | 16.68           | 3.65 | 215.4   | 227.0       | 442.4 |
| 1998        | 2826           | 219             | 16.34           | 3.90 | 205.5   | 222.9       | 428.3 |
| 1999        | 2672           | 214             | 15.91           | 4.18 | 194.5   | 218.8       | 413.3 |
| 2000        | 2527           | 210             | 15.48           | 4.43 | 184.1   | 214.6       | 398.7 |
| 2001        | 2395           | 208             | 15.12           | 4.66 | 174.9   | 211.3       | 386.2 |
| 2002        | 2321           | 210             | 14.84           | 4.99 | 169.7   | 212.6       | 382.4 |
| 2003        | 2222           | 209             | 14.60           | 5.20 | 163.2   | 210.9       | 374.1 |
| 2004        | 2126           | 208             | 14.34           | 5.38 | 156.9   | 209.1       | 366.1 |
| 2005        | 2032           | 206             | 14.08           | 5.55 | 151.0   | 207.6       | 358.7 |
| 2006        | 1946           | 203             | 13.79           | 5.68 | 145.8   | 205.9       | 351.7 |
| 2007        | 1892           | 201             | 13.64           | 6.05 | 142.8   | 201.4       | 344.2 |
| 2008        | 1834           | 198             | 13.49           | 6.13 | 139.7   | 199.6       | 339.3 |
| 2009        | 1789           | 197             | 13.38           | 6.20 | 137.5   | 199.2       | 336.7 |
| 2010        | 1754           | 195             | 13.30           | 6.27 | 136.1   | 199.6       | 335.6 |
| 2011        | 1716           | 195             | 13.23           | 6.32 | 134.6   | 199.9       | 334.5 |
| 2012        | 1675           | 194             | 13.18           | 6.37 | 133.0   | 200.4       | 333.4 |
| 2013        | 1641           | 194             | 13.29           | 6.42 | 131.9   | 200.9       | 332.8 |
| 2014        | 1613           | 195             | 13.43           | 6.46 | 131.1   | 201.4       | 332.5 |
| 2015        | 1591           | 195             | 13.61           | 6.50 | 130.6   | 201.9       | 332.6 |
| 2016        | 1566           | 194             | 13.71           | 6.54 | 130.1   | 202.3       | 332.5 |
| 2017        | 1540           | 192             | 13.82           | 6.58 | 129.7   | 202.8       | 332.5 |
| 2018        | 1516           | 191             | 13.94           | 6.62 | 129.3   | 203.2       | 332.5 |
| 2019        | 1504           | 191             | 14.17           | 6.65 | 129.3   | 203.2       | 332.6 |
| 2020        | 1490           | 190             | 14.39           | 6.69 | 129.2   | 203.6       | 332.9 |
| Source:     | BTRE estimates |                 |                 |      |         |             |       |
| TABLE I.8 | CARMOD PROJECTED PARAMETERS (BASE CASE) |
|-----------|-----------------------------------------|
|           | FOR AUSTRALIAN CAR FLEET, 1990–2020     |

|           |            |              | Energy | Passenger  | Fuel       | New        |
|-----------|------------|--------------|--------|------------|------------|------------|
| Financial | Vehicles   | VKT          | use    | kilometres | intensity  | vehicles   |
| Year      | (thousand) | (billion km) | (PJ)   | (billion)  | (L/100 km) | (thousand) |
| 1990      | 7797       | 124.2        | 510.2  | 198.1      | 12.0       | 492.2      |
| 1991      | 8012       | 124.9        | 511.5  | 198.9      | 12.0       | 440.8      |
| 1992      | 8143       | 126.9        | 518.2  | 201.5      | 11.93      | 437.0      |
| 1993      | 8280       | 30.          | 528.5  | 205.9      | 11.88      | 449.8      |
| 1994      | 8404       | 132.6        | 535.8  | 209.1      | 11.81      | 476.0      |
| 1995      | 8628       | 138.2        | 555.2  | 217.1      | 11.74      | 528.4      |
| 1996      | 8882       | 142.0        | 567.5  | 222.4      | 11.68      | 531.3      |
| 1997      | 9101       | 143.3        | 570.8  | 223.7      | 11.64      | 550.9      |
| 1998      | 9419       | 146.0        | 578.4  | 226.8      | 11.58      | 654.8      |
| 1999      | 9690       | 149.7        | 590.I  | 231.7      | 11.52      | 672.7      |
| 2000      | 9837       | 152.8        | 599.6  | 235.4      | 11.48      | 596.0      |
| 2001      | 10121      | 155.8        | 610.9  | 239.4      | 11.46      | 654.4      |
| 2002      | 10293      | 162.2        | 635.4  | 248.4      | 11.45      | 642.5      |
| 2003      | 10477      | 165.6        | 648.I  | 253.1      | 11.45      | 637.4      |
| 2004      | 10650      | 168.4        | 657.8  | 256.9      | 11.42      | 633.2      |
| 2005      | 10819      | 171.1        | 667.6  | 260.8      | 11.41      | 675.5      |
| 2006      | 10971      | 173.3        | 674.5  | 263.9      | 11.38      | 662.7      |
| 2007      | 11123      | 175.7        | 682.3  | 267.3      | 11.35      | 663.4      |
| 2008      | 11266      | 178.2        | 689.4  | 270.8      | 11.31      | 661.3      |
| 2009      | 11401      | 180.6        | 695.7  | 274.1      | 11.27      | 651.7      |
| 2010      | 11537      | 182.9        | 701.2  | 277.3      | 11.21      | 659.0      |
| 2011      | 11656      | 184.8        | 707.2  | 280.0      | 11.19      | 645.5      |
| 2012      | 11776      | 186.7        | 712.5  | 282.6      | 11.16      | 657.9      |
| 2013      | 89         | 188.5        | 717.2  | 285.0      | 11.12      | 651.5      |
| 2014      | 12002      | 190.3        | 721.4  | 287.4      | 11.09      | 643.8      |
| 2015      | 12108      | 191.9        | 724.9  | 289.6      | 11.04      | 650.2      |
| 2016      | 12206      | 193.5        | 728.0  | 291.9      | 11.00      | 654.I      |
| 2017      | 12301      | 195.0        | 730.9  | 294.1      | 10.96      | 662.8      |
| 2018      | 12392      | 196.4        | 733.3  | 296.3      | 10.92      | 671.5      |
| 2019      | 12481      | 197.8        | 735.2  | 298.4      | 10.87      | 679.3      |
| 2020      | 12567      | 199.1        | 736.5  | 300.4      | 10.82      | 689.3      |

Note: 'Fuel intensity' refers to the average rate of on-road fuel consumption across the entire car fleet, where values have been adjusted to allow for the inclusion of 4WD passenger vehicles and the effects of urban traffic congestion.

Sources: BTRE estimates, ABS (2000a).

a b b e u d i x

### **TRUCKMOD MAJOR INPUT ASSUMPTIONS**

### **MODIFICATIONS TO BTRE TRUCKMOD**

The base case commercial vehicle emission projections were estimated using TRUCKMOD.

TRUCKMOD is a model of Australian commercial vehicle travel and fuel use. The model tracks vehicle use for three separate classes of commercial vehicle light commercial vehicles (LCVs), rigid trucks and articulated trucks—by age of vehicle. For the analysis of this report, the model output produced estimates of 'actual' VKT, fuel use and emissions for 1970–71 to 1997–98, and projections to 2019–20. A description of TRUCKMOD is given in BTCE (1995b).

TRUCKMOD has been upgraded and redeveloped for the current project there have been some minor structural changes to the model and many of the base case assumptions have been revised in the light of more recent data.

The major structural changes to TRUCKMOD are:

- re-estimation of the age-based vehicle attrition functions using recent Motor Vehicle Census data (ABS 2000b). The vehicle attrition function now controls the relative mix of vehicles (by age) leaving the commercial fleet. The overall number of commercial vehicles leaving the fleet is controlled through a variable aggregate attrition function.
- inclusion of a variable aggregate attrition function. This feature recognises that vehicle attrition will vary over time, and allows the user to control the aggregate rate of vehicle attrition. The inclusion of this feature means that it is now possible for the model to incorporate the latest vehicle sales data, by adjusting the aggregate attrition rate.

New premises in the model formulation for this project are:

The aggregate freight task model has been revised. Over the period 2000–2020, the aggregate road freight task is forecast to grow at 4.0 per cent per annum. This is based on assumed average GDP growth of 3.0 per cent per annum and real road freight rates declining by 0.5 per cent per annum. In BTCE (1995b), real freight rates were assumed to decline by approximately 0.75 per cent per annum between 1992–93 and 2014–15.

However, more recent evidence, such as TransEco (2001 and earlier issues) and ABS (2001e), shows that the reduction in real freight rates has been slower for much of the 1990s than over the previous two decades. Therefore, the BTRE has assumed a slightly slower reduction in real road freight rates (0.5 per cent per annum) for the current base case than previously assumed in BTCE (1995b).

- the split of the freight task between LCVs, rigid trucks and articulated trucks has been revised, with LCVs and rigid trucks share of the task now slightly less than in the original version of TRUCKMOD.
- the average load carried by articulated trucks has been assumed to grow at a rate consistent with the growth in average loads between 1971 and 1999. For articulated trucks, average loads are assumed to grow by approximately 1.6 per cent per annum.
- the assumed improvements in average fuel efficiencies of new commercial vehicles have been revised downwards from previous versions.

## MAJOR ASSUMPTIONS IN BASE CASE EMISSION PROJECTIONS

Aggregate freight task

128

In TRUCKMOD, the aggregate freight task is a function of GDP growth and real freight rates. The relationship is based on the following econometric model of road freight movements estimated by the BTRE:

In Freight<sub>t</sub> = 0.30 + 1.167In  $\triangle$ GDP - 0.898In Road Freight Rate + 0.017  $\triangle$ GDP

for tonne-kilometres of freight in the year t, with  $\Delta \text{GDP}$  the annual percentage change in real GDP.

Note: All variables in the model are expressed in real terms.

BTRE has used the Australian Greenhouse Office (AGO) GDP growth path assumptions, from 2000 to 2020, for the base case commercial vehicle emissions projections—see Appendix VI, table VI.3. The GDP assumptions made by the AGO imply average annual economic growth of 3.04 per cent per annum between 2000 and 2020. Over the same period, the BTRE has assumed a decline in real road freight rates of 0.5 per cent per annum (based on historical rates). These assumptions imply average growth in road freight activity of 3.96 per cent per annum between 2000 and 2020 (figure II.1).



### Share of freight by vehicle type

TRUCKMOD assumes that the share of freight carried by articulated trucks will continue to increase, mainly at the expense of rigid trucks. The articulated truck freight task, as a share of the aggregate freight task, is projected to increase from 76 per cent in 1995 to 86 per cent by 2020. Based on extrapolation of historic trends (using the logistic substitution method), the share of the freight task carried by rigid trucks is projected to decline from 19.8 per cent to 11.2 per cent and LCVs from 4.2 per cent to 3.4 per cent (figure II.2).

### Average load and average VKT

In TRUCKMOD, average load and average VKT are critical determinants of the required vehicle stock and hence total VKT. Like much of the other source data within TRUCKMOD, estimates of average load and average VKT are sourced from the Survey of Motor Vehicle Use (SMVU) (ABS 2000a and earlier issues). Since 1991, the SMVU estimates of average load and average VKT have exhibited large variation from survey to survey, which appears to be partly attributable to reductions in the sample size of the SMVU. The inter-survey variation present in the recent releases of the SMVU tends to obscure any changes to trends.

For the base case, it is assumed within TRUCKMOD that trend growth in average loads and average VKT continue pre-1991 trends. Therefore, for the base case, the average load carried by articulated trucks is assumed to increase between 1995 and 2020 by 1.64 per cent per annum (from about 17.6 tonnes to 26.6 tonnes), rigid trucks I per cent per annum (from 3.4 tonnes to 4.4

tonnes) and LCVs 0.5 per cent per annum (from 0.18 tonnes to 0.2 tonnes) see figure II.3. Average VKT by LCVs and rigid trucks are assumed to remain constant at 16 600 kilometres and 18 500 kilometres respectively, from 1995 to 2020. Average VKT by articulated trucks is assumed to increase by 1 per cent per annum, from 84 000 kilometres in 1995 to 107 000 kilometres in 2020 (figure II.4).





### Implied vehicle stock levels

The base case freight task, average load and average VKT assumptions imply growth in the stock of commercial vehicles of 2.85 per cent per annum for LCVs, 0.7 per cent per annum for rigid trucks and 1.85 per cent per annum for articulated trucks.

### New vehicle fuel efficiencies

In TRUCKMOD, total fuel consumption is the product of vehicle cohort (age) based VKT and average fuel efficiency. For the base case, average vehicle fuel efficiency of each cohort is assumed to remain constant over time—an implicit assumption of no deterioration in vehicle fuel efficiency. While TRUCKMOD has the capability to incorporate age-related fuel efficiency deterioration, there is little evidence available about the presence or scale of any deterioration. TRUCKMOD therefore does not include any deterioration factors for vehicle fuel efficiency in the base case.

For the base case, new vehicle fuel efficiency for LCVs and rigid trucks are assumed to increase by 0.25 per cent and 0.1 per cent per annum respectively from 1995 to 2020. For articulated trucks it is assumed there is no improvement in on-road average fuel efficiency (litres per vehicle kilometre, averaged over the fleet)—all improvement in the technical fuel efficiency of vehicles is assumed to be offset by increasing vehicle loads.

These trends appear to be consistent with the available evidence. There are no historical data currently available that give average fuel efficiencies for fleets of new commercial vehicles. The SMVU provides estimates of 'in-service' fleet fuel efficiency for commercial vehicles—data that contain indications of some improvements in LCV fuel efficiency over time. However, the data also show recent trends of worsening on-road fuel efficiency for rigid and articulated trucks, partly attributable to increasing vehicle size and mass.

### Fuel type split

Base case assumptions about the fuel type split were derived from historical share trends. Diesel is assumed to be practically the only source of motive power for articulated trucks to 2020. For rigid trucks, diesel is assumed to be the primary fuel, with its share increasing to 95 per cent in 2020. For LCVs, petrol and ADO use were assumed to be almost evenly split by 2020, around 40 per cent each, with LPG, LNG and CNG accounting for the remaining 20 per cent.

### Fleet average vehicle attrition rates

Fleet average vehicle attrition rates play a major role in the take-up rate of new technology. The BTRE has assumed that the aggregate rate of vehicle attrition is approximately equal to recent historical data. Over the period 1971–1991 average attrition rates were up to 6 per cent for commercial vehicles. Since 1991, however, average commercial vehicle attrition rates have been somewhat lower, around 3 per cent for LCVs, 2.5 per cent for rigid trucks and 3.75 per cent for articulated trucks. In the base case projections the average rate of vehicle attrition, between 2000 and 2020, is assumed equal to post-1991 observed attrition rates.

### Age-based vehicle attrition functions

The age-based vehicle attrition functions have been revised in TRUCKMOD, based on more recent analysis, using a larger data set, undertaken by the BTRE. The age based vehicle attrition functions control the relative rate of exit of different aged vehicles.

### Average vehicle VKT by vehicle age

TRUCKMOD computes total VKT by each age cohort of commercial vehicles. The age-based VKT estimates are computed from the fleet average VKT scaled by an age specific VKT scale factor (derived from an analysis of the 1991 and 1995 SMVU commercial vehicle data). The age specific VKT scale factors for each commercial vehicle class are illustrated in figure II.5. (An adjustment factor is included in TRUCKMOD to ensure that average VKT computed from the age-based sum of VKT matches the exogenously calculated fleet average VKT.)



133

### **Deterioration of vehicle emissions performance**

For the base case, TRUCKMOD assumes no deterioration in emissions performance over the life of the vehicle. There is scope within TRUCKMOD to allow for deteriorating vehicle emissions performance over the life of the vehicle, but there is no clear evidence of deterioration in emissions performance. This assumption is consistent with NEPC (2000: p. vii), which found no statistically significant evidence of a relationship between vehicle age and emission performance.

### **Emission factors and GWPs**

The emission factors used in the base case are as per BTCE (1995a), supplemented by the latest results from the NEPC (2000) test results for diesel vehicles. All  $CO_2$  equivalent emissions are based on 100-year global warming potential factors (supplied by the AGO, using previously published IPCC values).

The NEPC (2000) diesel vehicle emission test results are based on a foursegment composite urban drive-cycle test. A total of 80 vehicles were tested in the study, selected from six separate vehicle classes. Each vehicle class, therefore, comprised only a relatively small number of vehicles.

Drive-cycle test results often require some adjustments to correct for differences between test and normal driving conditions. For the base case

BTRE Report 107

projections, the NEPC results have been included in TRUCKMOD without any on-road adjustment.

At present TRUCKMOD uses an average emissions factor, for each gas type, applied to all vehicle cohorts. Some simplifying assumptions were necessary to translate the NEPC (2000) results to emission factors for use within TRUCKMOD. NEPC (2000) presents results for three separate vehicle cohorts: vehicles manufactured between 1980–1989, vehicles manufactured between 1990–1995 and vehicles manufactured since 1996. The emission factors differ, sometimes significantly, between vehicle cohorts. There is no clear age related trend in vehicle emissions. With the exception of particulate matter emissions, the BTRE has assumed the median cohort (i.e. the vehicles manufactured between 1990–1995) NEPC emission factors in TRUCKMOD (factors listed in the table II.1). Particulate matter emission rates are based on vehicles manufactured since 1996.

| (grams þer kilometre)    |                                       |      |                 |        |  |  |  |
|--------------------------|---------------------------------------|------|-----------------|--------|--|--|--|
| Vehicle type             | СО                                    | НС   | NO <sub>x</sub> | PM I 0 |  |  |  |
| LCVs                     | 3.28                                  | 0.11 | 1.04            | 0.318  |  |  |  |
| Rigid trucks             | 3.80                                  | 0.76 | 5.16            | 0.314  |  |  |  |
| Articulated trucks       | 5.23                                  | 0.48 | 15.36           | 0.687  |  |  |  |
| Sources: NEPC (2000), BT | Sources: NEPC (2000), BTRE estimates. |      |                 |        |  |  |  |

### TABLE II. | AVERAGE TEST-CYCLE EMISSIONS FACTORS

Estimates of particulate emissions from commercial vehicles are a new feature in TRUCKMOD. The BTRE has not yet incorporated the improvements in particulate emissions expected from the planned introduction of new fuels (especially diesel reformulation) and for new technology. Also, particulates are not included in the National Greenhouse Gas Inventory. Accordingly, particulate emission estimates produced by TRUCKMOD have not been included in the base case emissions results.

## BASE CASE EMISSION PROJECTIONS: COMMERCIAL VEHICLES

The BTRE base case implies average growth in commercial vehicle  $CO_2$  equivalent emissions of 2.2 per cent per annum from 2000 to 2020, (20 762 Gg to 31 874 Gg).  $CO_2$  equivalent emissions from articulated trucks and LCVs are projected to grow most strongly, 2.7 per cent and 2.4 per cent respectively.

```
Appendix 2
```



Tables II.2 and II.3 list the base case emission projections for end-use and full fuel cycle  $CO_2$  emissions, end-use  $CO_2$  equivalent emissions and non- $CO_2$  gaseous emissions (see also figure II.6). Tables II.4, II.5 and II.6 list the base case projections of the number of vehicles, total VKT and total tonne-kilometres by type of commercial vehicle from 1990 to 2020.

BTRE Report 107

## TABLE II.2 PROJECTED BASE CASE CO2 AND CO2 EQUIVALENT EMISSIONS—ALL COMMERCIAL VEHICLES

(Gigagrams)

|             |         |                 | Direct CO <sub>2</sub>                                 |
|-------------|---------|-----------------|--------------------------------------------------------|
|             |         |                 | equivalent                                             |
| Year        |         | co <sub>2</sub> | (CO <sub>2</sub> , CH <sub>4</sub> , N <sub>2</sub> O) |
| ending June | End-use | Full fuel cycle | End-use                                                |
| 1991        | 16775.7 | 19736.4         | 16981.7                                                |
| 1992        | 16604.4 | 19536.9         | 16810.4                                                |
| 1993        | 17392.9 | 20463.9         | 17606.6                                                |
| 1994        | 17508.2 | 20599.4         | 17722.0                                                |
| 1995        | 18106.9 | 21306.0         | 18329.2                                                |
| 1996        | 18786.6 | 22104.3         | 19017.5                                                |
| 1997        | 18969.7 | 22317.7         | 19202.6                                                |
| 1998        | 20021.7 | 23553.4         | 20267.5                                                |
| 1999        | 20287.9 | 23870.2         | 20537.0                                                |
| 2000        | 20509.4 | 24127.2         | 20761.9                                                |
| 2001        | 21069.7 | 24785.1         | 21329.4                                                |
| 2002        | 21532.5 | 25329.3         | 21798.3                                                |
| 2003        | 22112.2 | 26210.1         | 22386.0                                                |
| 2004        | 22710.3 | 26919.3         | 22991.7                                                |
| 2005        | 23112.2 | 27396.0         | 23398.6                                                |
| 2006        | 23608.3 | 28315.9         | 23901.5                                                |
| 2007        | 24145.5 | 28961.9         | 24445.3                                                |
| 2008        | 24703.8 | 29633.4         | 25010.2                                                |
| 2009        | 25269.6 | 30315.5         | 25583.2                                                |
| 2010        | 25832.5 | 30992.9         | 26152.8                                                |
| 2011        | 26440.1 | 31724.0         | 26767.6                                                |
| 2012        | 27044.8 | 32450.9         | 27378.7                                                |
| 2013        | 27649.7 | 33179.4         | 27990.5                                                |
| 2014        | 28261.9 | 33917.0         | 28609.5                                                |
| 2015        | 28861.1 | 34640.7         | 29216.1                                                |
| 2016        | 29455.1 | 35356.9         | 29816.5                                                |
| 2017        | 30028.5 | 36048.7         | 30395.8                                                |
| 2018        | 30589.5 | 36724.7         | 30961.8                                                |
| 2019        | 31082.0 | 37319.9         | 31459.0                                                |
| 2020        | 31495.5 | 37818.7         | 31874.0                                                |

Appendix 2

## TABLE II.3 PROJECTED BASE CASE NON-CO2 EMISSIONS — ALL COMMERCIAL VEHICLES —

### (Gigagrams, end-use)

| Year        |                |      |                 |        |        |
|-------------|----------------|------|-----------------|--------|--------|
| ending June | CH4            | N20  | NO <sub>x</sub> | СО     | NMVOCs |
| 1991        | 3.73           | 0.41 | 123.6           | 771.5  | 71.2   |
| 1992        | 3.72           | 0.41 | 122.9           | 770.9  | 71.0   |
| 1993        | 3.81           | 0.43 | 131.4           | 791.8  | 73.7   |
| 1994        | 3.80           | 0.43 | 133.4           | 802.2  | 74.5   |
| 1995        | 3.92           | 0.45 | 139.8           | 828.0  | 77.2   |
| 1996        | 4.06           | 0.47 | 145.3           | 859.8  | 80. I  |
| 1997        | 4.08           | 0.48 | 147.3           | 867.4  | 80.9   |
| 1998        | 4.27           | 0.50 | 156.7           | 903.6  | 84.8   |
| 1999        | 4.29           | 0.51 | 160.6           | 913.9  | 86. I  |
| 2000        | 4.34           | 0.52 | 161.1           | 920.5  | 86.7   |
| 2001        | 4.43           | 0.54 | 166.5           | 940.9  | 88.9   |
| 2002        | 4.50           | 0.55 | 170.4           | 956.2  | 90.6   |
| 2003        | 4.60           | 0.57 | 175.2           | 977.5  | 92.8   |
| 2004        | 4.70           | 0.59 | 180.2           | 997. I | 95.0   |
| 2005        | 4.74           | 0.60 | 183.5           | 1007.0 | 96.2   |
| 2006        | 4.81           | 0.62 | 188.1           | 1022.8 | 98.0   |
| 2007        | 4.88           | 0.64 | 192.5           | 1036.9 | 99.7   |
| 2008        | 4.94           | 0.65 | 197.0           | 1050.9 | 101.4  |
| 2009        | 5.01           | 0.67 | 201.6           | 1066.3 | 103.2  |
| 2010        | 5.07           | 0.69 | 206.2           | 1078.9 | 104.9  |
| 2011        | 5.13           | 0.71 | 211.3           | 1092.9 | 106.6  |
| 2012        | 5.17           | 0.73 | 216.1           | 1103.7 | 108.2  |
| 2013        | 5.22           | 0.75 | 221.0           | 1114.9 | 109.8  |
| 2014        | 5.26           | 0.76 | 226.0           | 1125.3 | 111.3  |
| 2015        | 5.31           | 0.79 | 231.2           | 1137.2 | 113.0  |
| 2016        | 5.34           | 0.80 | 236.1           | 1144.7 | 114.3  |
| 2017        | 5.35           | 0.82 | 240.8           | 1150.1 | 115.5  |
| 2018        | 5.35           | 0.84 | 245.1           | 1151.3 | 116.3  |
| 2019        | 5.34           | 0.85 | 249.2           | 1151.6 | 117.0  |
| 2020        | 5.25           | 0.87 | 252.7           | 1142.2 | 116.9  |
| Source: BT  | TRE estimates. |      |                 |        |        |

BTRE Report 107

| TABLE II.4 | PROIECTED | NUMBER | OF | COMMERCIAL | VEHICLES |
|------------|-----------|--------|----|------------|----------|
|            | ····/     |        |    |            |          |
|            |           |        |    |            |          |

|                       | (*000 vehicles)                 |              |                    |  |  |  |
|-----------------------|---------------------------------|--------------|--------------------|--|--|--|
| Year                  | LCVs                            | Rigid trucks | Articulated trucks |  |  |  |
| 1990                  | 1314.9                          | 328.9        | 51.8               |  |  |  |
| 1991                  | 1354.3                          | 331.0        | 52.1               |  |  |  |
| 1992                  | 1380.9                          | 329.6        | 51.4               |  |  |  |
| 1993                  | 1417.9                          | 328.6        | 52.4               |  |  |  |
| 1994                  | 1417.9                          | 332.7        | 52.6               |  |  |  |
| 1995                  | 1494.0                          | 334.0        | 55.2               |  |  |  |
| 1996                  | 1554.1                          | 345.0        | 56.5               |  |  |  |
| 1997                  | 1567.7                          | 348.5        | 56.9               |  |  |  |
| 1998                  | 1658.9                          | 356.1        | 61.0               |  |  |  |
| 1999                  | 1715.2                          | 358.5        | 62.8               |  |  |  |
| 2000                  | 1756.8                          | 364.5        | 63.1               |  |  |  |
| 2001                  | 1826.4                          | 372.9        | 64.8               |  |  |  |
| 2002                  | 1882.9                          | 375.9        | 65.8               |  |  |  |
| 2003                  | 1949.4                          | 380.5        | 67.2               |  |  |  |
| 2004                  | 2017.9                          | 385.2        | 68.6               |  |  |  |
| 2005                  | 2068.5                          | 386.1        | 69.4               |  |  |  |
| 2006                  | 2135.6                          | 389.8        | 70.7               |  |  |  |
| 2007                  | 2198.3                          | 392.4        | 71.9               |  |  |  |
| 2008                  | 2262.8                          | 395.0        | 73.1               |  |  |  |
| 2009                  | 2327.3                          | 397.2        | 74.4               |  |  |  |
| 2010                  | 2392.6                          | 399.3        | 75.6               |  |  |  |
| 2011                  | 2463.4                          | 402.0        | 77.1               |  |  |  |
| 2012                  | 2532.5                          | 404.2        | 78.4               |  |  |  |
| 2013                  | 2601.6                          | 406.0        | 79.8               |  |  |  |
| 2014                  | 2671.2                          | 407.7        | 81.2               |  |  |  |
| 2015                  | 2740.4                          | 409.0        | 82.6               |  |  |  |
| 2016                  | 2807.9                          | 409.7        | 84.0               |  |  |  |
| 2017                  | 2872.9                          | 410.0        | 85.3               |  |  |  |
| 2018                  | 2934.5                          | 409.5        | 86.6               |  |  |  |
| 2019                  | 2991.6                          | 408.2        | 87.7               |  |  |  |
| 2020                  | 3045.2                          | 406.3        | 88.7               |  |  |  |
| Sources: ABS (2000a a | and earlier issues), BTRE estim | ates.        |                    |  |  |  |

Appendix 2

## TABLE II.5 PROJECTED VEHICLE KILOMETRES TRAVELLED BY COMMERCIAL VEHICLES

(million kilometres)

| Year     | LCVs                                    | Rigid trucks | Articulated trucks |
|----------|-----------------------------------------|--------------|--------------------|
| 1991     | 22947.3                                 | 6117.4       | 3961.6             |
| 1992     | 23337.1                                 | 5933.3       | 3893.0             |
| 1993     | 23906.5                                 | 5947.0       | 4291.0             |
| 1994     | 23849.8                                 | 6149.0       | 4351.3             |
| 1995     | 25039.6                                 | 6171.8       | 4610.5             |
| 1996     | 25984.6                                 | 6375.2       | 4771.6             |
| 1997     | 26086.3                                 | 6440.9       | 4847.1             |
| 1998     | 27538.5                                 | 6581.4       | 5256.6             |
| 1999     | 28472.4                                 | 6625.6       | 5463.0             |
| 2000     | 29162.2                                 | 6736.6       | 5539.7             |
| 2001     | 30318.0                                 | 6890.6       | 5751.1             |
| 2002     | 31256.6                                 | 6946.6       | 5899.9             |
| 2003     | 32359.3                                 | 7032.5       | 6081.0             |
| 2004     | 33497.2                                 | 7118.6       | 6270.1             |
| 2005     | 34336.9                                 | 7135.6       | 6405.2             |
| 2006     | 35450.8                                 | 7203.9       | 6593.6             |
| 2007     | 36492.5                                 | 7251.5       | 6770.8             |
| 2008     | 37563.2                                 | 7299.0       | 6955.9             |
| 2009     | 38632.8                                 | 7340.6       | 7143.7             |
| 2010     | 39717.6                                 | 7379.7       | 7337.4             |
| 2011     | 40892.0                                 | 7429.7       | 7551.1             |
| 2012     | 42039.2                                 | 7469.1       | 7763.4             |
| 2013     | 43187.4                                 | 7503.2       | 7979.9             |
| 2014     | 44342.7                                 | 7533.4       | 8202. I            |
| 2015     | 45491.0                                 | 7557.4       | 8427.6             |
| 2016     | 46611.7                                 | 7572.2       | 8653.I             |
| 2017     | 47690.6                                 | 7575.9       | 8876.1             |
| 2018     | 48712.5                                 | 7567.0       | 9094. I            |
| 2019     | 49661.4                                 | 7543.6       | 9304.3             |
| 2020     | 50549.6                                 | 7508.5       | 9509.3             |
| Sources: | ABS (2000a and earlier issues). BTRE es | timates.     |                    |

page 139

## TABLE II.6PROJECTED TONNE-KILOMETRES BY<br/>COMMERCIAL VEHICLES

(billion tonne-kilometres)

| 1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996 | 4.69<br>4.68<br>4.52 | 22.86<br>20.23 | 65.02<br>61.94 |
|------------------------------------------------------|----------------------|----------------|----------------|
| 1991<br>1992<br>1993<br>1994<br>1995<br>1996         | 4.68<br>4.52         | 20.23          | 61.94          |
| 1992<br>1993<br>1994<br>1995<br>1996                 | 4.52                 | 19.90          |                |
| 1993<br>1994<br>1995<br>1996                         | 4.20                 | 17.70          | 62.19          |
| 1994<br>1995<br>1996                                 | 4.28                 | 19.95          | 70.78          |
| 1995<br>1996                                         | 4.27                 | 20.83          | 75.29          |
| 1996                                                 | 4.48                 | 21.12          | 81.05          |
|                                                      | 4.47                 | 22.03          | 85.33          |
| 1997                                                 | 4.58                 | 22.48          | 88.22          |
| 1998                                                 | 4.88                 | 23.19          | 95.63          |
| 1999                                                 | 5.07                 | 23.58          | 102.35         |
| 2000                                                 | 5.21                 | 24.21          | 106.04         |
| 2001                                                 | 5.49                 | 25.04          | 2.8            |
| 2002                                                 | 5.68                 | 25.50          | 118.13         |
| 2003                                                 | 5.91                 | 26.07          | 124.21         |
| 2004                                                 | 6.15                 | 26.65          | 130.59         |
| 2005                                                 | 6.34                 | 26.98          | 135.96         |
| 2006                                                 | 6.58                 | 27.52          | 142.57         |
| 2007                                                 | 6.80                 | 27.97          | 149.06         |
| 2008                                                 | 7.04                 | 28.44          | 155.84         |
| 2009                                                 | 7.28                 | 28.89          | 162.79         |
| 2010                                                 | 7.52                 | 29.33          | 169.98         |
| 2011                                                 | 7.78                 | 29.82          | 177.75         |
| 2012                                                 | 8.04                 | 30.28          | 185.60         |
| 2013                                                 | 8.30                 | 30.73          | 193.66         |
| 2014                                                 | 8.56                 | 31.16          | 201.95         |
| 2015                                                 | 8.83                 | 31.57          | 210.43         |
| 2016                                                 | 9.09                 | 31.95          | 218.99         |
| 2017                                                 | 9.35                 | 32.28          | 227.57         |
| 2018                                                 | 9.59                 | 32.57          | 236.09         |
| 2019                                                 | 9.83                 | 32.79          | 244.46         |
| 2020                                                 | 10.06                | 32.97          | 252.73         |

page 140

# appendi

### **AVIATION PROJECTIONS**

After road transport, aviation is currently the second largest modal source of greenhouse gas emissions in the Australian transport sector. Air transport accounts for around 14 per cent of total transport carbon dioxide equivalent  $(CO_2-e)$  emissions from Australian fuel use. Of this share of total emissions, bunker fuel use (international aviation) accounts for 66 per cent and domestic aviation accounts for 34 per cent.

As yet, there is no international agreement on how to attribute emissions from international air transport to individual countries. The models developed by the BTRE make projections about emissions resulting from fuel uplifted in Australia, but they do not necessarily imply attribution of these emissions entirely to Australia. Around 42 per cent of the fuel required for international air passenger movement to and from Australia is uplifted in Australia (derived from figures contained in Apelbaum 2001: p. 11)

Separate models are estimated below for domestic and international air travel. The domestic aviation industry is essentially split into two groups, depending on the type of fuel used. Aviation gasoline (Avgas) is used primarily by the general aviation market and aviation turbine fuel (Avtur) is used primarily by scheduled airline services. The general aviation market (consisting of commuter and charter services, private and training flights, and aerial agricultural work) is relatively small compared to the domestic airline market, accounting for less than 5 per cent of domestic aviation fuel use (DISR 2001). International aviation uses only Avtur.

### **AIRCRAFT EMISSIONS**

Emissions from aircraft depend on engine technology and the type and amount of fuel consumed. The main aircraft emissions are carbon dioxide (CO<sub>2</sub>), carbon monoxide (CO), nitrogen oxides (NO<sub>x</sub>) and non-methane volatile organic compounds (NMVOCs) which essentially consist of hydrocarbon (HC) species. Small amounts of methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>O) are also emitted.

Each combination of aircraft type and engine model will have its own specific emissions profile (Alamdari & Brewer 1994: p. 149). Carbon monoxide

emissions are essentially proportional to the amount of fuel burned. The rate at which the non-CO<sub>2</sub> gases such as CO, HC and NO<sub>x</sub> are emitted varies according to the stage of an aircraft's operations, as shown in table III.1. Of the non-CO<sub>2</sub> gases, an aircraft will emit mainly NO<sub>x</sub> while cruising. An aircraft idling emits mainly HC. Take-offs use the most engine power and emit a large amount of NO<sub>x</sub>.

| Stage of  | Average      | Average engine | E  | Emissions per unit | of fuel burnt |
|-----------|--------------|----------------|----|--------------------|---------------|
| aircraft  | time spent   | power (% of    | СО | НС                 | NOx           |
| operation | in stage (%) | maximum load)  |    | (g/kg)             |               |
| Idle      | 5            | 5              | 5  | 20                 | 5             |
| Take-off  | I            | 100            | 0  | 0                  | 40            |
| Cruise    | 92           | 60             | 0  | 0                  | 20            |
| Approach  | 2            | 30             | 5  | 2                  | 10            |

 TABLE III.I
 AVERAGE AIRCRAFT EMISSION RATES

Sources: Alamdari & Brewer (1994), BTCE (1995a).

Of the non-CO<sub>2</sub> gases from aircraft, nitrogen oxides have the highest overall emission rate and are the most difficult to control. Increasing fuel efficiency can reduce emission levels of CO<sub>2</sub>, CO and HC. According to which engine technology is employed, however, emission levels of NO<sub>x</sub> may increase (Alamdari & Brewer 1994: p. 151).

The effects of nitrogen oxides (and other gaseous emissions) depend on the altitude at which they are emitted. Nitrogen oxides contribute to two major environmental problems: ozone formation in the troposphere (the lower atmosphere) leading to global warming, and stratospheric (above 15 kilometres altitude) ozone depletion (Alamdari & Brewer 1994: p. 150).

Aircraft emission levels can be estimated as the product of consumption of a particular aviation fuel and a conversion factor which converts fuel consumed into the quantity emitted of any particular gas. Aviation turbine fuel and aviation gasoline have different emission factors (table III.2) for each of the greenhouse gases, due to the different compositions of the two fuel types. Averaging over the composition of the domestic and international airline fleets (by main engine type) and over the times spent in their various operating modes gives slightly differing emission factors for domestic and international avtur use. For example, international fights spend a greater proportion of total flight time cruising than do domestic flights.

## TABLE III.2AVERAGE AVIATION EMISSION CONVERSIONFACTORS

(grams per megajoule of fuel)

| Gas                    | Avgas       | Domestic Avtur | International Avtur |
|------------------------|-------------|----------------|---------------------|
| co <sub>2</sub>        | 68.0        | 67.8           | 67.8                |
| NO <sub>x</sub>        | 0.076       | 0.27           | 0.26                |
| CH <sub>4</sub>        | 0.057       | 0.0011         | 0.0004              |
| NMVOCs                 | 0.513       | 0.01           | 0.004               |
| со                     | 22.8        | 0.079          | 0.05                |
| N <sub>2</sub> O       | 0.0009      | 0.002          | 0.002               |
| Source: BTCE (1995a: A | ppendix 5). |                |                     |

For forecasting purposes, the average emission factors shown in table III.2 are assumed to remain constant over the period 1999–2000 to 2019–2020 (essentially due to the lack of any data to the contrary).

### **DOMESTIC AVIATION**

Domestic aviation currently accounts for about 34 per cent of total greenhouse gas emissions (in  $CO_2$  equivalent terms) from the Australian civil aviation industry. If recent trends continue, air travel will become more affordable. Increased demand for travel, in turn, will lead to higher fuel use and thus higher emissions.

Demand for domestic air services depends on both the number of passengers and the amount of freight to be carried on the network. As the volume of passengers and freight increase, it can be expected that more fuel will be consumed due to greater loads and the need for more aircraft.

Over the last 10 years domestic aircraft passenger numbers have grown steadily, albeit at a slower rate in the latter half of the decade. Between 1990 and 2000, aircraft passengers increased by 150 per cent.

In terms of tonnes carried, air freight is only a very small component of the total freight task within Australia, although the share is substantially higher in terms of the value of the goods carried (BTCE 1991: p. 13). Due to the short transit times offered by aircraft compared to road and rail, air transport attracts mainly perishable, non-bulk goods. Scheduled airline services carried approximately 98 per cent of total domestic air freight in 1997–98 (Apelbaum 2001).

Tonnes of air freight carried have remained fairly constant for the past 10 years, rising by only 9 per cent between 1988 and 1998 (AVSTATS 2001). Since 1989, however, the reporting of air freight statistics to the relevant authorities has not been consistent and statistics are unavailable for some airlines. Since air freight is carried almost completely on regular scheduled passenger services, it has not been included in the analysis as a determinant of the overall demand for aircraft fuel.

### **BTRE** model specification

Due to the long-term nature of the projections (from 1999–2000 to 2019–2020), the specification of the BTRE model is focused on simplicity while incorporating the major determinants affecting domestic avtur consumption.

The aim of the modelling process is to project total greenhouse gas emission levels from domestic civil aviation fuel (avtur) consumption. This includes fuel used on trunk and regional routes. Military fuel use is not included as it would require different explanatory variables to those for trunk and regional passenger services. The BTRE estimates that approximately 20 per cent of current domestic Avtur sales are to the military, but there is no time series available.

Fuel consumption is modelled as the product of the domestic (trunk and regional) aviation task level (measured by the number of seat-kilometres) and the average fuel intensity of the aircraft fleet (measured in litres consumed per seat-kilometre), which takes into account changes in technology. As the fuel efficiency of the aircraft fleet improves, the amount of fuel required to undertake the same task will decline. If the domestic task increases faster than the improvement in fuel efficiency, fuel consumption will be expected to increase.

The task level, measured in seat-kilometres travelled, can be derived by dividing the passenger-kilometres travelled by the passenger load factor. The passenger load factor measures the proportion of seats which are filled by passengers. For example, if the load factor was 100 per cent, then all aircraft seats would be filled and seat-kilometres would be equal to passenger-kilometres. With a load factor of 50 per cent, however, seat-kilometres are twice the magnitude of passenger-kilometres.

As seat-kilometres increase, more fuel is consumed because more aircraft are required to undertake the task. An increase in seat-kilometres may result from an increase in passengers travelling under the same load factor or from the same number of passengers travelling under a reduced load factor. Since aircraft operators tend to schedule service frequencies to maintain high load factors, forecasting seat-kilometres essentially relies on forecasting passenger-kilometres travelled. Passenger numbers are modelled and then multiplied by an average distance travelled to derive passenger-kilometres.

Passenger numbers have been split into two segments: Australian resident passengers flying on the domestic network (APASS) and foreign passengers flying on the domestic network (FPASS). The variables which affect the number of Australian residents are likely to differ from the variables affecting foreigners travelling on the domestic network.

The major variables which were found to affect the number of Australians travelling on the domestic air network were the level of income (depicted by the real gross non-farm product) and the price of airfares (depicted by an index of average real airfares for a medium distance journey).

(III.I)

(III.2)

To determine the number of foreign travellers on the domestic air network, it has been assumed that 75 per cent of the total number of foreign international passengers arriving in Australia will make a journey on the domestic air network on trunk routes. The proportion of 0.75 is an estimate made by the Bureau (see BTCE 1995: p. 67) utilising of the International Visitors Survey from the Bureau of Tourism Research (BTR). Results of these traveller surveys, reported for example in International Tourism Forecasts (BTR 1992), help determine the average number of domestic air passenger movements generated by each short-term foreign arrival (which means that person stays in Australia for less than 12 months).

Domestic consumption of avtur is estimated on the basis of the following set of equations.

Fuel consumption is derived by multiplying seat-kilometres travelled by the average aircraft fleet fuel intensity,

 $FC = SKM \times fuel intensity$ 

where FC is total domestic aviation turbine fuel consumption (measured in million litres), SKM is the total number of seat-kilometres flown on domestic flights (measured in million seat-kilometres) and fuel intensity refers to an average domestic aircraft fleet fuel intensity (measured in litres of fuel consumed per seat-kilometre flown).

Seat-kilometres are derived by dividing passenger-kilometres flown by the passenger load factor:

where SKM is the total of domestic seat-kilometres flown (measured in million seat-kilometres), DPASSKM is the total number of domestic revenue passenger-kilometres flown (millions) and LF is the average passenger load factor (expressed as a proportion of aircraft passenger capacity).

Total domestic passenger-kilometres are the sum of kilometres flown by both Australian residents and by foreigners on the domestic air network:

where DPASSKM is the total number of passenger-kilometres flown on the domestic network (millions), APASSKM is the number of Australian resident passenger-kilometres flown on the domestic network (millions) and FPASSKM is the number of passenger-kilometres travelled by foreigners on the Australian domestic network (millions).

Passenger-kilometres flown by residents on the domestic network are derived by multiplying resident passenger numbers on trunk routes by an average trunk route distance and resident passenger numbers on regional routes by an average regional route distance:

$$APASSKM = (TPASS \times TAVKM) + (RPASS \times RAVKM)$$
(III.4)

where APASSKM is the number of Australian resident passenger-kilometres flown on the domestic network (millions), TPASS is the number of Australian resident passengers travelling on the domestic trunk network (millions) and TAVKM is an average distance flown on trunk routes (kilometres), RPASS is the number of Australian resident passengers travelling on the domestic regional network (millions) and RAVKM is an average distance flown on regional routes (kilometres). Australian residents flying on the domestic network are modelled as a function of real gross non-farm product, real (medium distance) airfares, and dummy variables for the pilots' dispute in 1989-90, the World Expo held in Brisbane in 1988 and a definitional change for passenger numbers from September 1993 onwards. The model is estimated using quarterly data and the Cochrane-Orcutt procedure. See table III.3 for a summary of the regression statistics and diagnostic results.

### **TABLE III.3 RESULTS OF THE BTRE DOMESTIC AVIATION** MODEL

| Dependent |                                     | Independant |             | Standard |
|-----------|-------------------------------------|-------------|-------------|----------|
| variable  | Diagnostics                         | variables   | Coefficient | error    |
| In APASS  | Adj. R <sup>2</sup> = 0.995         | Constant    | 5.70        | 0.36     |
|           | Period = 1981Q1 to 2000Q4           | In RGNF     | 1.03        | 0.03     |
|           | EM: CORC                            | In RMEDF    | -0.50       | 0.03     |
|           |                                     | EXDUM       | 0.08        | 0.02     |
|           |                                     | AIRDUM      | -0.70       | 0.02     |
|           |                                     | DEFDUM      | 0.13        | 0.01     |
| Notor: 1  | Adi P2 refers to the adjusted P2 of | tatistic    |             |          |

Notes: Adj R<sup>2</sup> refers to the adjusted R<sup>2</sup> statistic

2. Period refers to the estimation period, where Q denotes quarterly data.

3. EM refers to the estimation method used, where CORC denotes

Cochrane-Orcutt estimation.

Source: BTRE estimates.

That is,

#### In APASS = 5.70 + 1.03 In RGNF – 0.50 In RMEDF + 0.07 EXDUM - 0.70 AIRDUM + 0.13 DEFDUM (III.5)

where APASS is the number of Australian passengers travelling on the domestic network (measured in millions), RGNF is real gross non-farm product, RMEDF is an index of real medium distance airfares, EXDUM is a dummy variable in the September quarter of 1988 for the World Expo held in Brisbane, AIRDUM is a dummy variable for the pilots' dispute in 1989-90, and DEFDUM is a dummy variable for a definitional change from September 1993 onwards that counts passengers by aggregating total traffic on board each flight stage, instead of counting traffic once per flight number.

Passenger-kilometres flown by foreigners on the domestic network were estimated by multiplying total short-term foreign international arrivals by the average distance flown on trunk routes (the BTRE assumes the majority of foreigners travel on trunk routes) and 0.75 (the BTRE estimate of the proportion of foreign arrivals that undertake a domestic trip by air):

$$FPASSKM = INPASS \times 0.75 \times TAVKM$$
(III.6)

where FPASSKM is the number of passenger–kilometres travelled by foreigners on the Australian domestic air network (millions), INPASS is the total number of short-term foreign arrivals in Australia (millions) and TAVKM is the average distance flown on trunk routes (kilometres).

Data collected for each of the variables in equations III.1 to III.6 are detailed in Table III.13.



Figure III.1 graphs the historical actual and predicted levels of APASS using the BTRE model specification (using annual summation of quarterly data). The model assumes constant elasticities. Originally it was expected that income, airfares and the real petrol price index (a proxy for competition by road transport) would all influence the number of Australian residents travelling on the domestic air network. However, the real petrol price index was removed from the final model because it was highly correlated to real airfares and did not offer any different information with which to model passenger numbers. The coefficient on RGNF of 1.03 (shown in table III.3) suggests that passenger numbers are quite responsive to changes in national income levels. As expected, airfares have a negative impact on passenger numbers. BTRE Report 107

*Fuel intensity.* Historical data on fuel consumption and seat-kilometres travelled permit the use of equation III. I to obtain a series on the fuel intensity of the domestic aircraft fleet. The fuel intensity series is derived by dividing fuel consumption by seat-kilometres to obtain litres per seat-kilometre. Table III.4 provides the time series for the period 1981–82 to 1999–2000.

Average kilometres. Average kilometres is derived separately for trunk and regional routes. Total trunk revenue passenger-kilometres flown (TPASSKM) is divided by the total number of trunk passengers (TPASS), giving average kilometres flown on trunk routes (TAVKM). Similarly, total regional revenue passenger-kilometres flown (RPASSKM) is divided by the total number of regional passengers (RPASS), giving average kilometres on regional routes (RAVKM). Revenue kilometres refer to the number of kilometres travelled with fee-paying passengers. They do not include kilometres flown for the repositioning of aircraft. Average kilometres flown have been increasing steadily from approximately 810 kilometres for trunk routes and 210 kilometres for regional routes and 390 kilometres for regional routes in 2000.

|                  | (1)                        | (2)                   | (3)             |
|------------------|----------------------------|-----------------------|-----------------|
|                  | Domestic aviation          | Seat-                 | Fuel Intensity  |
|                  | fuel consumption           | kilometres            | (3) = (1) / (2) |
| Year ending June | (million litres)           | (million)             | (L/skm)         |
| 1982             | 964.5                      | 14933                 | 0.065           |
| 1983             | 934.9                      | 14248                 | 0.066           |
| 1984             | 930.7                      | 13966                 | 0.067           |
| 1985             | 954.6                      | 14733                 | 0.065           |
| 1986             | 1026.7                     | 16110                 | 0.064           |
| 1987             | 1066.9                     | 17334                 | 0.062           |
| 1988             | 1142.3                     | 18322                 | 0.062           |
| 1989             | 1125.5                     | 18821                 | 0.060           |
| 1990             | 899.4                      | 14847                 | 0.061           |
| 1991             | 1150.2                     | 21748                 | 0.053           |
| 1992             | 1255.6                     | 25703                 | 0.049           |
| 1993             | 1313.6                     | 26294                 | 0.050           |
| 1994             | 1377.7                     | 32154                 | 0.043           |
| 1995             | 1601.1                     | 36768                 | 0.044           |
| 1996             | 1748.9                     | 39761                 | 0.044           |
| 1997             | 1826.6                     | 41423                 | 0.044           |
| 1998             | 1617.8                     | 41077                 | 0.039           |
| 1999             | 1666.5                     | 41467                 | 0.040           |
| 2000             | 1997.3                     | 42953                 | 0.046           |
| Sources: BTCE (1 | 995a D 232-233) DISR (2001 | ) AvStats (2001) BTRE | estimates       |

## TABLE III.4 DERIVED FUEL INTENSITY SERIES FOR THE DOMESTIC AIRLINE FLEET

Australian passengers. The number of Australian passengers travelling on the domestic air network is calculated by subtracting the estimated foreign passenger component from statistics on total domestic passengers. Between 1982 and 1989 Australian passenger numbers increased from 13.1 million to 15.2 million—an increase of approximately 16 per cent. Growth was stifled in 1989–90 by the pilots' dispute, and Australian resident passenger numbers fell to 10.7 million (a fall of 30 per cent in one year). Since the pilots' dispute, passenger numbers have grown strongly, increasing to 27.88 million in 2000, an increase of 83 per cent since 1990–91 (the first financial year after the pilot strike).

Foreign passengers. The number of foreign visitors travelling on the Australian domestic air network was estimated to be 75 per cent of the total number of short-term foreign arrivals. Numbers of foreign passengers have been increasing strongly since 1982, with only a small decline due to the pilots' dispute in 1989–90 and again for the Asian crisis in 1998. Numbers grew from 0.72 million in 1982 to approximately 1.6 million in 1990 and 3.5 million in 2000. In other words, more than double as many foreign passengers flew on domestic routes in 2000 than they did a decade before. The pilots' dispute led to a fall in

foreign passengers in 1990 of only 3 per cent from 1989 levels and the Asian crisis led to only 0.5 per cent decline in 1998 from 1997 levels, with growth appearing to have resumed after that.

Real gross non-farm product. The seasonally adjusted real gross non-farm product is an income variable and uses 1999 as the base year. It has been increasing every year since 1982, with the exception of the 1982-83 financial year.

*Real airfares.* The price level was represented by an index (base 1997) of average real air fares on medium distance air routes. Real domestic airfares declined between 1984 and 1992 due mostly to airline deregulation and the introduction of Compass in 1992. Since the departure of Compass that same year, real airfares have risen but are still well below pre-deregulation levels. It is expected that if real airfares increase, fewer people will be able to afford to travel, which will cause a negative impact on Australian passenger numbers.

EXDUM. This is a dummy variable which reflects the World Expo held in Brisbane in the third quarter of 1989. It is set to 1 in that quarter and zero everywhere else.

AIRDUM. This is a dummy variable which reflects the year of the pilots' dispute. It is equal to 0 for all years except those of the pilots' dispute: from the second quarter of 1989 to the third quarter of 1990. AIRDUM is equal to 0.2 in quarters one and two of 1989, 0.8 in quarter three of 1989, 1 in quarter four of 1989, 0.4 in quarter one of 1990, 0.3 in quarter two of 1990, 0.2 in the period quarter three 1990 to quarter one 1991, 0.1 in quarter two of 1991 and 0 elsewhere. Different coefficients are used to account for the degree of the effect in a particular quarter.

DEFDUM. This is a dummy variable to account for a definitional change from September 1993 onwards that counts passengers by aggregating total traffic on board each flight stage, instead of counting traffic once per flight number. It is set at 0.33 for the September quarter of 1993 (as it was in effect for one month of this quarter only), and at 1 after the third quarter of 1993.

Foreign arrivals. Foreign arrivals are the total number of short-term foreign arrivals in Australia (INPASS). The modelling of foreign arrivals is detailed below, especially in equation III.13. Foreign arrivals have shown strong growth since 1982, increasing by 390 per cent by 2000. Since 1990, foreign arrivals have grown by 117 per cent.

### Assumptions

For the purposes of projecting domestic aviation turbine fuel consumption to the year 2019–20, it is necessary to make a number of assumptions about the independent variables. Table III.5 roughly summarises the assumptions regarding future growth in the underlying variables.

It was assumed that the real gross non-farm product (RGNF) would increase by an average of 3 per cent per annum to the year 2019–20. The exact annual growth rate projections for income are an average of GTEM, G-Cubed and

Monash projections, provided by the AGO (pers. comm. 2001)—see Appendix VI, table VI.3.

### TABLE III.5 DOMESTIC AVIATION PROJECTION ASSUMPTIONS

(per cent growth per annum)

| Variable                            | 2000–2020 |
|-------------------------------------|-----------|
| Real gross non-farm product (RGNF)  | +3.0      |
| Real airfares (RMEDF)               | -1.3      |
| Average kilometres travelled (AVKM) | +1.5      |
| Passenger load factor (LF)          |           |
| Source: BTRE estimates              |           |

Real airfares (RMEDF) are assumed to decline by 1.3 per cent per annum to the year 2019–20. The decline in real airfares will most likely be due to increased competition in the domestic aviation market.

The passenger load factor (LF) is assumed to remain constant at the 1999–2000 figure of 75 per cent. Since 1985, load factors have varied very little from a 70–75 per cent figure. The assumed value of 75 per cent is slightly higher than the average load factor over the past 15 years, as airline operators are expected to try and increase current load factors as a means of cutting costs to remain competitive. This is already the case for regional airlines which have shown steady increases in load factors since 1990–91. A number of scenarios outlined in the next section ('Projection results and scenarios') alter the assumption made about passenger load factors.

Average kilometres travelled per passenger on trunk routes (TAVKM) and regional routes (RAVKM) are assumed to increase by 1.5 per cent per annum. This is consistent with historical data and assumes that developments in aircraft and fuels will allow planes to fly longer distances.

BTCE (1992) calculated the likely improvements to the domestic aircraft fleet fuel efficiency under a number of scenarios. Likely improvements will depend upon when the fleet is replaced. Between 1988 and 2005 the BTCE (1992: p. 44) estimated improvements in fuel efficiency to be 33 per cent if aircraft are replaced after 15 years; 22 per cent if replaced after 20 years; and 14 per cent if replaced after 25 years. Using these figures and extending them to the year 2020, the improvements in fuel efficiency between 2000 and 2020 would reach 43 per cent for a fleet replaced after 15 years; 28 per cent after 20 years; and 18 per cent after 25 years. The BTCE also reported in 1995 that Qantas (pers. comm. 1994) suggested that a fuel efficiency improvement of 40 per cent in 20 years appeared unlikely. Therefore, it is assumed that by 2020 the fuel efficiency of the domestic aircraft fleet will improve by 28 per cent in the base case scenario.

Table III.13 details the actual and projected levels for each model variable for each year to 2019–20.

**Projection results and scenarios** 

Using the BTRE model and the assumptions in table III.5, domestic avtur consumption from civil aviation is projected to increase from 1992 million litres in 1999–2000 to 3102 million litres in the year 2009–10 and to 4741 million litres in 2019–20. Figure III.2 shows the projected levels of domestic civil aviation turbine fuel consumption.



On the basis of the assumptions in table III.5, it is projected that Australian residents travelling on the domestic network will increase from 27.88 million in 1999–2000 to 42.06 million in 2009–10 and to 59.67 million in 2019–20. The total number of seat-kilometres travelled on the domestic air network (including Australian and foreign passengers) will increase from 42.95 billion in 1999–2000 to 80.37 billion in 2009–10 and to 146.5 billion in the year 2019–20.

Tables III.6 and III.7 detail how changing the assumptions on fuel efficiency and load factors affects projected levels of fuel consumption and seat-kilometres travelled. As fuel efficiency improves, total fuel consumption levels (and proportionally, emissions) fall. As load factors are increased, fuel consumption declines.

## TABLE III.6 SCENARIOS FOR DOMESTIC AVTUR CONSUMPTION

(million litres)

| Fuel efficiency           |       |                        |       |  |
|---------------------------|-------|------------------------|-------|--|
| improvement by 2019–20    |       | Load factor in 2019–20 |       |  |
| (per cent over 1999-2000) | 0.7   | 0.75                   | 0.8   |  |
| 10                        | 6211  | 5797                   | 5435  |  |
|                           | (34%) | (25%)                  | (17%) |  |
| 18                        | 5659  | 5282                   | 4952  |  |
|                           | (22%) | (14%)                  | (7%)  |  |
| 28                        | 4968  | 4638                   | 4348  |  |
|                           | (7%)  | ()                     | (-6%) |  |
| 30                        | 483   | 4509                   | 4227  |  |
|                           | (4%)  | (-3%)                  | (-9%) |  |
| not applicable            |       |                        |       |  |

not applicable

Notes: Base case scenario is a load factor of 0.75 and fuel efficiency improvement of 28 per cent.

Figures in parentheses refer to percentage change from base case estimate. Source: BTRE estimates.

### TABLE III.7 SCENARIOS FOR DOMESTIC SEAT-KILOMETRES IN 2019–20

|                | Seat-         | Change from |
|----------------|---------------|-------------|
| Load factor    | kilometres    | base case   |
| in 2019–20     | (million skm) | (%)         |
| 0.70           | 156 960       | 7.1         |
| 0.75           | 146 496       |             |
| 0.80           | 137 340       | -6.3        |
| not applicable |               |             |

Note: Base case assumption is load factor of 0.75.

Source: BTRE estimates.

### **Aviation gasoline**

Avtur is by far the major fuel consumed in the domestic aviation market. However aviation gasoline (Avgas) is also used, mainly in the general aviation market. The level of fuel consumption by general aviation is only a very small component of total aviation fuel consumption and does not warrant an extensive econometric modelling procedure.

Avgas consumption has changed very little in the past 25 years and based on historical data it has been assumed to remain constant at the 1999–2000 figure of 103.3 megalitres per year (DISR 2001; BTCE 1995a: p. 234).

Figure III.3 illustrates the actual and projected Avgas consumption levels between 1973–74 and 2019–20. Table III.14 details the actual and projected levels of Avgas.



154

### **Projected emissions from domestic aviation**

Projected levels of greenhouse gas emissions can be calculated from the fuel consumption projections for domestic aviation.

Conversion of fuel consumption in litres to megajoules of energy is made by multiplying litres consumed and the relevant energy density conversion factor: for Avtur, the energy density is 36.8 megajoules per litre of fuel; for Avgas, 33.1 megajoules per litre of fuel.

Megajoules of fuel consumed are multiplied by the relevant emission conversion factors to obtain emission levels for each of the greenhouse gases.

Carbon dioxide equivalent emission levels for the total domestic aviation market (both major airlines and general aviation) are projected to increase by a total of 139 per cent between 1999–2000 and 2019–20. The increase in emissions is essentially due to the scheduled airline market, where carbon dioxide equivalent emissions seem set to increase by 146 per cent between 1999–2000 and 2019–20. The carbon dioxide equivalent emissions from the general aviation market is assumed to remain unchanged over the same period. This may turn out to be an overestimate if 'cleaner' aviation gasoline is

developed. Nevertheless, the proportion of emissions from Avgas for the aviation sector is so small that even a 30 per cent reduction in emissions between 2000 and 2020 would give domestic (civil) aviation emissions in the year 2019–20 only 0.5 per cent less than the current projection. Tables III.16-17 contain projected levels of greenhouse gases from domestic aviation.

As mentioned earlier, increasing passenger load factors and/or improving fuel efficiency will lead to reduced fuel consumption and carbon dioxide equivalent emissions.

### INTERNATIONAL AVIATION

International aviation currently accounts for around 66 per cent of total greenhouse gas emission levels from the civil aviation industry using fuel purchased in Australia.

The level of aviation turbine fuel (Avtur) uplifted in Australia will in part depend upon the projected level of international travel to and from Australia.

Foreign passenger arrivals in Australia have been growing strongly since 1982 as Australia has become a more popular tourist destination. Between 1990 and 2000 foreign arrivals increased by 117 per cent, and Australian passenger departures increased by 60 per cent.

**BTRE** model specification

Due to the long-term nature of the projections (from 1999–2000 to 2019–20), the BTRE model specification has been developed with the aim of achieving a simple formulation that incorporates all of the major determinants affecting international Avtur consumption.

Fuel consumption was modelled as the product of the international task to and from Australia (measured in seat-kilometres performed) and the fuel intensity of the international aircraft fleet arriving in and departing from Australia (measured in litres per seat-kilometre). If the fuel efficiency of the aircraft fleet improves, then fuel consumption will fall. Alternatively if the task (and thus seat-kilometres) declines, fuel consumption will also decline.

Seat-kilometres were derived by dividing international passenger-kilometres by the average passenger load factor (which is a measure of the percentage of the aircraft seats in use). As seat-kilometres increase, so will fuel consumption. Seat-kilometres may increase if load factors decline and/or passenger volumes increase.

Short-term international passenger-kilometres were derived by multiplying short-term passenger numbers by the average distance flown. Passenger numbers were split into two groups: short-term foreign arrivals and Australian resident departures. Total international passenger numbers were derived by doubling short-term foreign arrivals and Australian resident departures (to account for the return journey) and increasing the result by approximately 2 per cent to account for long-term or permanent movements (derived from data contained in ABS 2001c).

The major variables which were found to affect both foreign arrivals and Australian resident departures were income levels and relative prices in Australia compared to overseas countries (represented by the real trade weighted index of the exchange rate). Real airfares were not included as the trade-weighted index better captures the costs of the entire holiday package.

The level of freight carried by international aircraft was not found to be a significant variable when determining fuel consumption. While international air freight is carried on passenger flights if there is sufficient space available, tonnages are very small. Only 0.1 per cent of international freight is carried by air (BTRE Indicators Database). Most international trade is carried by ships.

Equations (III.7) to (III.13) outline the final BTRE model specification for international avtur fuel consumption. Table III.8 presents a summary of the regression results and diagnostic tests.

| <b>D</b>   |                            |             |             | <b>6</b> |
|------------|----------------------------|-------------|-------------|----------|
| Dependent  |                            | Independent |             | Standard |
| variable   | Diagnostics                | variables   | Coefficient | Error    |
| In OUTPASS | Adj. R <sup>2</sup> = 0.99 | Constant    | -7.61       | 0.42     |
|            | Period: 1981Q1 to 2000Q2   | In RGNF     | 1.72        | 0.02     |
|            | EM: OLS                    | In RTWI(–2) | 0.18        | 0.04     |
|            |                            | BIDUM       | -0.07       | 0.02     |
|            |                            | OLYDUM      | -0.04       | 0.03     |
|            |                            | DUMI        | 0.07        | 0.01     |
|            |                            | DUM2        | -0.07       | 0.02     |
| In INPASS  | Adj. R <sup>2</sup> = 0.99 | Constant    | -16.86      | 0.85     |
|            | Period: 1981Q1 to 2000Q4   | In G7GDP    | 3.41        | 0.07     |
|            | EM: CORC                   | In RTWI(–4) | -0.48       | 0.09     |
|            |                            | BIDUM       | 0.10        | 0.03     |
|            |                            | ASIADUM     | 0.01        | 0.00     |
|            |                            | OLYDUM      | 0.03        | 0.06     |
|            |                            | ERRDUM      | -0.07       | 0.05     |

## TABLE III.8 RESULTS OF THE INTERNATIONAL AVIATION MODEL

Notes: I. Adj  $R^2$  refers to the adjusted R2 statistic.

 Period refers to the estimation period, where Q denotes quarterly data and A denotes annual data.

3. EM refers to the estimation method used, where OLS denotes Ordinary Least Squares estimation and CORC denotes Cochrane–Orcutt estimation.

Source: BTRE estimates.

(111.9)

(III.10)

Fuel uplifted in Australia is calculated by an identity linking it to total seat-kilometres times the average fleet fuel intensity times 0.42. The latter is an estimate of the proportion of total aviation fuel consumed by aircraft flying to and from Australia which is uplifted in Australia (derived from data contained in Apelbaum 2001).

$$AFC = SKM \times FI \times 0.42 \tag{III.7}$$

where AFC is international Avtur uplifted in Australia (measured in million litres), SKM is the total number of international seat-kilometres travelled by aircraft arriving in and departing from Australia (millions), and Fl is the average aircraft fleet fuel intensity (measured in litres consumed per seat-kilometre travelled).

For the years prior to 1999–2000 a series for the average fleet fuel intensity can be calculated by dividing the total fuel consumed for Australia's international task by the total seat-kilometres travelled.

$$FI = TFC / SKM$$
(III.8)

where Fl is the average aircraft fleet fuel intensity (measured in litres consumed per seat-kilometre travelled), TFC is the total fuel consumed by international aviation travelling to and from Australia (million litres) and SKM is the total number of international seat-kilometres travelled by aircraft arriving in and departing from Australia (millions).

Seat-kilometres travelled for Australia's international task were calculated by dividing total passenger-kilometres travelled by the average passenger load factor.

$$SKM = TIPKM / LF$$

where SKM is the total number of international seat-kilometres travelled by aircraft arriving in and departing from Australia (millions), TIPKM is the total number of passenger-kilometres travelled by short-term and long-term travellers arriving in and departing from Australia (millions) and LF is the passenger load factor (expressed as a proportion of total aircraft capacity).

The total number of international passenger-kilometres travelled to and from Australia is equal to the number of passenger-kilometres travelled by short-term travellers divided by  $\alpha$  (an estimate of the proportion of the total number of passengers who are short-term travellers).

TIPKM = IPKM / 
$$\alpha$$

where TIPKM is the total number of international passenger-kilometres travelled to and from Australia by short-term and long-term travellers (millions) and IPKM is the total number of international passenger-kilometres travelled to and from Australia by short-term travellers (millions).

International passenger-kilometres travelled to and from Australia by shortterm travellers were modelled by summing the number of short-term Australian resident departures and the short-term foreign arrivals multiplied

by their respective average distances travelled. The identity was then multiplied by two to account for the return journey.

 $IPKM = \{ (OUTPASS \times AVKMOUT) + (INPASS \times AVKMIN) \} \times 2 (III.11) \}$ 

where IPKM is the total number of international passenger-kilometres travelled to and from Australia by short-term travellers (millions), OUTPASS is the total number of short-term Australian resident departures (millions), AVKMOUT is the average distance travelled by international passengers leaving Australia (kilometres), INPASS is the total number of short-term foreign arrivals in Australia (millions) and AVKMIN is the average distance travelled by international passengers arriving in Australia.

Short-term Australian resident departures were modelled as a function of real Australian non-farm gross domestic product, the real trade weighted index lagged four quarters between 1982Q1 (i.e. the first quarter of 1982) and 1988Q4 and two quarters between 1989Q1 and 2000Q2, and dummy variables for the Bicentennial year, the Olympic Games, and two 'error' dummy variables. The model uses quarterly data and was estimated by using Ordinary Least Squares estimation.

| In OUTPASS = | - 7.61 + 1.72 ln RGNF + 0.18 ln RTWI | (-2)     |
|--------------|--------------------------------------|----------|
|              | - 0.07 BIDUM - 0.04 OLYDUM + 0.07    | DUMI     |
|              | – 0.07 DUM2                          | (111.12) |

where OUTPASS is the seasonally adjusted number of short-term Australian resident departures (measured in millions), RGNF is real Australian real gross non-farm product, RTWI(-2) is the real trade-weighted index lagged four quarters to 1988Q4 and two quarters thereafter, BIDUM is a dummy variable for the bicentennial year (1988Q1 to 1988Q3), OLYDUM is a dummy variable for the Olympic Games (2000Q2 to 2000Q3), DUM1 is a dummy variable from 1991Q4 to 1993Q2 and DUM2 is a dummy variable from 1999Q2 to 2000Q1.

Short-term foreign arrivals in Australia were modelled as a function of overseas income levels as measured by the gross domestic product of seven major OECD economies, the real trade weighted index lagged four quarters, and dummy variables for the bicentennial celebrations (1988), the rise in Asian tourism in the 1990s, the Sydney Olympic Games (2000) and an error dummy for 2000 onwards. The model uses quarterly data and was estimated by Cochrane–Orcutt estimation.

| In INPASS = | –16.86 + 3.41 In G7GDP – 0.48 In RTV | VI (-4)  |
|-------------|--------------------------------------|----------|
|             | + 0.10 BIDUM + 0.01 ASIADUM + 0.03   | 3 OLYDUM |
|             | – 0.07 ERRDUM                        | (   . 3) |

where INPASS is the total number of short-term foreign arrivals (millions), G7GDP is the sum of gross domestic products of seven major OECD economies (the United States, Japan, Germany, France, Italy the United Kingdom and Canada), RTWI(-4) is the real trade-weighted index lagged four quarters, BIDUM is a dummy variable for quarters I, 2 and 3 in 1988, ASIADUM is a dummy variable for increased tourism from Asia (from 1993Q1 to 1997Q4),

OLYDUM is a dummy variable for the Olympic Games in 2000Q2 and 2000Q3, and ERRDUM is an error dummy variable from 2000Q1 onwards.

Data collected for each of the variables outlined in equations III.7 to III.13 are detailed in Table III.18.



Quarterly figures were used to model foreign passenger arrivals (INPASS), estimated using the Cochrane–Orcutt procedure over the period 1981Q1 to 2000Q4. Figure III.4 illustrates the historical (actual) and predicted levels for INPASS (summed over quarters to give annual data).

The coefficient for G7GDP of 3.41 (shown in table III.8) suggests that overseas tourism to Australia is highly responsive to changes in income levels. Higher income levels in other countries should make international travel more affordable as well as a relatively greater increase in being able to afford long-haul travel in comparison to short-haul travel. This should result in a rise in foreign arrivals in Australia.

A lag was used for the real trade-weighted index (RTWI) to capture the long lead time presumably required by foreign tourists when planning to visit Australia (BTCE 1991b: p. 42). The negative coefficient (-0.48) suggests that, as travel to Australia becomes relatively more expensive, passenger numbers will decline.

Australian resident (short-term) departures (OUTPASS) were estimated by Ordinary Least Squares estimation using seasonally adjusted quarterly data over the period 1981Q1 to 2000Q2. Figure III.5 shows the historical (actual) and predicted levels for OUTPASS.



The coefficient of 1.72 in table III.8 for the income variable (RGNF) suggests that, as Australian income levels increase, so will overseas travel as it becomes more affordable. The real trade-weighted index is a measure of the relative cost to Australian tourists to travel overseas and the small positive coefficient of 0.18 shows a fairly unresponsive effect.

A discussion of some of the variables used in the analysis follows.

*Fuel intensity*. It is difficult to derive a series for average fleet fuel intensity for international aircraft arriving in and departing from Australia, as data are readily available only for Qantas aircraft. However, a series was derived using historical data on fuel consumption and seat-kilometres travelled, in a manner similar to the derived domestic aviation fuel intensity series. Fuel intensity was derived by dividing the total fuel uplifted by the total seat-kilometres travelled (table III.9).



Appendix 3

| INTERNATIONAL AIRLINE FLEET                                                             |                  |            |                  |                 |
|-----------------------------------------------------------------------------------------|------------------|------------|------------------|-----------------|
|                                                                                         |                  | (2)        | (3)              | (4)             |
| Year                                                                                    | (1)              | Seat       | TFC              | Fuel Intensity  |
| ending                                                                                  | AFC              | kilometres | (3) = (1) / 0.42 | (4) = (3) / (2) |
| June                                                                                    | (million litres) | (million)  | (million litres) | (L/skm)         |
| 1982                                                                                    | 1018.80          | 69810.19   | 2425.71          | 0.03475         |
| 1983                                                                                    | 991.80           | 71133.30   | 2361.43          | 0.03320         |
| 1984                                                                                    | 989.50           | 70321.14   | 2355.95          | 0.03350         |
| 1985                                                                                    | 1114.20          | 73987.38   | 2652.86          | 0.03586         |
| 1986                                                                                    | 1136.40          | 77415.42   | 2705.71          | 0.03495         |
| 1987                                                                                    | 1200.10          | 86844.83   | 2857.38          | 0.03290         |
| 1988                                                                                    | 1357.30          | 96060.30   | 3231.67          | 0.03364         |
| 1989                                                                                    | 1567.00          | 111428.53  | 3730.95          | 0.03348         |
| 1990                                                                                    | 1711.60          | 118701.36  | 4075.24          | 0.03433         |
| 1991                                                                                    | 1780.60          | 126338.44  | 4239.52          | 0.03356         |
| 1992                                                                                    | 1889.08          | 132628.54  | 4497.81          | 0.03391         |
| 1993                                                                                    | 2042.00          | 144273.06  | 4861.90          | 0.03370         |
| 1994                                                                                    | 2101.10          | 149225.15  | 5002.61          | 0.03352         |
| 1995                                                                                    | 2300.47          | 165600.55  | 5477.32          | 0.03308         |
| 1996                                                                                    | 2478.92          | 180674.25  | 5902.19          | 0.03267         |
| 1997                                                                                    | 2560.23          | 191657.88  | 6095.78          | 0.03181         |
| 1998                                                                                    | 2840.72          | 201920.60  | 6763.62          | 0.03350         |
| 1999                                                                                    | 2707.77          | 201128.49  | 6447.08          | 0.03205         |
| 2000                                                                                    | 2526.19          | 217043.72  | 6014.75          | 0.02771         |
| Note: AFC refers to total Avtur uplifted in Australia and TFC is total fuel consumed by |                  |            |                  |                 |

TABLE III.9 DERIVED FUEL INTENSITY SERIES FOR THE

aircraft arriving in and departing from Australia.

Sources: BTCE (1995a: p. 238-239), DISR (2001); AVSTATS (2001); BTRE estimates.

Average kilometres. Average kilometres travelled were split into outbound and inbound average kilometres. Ten regions were identified and data on passenger numbers travelling between Australia and the destination region were collated. The average distance flown was calculated by multiplying the proportion of total passengers to a particular region by the stage distance, and summing over all regions. Tables III.19 and III.20 detail the calculation and results.

The average number of kilometres travelled by inbound passengers declined between 1982 and 1998 and has been rising since, reflecting the fall in Asian tourists and the increasing proportion of non-Asian tourists. The average number of kilometres travelled by outbound passengers has changed little over the past 10 years, except for a decline in 1999, however this has largely been corrected in 2000. Between 1982 and 1998 the average distance travelled by inbound passengers fell by approximately 10 per cent, but have since risen to higher than 1990 levels. Average distances travelled by outbound passengers are now only 0.5 per cent less than the 1990 figures.
OUTPASS. The number of short-term Australian resident departures is a seasonally adjusted series. In 1990, passenger departures totalled approximately 2.1 million, increasing to approximately 3.3 million in 2000 (an increase of 60 per cent).

INPASS. The number of short-term foreign passenger arrivals in Australia grew from approximately 2.1 million in 1990, to approximately 4.7 million in 2000 (an increase of 117 per cent).

 $\alpha$ . Alpha ( $\alpha$ ) is here an estimate of the number of international passengers who are short-term travellers. Between 1982 and 1993 the proportion of short-term travellers increased, but it has remained at a constant level since. In 1982, about 95 per cent of visits were classified as short-term (that is, for a period of less than 12 months); in 1986 it was 97 per cent; and in 1993 reached 98 per cent (BTCE 1995a: p. 88). In 2000, the proportion was also about 98 per cent (based on ABS 2001c). A trend growth rate was assumed for estimating values of the intervening years.

*RGNF*. The seasonally adjusted real gross non-farm product is an income variable and uses 1999 as the base year. It has been increasing every year since 1982, with the exception of the 1982–83 financial year.

G7GDP. The G7 gross domestic product is used as an overseas income variable. It is an index of the real gross domestic product for the group of seven major industrial countries of the OECD (Canada, France, Germany, Italy, Japan, the United Kingdom and the United States). It increased by approximately 61 per cent between 1982 and 2000. As overseas income levels increase, it is expected that the number of foreign passengers travelling to Australia will also increase.

*RTWI.* The real trade-weighted index of the Australian dollar is equal to the trade-weighted index multiplied by the Australian consumer price index (CPI), using 1990 as a base year, divided by the OECD CPI (using 1995 as a base year). It is expected that as the real trade-weighted index increases (that is, prices in Australia increase relative to overseas) there will be fewer foreign arrivals and more Australian departures.

#### Assumptions

For the purposes of projecting aviation turbine fuel uplifted in Australia by international aviation to the year 2020, it was necessary to make a number of assumptions about the independent variables. Table III.10 summarises the assumptions used.

#### TABLE III.10 INTERNATIONAL AVIATION PROJECTION ASSUMPTIONS

(per cent per annum)

| Variable                                       | 2000–2020 |
|------------------------------------------------|-----------|
| Overseas income (G7GDP)                        | +2.5      |
| Real trade weighted index (RTWI)               | +0.0      |
| Real gross non-farm product (RGNF)             | +3.0      |
| Proportion of short-term passengers ( $lpha$ ) | +0.0      |
| Average inbound distance (AVKMIN)              | +1.5      |
| Average outbound distance (AVKMOUT)            | +1.5      |
| Passenger load factor (LF)                     | +0.0      |
| Source: BTRE Estimates                         |           |

Overseas income levels (G7GDP) were assumed to increase by 2.5 per cent per annum to the year 2020 (BTRE estimates). The real trade-weighted index (RTWI) was assumed to remain unchanged until 2020. It was assumed that the real Australian gross non-farm product (RGNF) will increase by an average of 3 per cent per annum to the year 2019–20. The exact annual growth rate projections are an average of GTEM, G-Cubed and Monash projections (AGO 2001, pers. comm.)—see Appendix VI, table VI.3.

In the absence of alternative information, the load factor was assumed to remain constant at the year 2000 level of 69.3 per cent. As this was an arbitrary assumption, the following section considers a number of scenarios, including changes to the passenger load factor assumption.

The average number of kilometres travelled by an international passenger was also assumed to remain constant at the year 2000 level: approximately 9372 kilometres for foreign arrivals and approximately 8973 kilometres for Australian resident departures.

It was assumed that long-term and permanent movements will account for 2 per cent of total international passenger numbers. In 2000, 98 per cent of total international passengers travelling to and from Australia were short-term travellers (derived from data contained in ABS 2001c).

As for domestic aviation, BTCE (1992) calculated the likely improvements to the international aircraft fleet fuel efficiency under a number of scenarios. Between 1988 and 2005, the BTCE (1992: p. 44) estimated improvements in fuel efficiency to be 28 per cent if aircraft are replaced after 15 years; 17 per cent if replaced after 20 years; and 16 per cent if replaced after 25 years. Extending these results to the year 2020, the improvements in fuel efficiency between 2000 and 2020 could reach 36 per cent for a fleet replaced after 15 years; 22 per cent after 20 years; and 21 per cent after 25 years. The BTCE reported in 1995 that Qantas (pers. comm. 1994, in BTCE 1995) suggests that a fuel efficiency improvement of 40 per cent in 20 years is unlikely. It is assumed

that by 2020 the fuel efficiency of the international aircraft fleet will improve by 22 per cent in the base case scenario.

A base case projection of fuel consumption (for Avtur uplifted in Australia) can be calculated on the basis of these assumptions. Table III.18 gives the projected levels of each of the variables to the year 2019–20.

**Projection results and scenarios** 

Using the BTRE models and the assumptions made about the independent variables detailed above, Avtur consumption by international aviation was projected to increase from 2526 megalitres in 1999–2000 to 4936 megalitres in 2009–10 and to 9052 megalitres in 2019–20. Figure III.6 graphs the actual and projected levels of international Avtur uplifted in Australia.



Using the assumptions in table III.10, foreign arrivals are projected to increase from 4.67 million in 1999–2000 to 11.39 million in 2009–10 and to 26.41 million in 2019–20. Similarly, Australian departures are projected to increase from 3.34 million in 1999–2000 to 6.21 million in 2009–10 and to 10 million in 2019–20. In seat–kilometres travelled, this adds up to an overall increase of approximately 360 per cent between 1999–2000 and 2019–20.

Tables III.11 and III.12 demonstrate the effect of changing the assumptions (about fuel efficiency improvements and load factors) on fuel consumption by international aviation. As fuel efficiency improves and/or the load factor increases, fuel consumption will fall.

## TABLE III.IISCENARIOS FOR INTERNATIONAL AVIATIONTURBINE FUEL UPLIFTED IN AUSTRALIA

(million litres)

| Fuel effic | ciency improvement          |                    |                                    |      |
|------------|-----------------------------|--------------------|------------------------------------|------|
| by 2019-   | -20                         |                    | Load factor in 2019–20             |      |
| (per cent  | t over 1999–2000)           | 0.65               | 0.69                               | 0.75 |
| 15         |                             | 10521              | 9864                               | 9117 |
| 22         |                             | 9654               | 9052                               | 8367 |
| 30         |                             | 8664               | 8123                               | 7509 |
| 36         |                             | 7922               | 7427                               | 6865 |
| Note:      | Base case scenario is a loa | d factor of 0.69 a | and fuel efficiency improvement of |      |
|            | 22 per cent.                |                    |                                    |      |
| Source:    | BTRE estimates.             |                    |                                    |      |

## TABLE III.12 SCENARIOS FOR INTERNATIONAL SEAT-KILOMETRES IN 2019-20

|                  |                                                              | Seat-kilometre task |
|------------------|--------------------------------------------------------------|---------------------|
| Load fact        | tor in 2019–20                                               | (million skm)       |
| 0.65             |                                                              | I 063 428           |
| 0.69             |                                                              | 997 037             |
| 0.75             |                                                              | 921 638             |
| Note:<br>Source: | Base case assumption load factor is 0.69.<br>BTRE estimates. |                     |

BTRE Report 107



166

Projected emissions from international aviation

Projected levels of greenhouse gas emissions can be calculated from the projections of international avtur use.

Fuel consumption data were converted from megalitres consumed to megajoules of energy consumed through multiplying by the relevant energy density conversion factor. For Avtur, the energy density is 36.8 megajoules per litre (Bush et al. 1993: p. 52). Megajoules consumed were multiplied by the relevant emissions conversion factor (outlined in table III.2) to obtain emission levels for each of the relevant gases.

Carbon dioxide equivalent emission levels for international aircraft using fuel uplifted from Australia are projected to increase by a total of approximately 258 per cent between 1999–2000 and 2019–20. Table III.21 reports the projected levels of each of the greenhouse gases.

Figure III.7 graphs carbon dioxide equivalent emission levels for international aviation fuel uplifted in Australia.

#### **CONCLUDING REMARKS**

The BTRE model specifications are fairly simple yet incorporate the major determinants of fuel use by domestic and international aviation.

The BTRE projects that fuel consumption and thus greenhouse gas emissions will increase considerably by the year 2019–20.

Following the BTRE model specification and related assumptions, Avtur use by civil aviation is projected to increase from a total of 4415 megalitres in 1999–2000, to 8264 megalitres in the year 2009–10 and to 14 292 megalitres in the year 2019–20.

Aviation gasoline use has been projected to remain constant to 2019–20 at the 1999–2000 level of 103.3 megalitres.

The total civil aviation sector is projected to increase greenhouse gas emissions between 1999–2000 and 2019–20 by approximately 219 per cent. Table III.22 details greenhouse gas emission estimates from the civil aviation sector.

It should be noted that it was necessary to derive a number of variables used in the analysis (for example, fuel intensity), due to lack of directly published data. The values of these variables may therefore not be very accurate, and may be useful only as an indication of likely trends over time.

For making projections, the BTRE models also rely heavily on the assumptions made. Higher incomes, for example, lead to increased demand for travel, resulting in higher fuel consumption. Increased load factors and larger aircraft, however, will partially counteract the increase in fuel consumption, as fewer aircraft will be needed to undertake the task. The models also directly couple growth in passenger movements (and in aviation emissions) with income growth, and do not include any constraints on this growth. If, in the future, there are radical technological changes or demand behaviour for the aviation sector undergoes structural change (e.g. air travel reaches a saturation level in its mode share for Australian non-urban journeys; the aviation industry is affected by major changes in consumer confidence, habits or mode-preference; telecommuting replaces a significant share of business travel), then future growth in aviation emissions would probably not be maintained at the levels forecast here.

The BTRE models are designed primarily for long-term projections and therefore do not include all variables that may be relevant in the short-term. Due to the long-term nature of the projections, the BTRE models were derived on an aggregated basis and do not consider specific origin-destination pairs. For example, tourism growth to and from Asian countries has not been modelled separately. For these reasons, the BTRE models should be used only for longterm projections and on an aggregated level, rather than for specific origindestination pairs.

|           | TPASSKM | (million) | 10465.60 | 9394.65 | 9758.62 | 10604.67 | 11588.98 | 12372.68 | 13631.23 | 14146.63 | 10524.49 | 15160.10 | 19828.56 | 19848.18 | 23861.94 | 26431.12 | 28413.96 | 29344.12 | 29719.95 | 30390.78 | 32213.96 | 34701.64 | 37103.02 | 39481.95 | 42021.80 | Continued |
|-----------|---------|-----------|----------|---------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|
|           | APASSKM | (million) | 9886.04  | 8835.74 | 9156.68 | 9951.45  | 10795.65 | 11337.15 | 12306.82 | 12636.45 | 8975.59  | 13507.48 | 17887.48 | 17704.11 | 21335.91 | 23551.85 | 25148.01 | 25730.01 | 26093.92 | 26683.75 | 28147.01 | 30039.63 | 31892.76 | 33729.40 | 35670.53 |           |
|           | FPASSKM | (million) | 579.56   | 558.91  | 601.94  | 653.22   | 793.32   | 1035.53  | 1324.40  | 1510.18  | 1548.89  | 1652.62  | 1941.08  | 2144.07  | 2526.04  | 2879.27  | 3265.95  | 3614.11  | 3626.02  | 3707.03  | 4066.95  | 4662.01  | 5210.27  | 5752.55  | 6351.27  |           |
|           | RPASSKM | (million) | 255.57   | 259.33  | 252.56  | 259.52   | 288.92   | 319.06   | 355.26   | 403.89   | 527.32   | 644.04   | 747.05   | 852.21   | 982.98   | 1126.83  | 1275.51  | 1499.41  | 1792.07  | 1872.34  | 2117.28  | 2283.61  | 2441.64  | 2598.19  | 2765.33  |           |
|           | DPASSKM | (million) | 10210.03 | 9135.32 | 9506.06 | 10345.15 | 11300.06 | 12053.63 | 13275.97 | 13742.74 | 9997.17  | 14516.06 | 19081.51 | 18995.97 | 22878.96 | 25304.29 | 27138.44 | 27844.71 | 27927.87 | 28518.44 | 30096.68 | 32418.02 | 34661.38 | 36883.76 | 39256.47 |           |
|           | RAVKM   | (km)      | 210.07   | 208.63  | 207.50  | 209.79   | 213.03   | 222.44   | 234.73   | 240.49   | 276.22   | 293.21   | 296.35   | 294.08   | 295.19   | 312.21   | 321.58   | 337.71   | 372.30   | 380.11   | 388.18   | 394.01   | 399.92   | 405.91   | 412.00   |           |
| IONS      | DAVKM   | (km)      | 810.51   | 799.84  | 811.51  | 825.55   | 840.63   | 871.38   | 887.15   | 908.12   | 961.09   | 983.92   | 1031.98  | 1022.52  | 1066.21  | 1080.35  | 1099.51  | 1131.87  | 1140.31  | 1149.49  | 1160.83  | 1178.24  | 1195.92  | 1213.86  | 1232.07  |           |
| ROJECT    | TPASS   | (million) | 13.81    | 12.66   | 12.93   | 13.77    | 14.80    | 15.27    | 16.48    | 16.81    | 12.31    | 16.95    | 21.01    | 21.48    | 24.79    | 27.03    | 28.65    | 29.04    | 29.31    | 29.74    | 31.38    | 33.31    | 35.09    | 36.79    | 38.57    |           |
|           | APASS   | (million) | 13.10    | 11.97   | 12.19   | 12.98    | 13.85    | 14.08    | 14.99    | 15.15    | 10.70    | 15.27    | 19.13    | 19.38    | 22.42    | 24.37    | 25.68    | 25.85    | 26.13    | 26.51    | 27.88    | 29.35    | 30.73    | 32.05    | 33.42    |           |
| TIC AVI   | FPASS   | (million) | 0.72     | 0.70    | 0.74    | 0.79     | 0.94     | 1.19     | I.49     | 1.66     | 19.1     | I.68     | I.88     | 2.10     | 2.37     | 2.67     | 2.97     | 3.19     | 3.18     | 3.22     | 3.50     | 3.96     | 4.36     | 4.74     | 5.15     |           |
| DOMES     | RPASS   | (million) | 1.22     | I.24    | 1.22    | I.24     | I.36     | I.43     | 1.51     | I.68     | 16.1     | 2.20     | 2.52     | 2.90     | 3.33     | 3.61     | 3.97     | 4.44     | 4.81     | 4.93     | 5.45     | 5.80     | 6.11     | 6.40     | 6.71     |           |
| E III. 13 | DPASS   | (million) | 12.60    | 11.42   | 11.71   | 12.53    | 13.44    | 13.83    | 14.96    | 15.13    | 10.40    | 14.75    | 18.49    | 18.58    | 21.46    | 23.42    | 24.68    | 24.60    | 24.49    | 24.81    | 25.93    | 27.51    | 28.98    | 30.39    | 31.86    |           |
| TABL      |         | Year      | 1982     | 1983    | 1984    | 1985     | 1986     | 1987     | 1988     | 1989     | 0661     | 1661     | 1992     | 1993     | 1994     | 1995     | 9661     | 1997     | 1998     | 6661     | 2000     | 2001     | 2002     | 2003     | 2004     |           |

I F III 13 DOMESTIC AVIATION PROJECTIC

| TABLE | E III.13  | DOMES     | TIC AV    | IATION P  | ROJECTI   | ONS (Con | tinued) |           |           |           |           |           |
|-------|-----------|-----------|-----------|-----------|-----------|----------|---------|-----------|-----------|-----------|-----------|-----------|
|       | DPASS     | RPASS     | FPASS     | APASS     | TPASS     | DAVKM    | RAVKM   | DPASSKM   | RPASSKM   | FPASSKM   | APASSKM   | TPASSKM   |
| Year  | (million) | (million) | (million) | (million) | (million) | (km)     | (km)    | (million) | (million) | (million) | (million) | (million) |
| 2005  | 33.36     | 7.03      | 5.61      | 34.78     | 40.38     | 1250.55  | 418.18  | 41713.84  | 2938.43   | 7012.31   | 37639.96  | 44652.27  |
| 2006  | 34.90     | 7.35      | 6.10      | 36.15     | 42.25     | 1269.30  | 424.46  | 44299.53  | 3120.58   | 7742.15   | 39677.96  | 47420.11  |
| 2007  | 36.52     | 7.69      | 6.63      | 37.58     | 44.21     | 1288.34  | 430.82  | 47047.28  | 3314.14   | 8547.95   | 41813.47  | 50361.42  |
| 2008  | 38.20     | 8.05      | 7.22      | 39.03     | 46.25     | 1307.67  | 437.28  | 49957.13  | 3519.11   | 9437.62   | 44038.63  | 53476.25  |
| 2009  | 39.96     | 8.42      | 7.85      | 40.53     | 48.38     | 1327.28  | 443.84  | 53041.21  | 3736.37   | 10419.88  | 46357.70  | 56777.57  |
| 2010  | 41.80     | 8.81      | 8.54      | 42.06     | 50.60     | 1347.19  | 450.50  | 56311.77  | 3966.75   | 11504.38  | 48774.15  | 60278.52  |
| 2011  | 43.74     | 9.21      | 9.29      | 43.66     | 52.95     | 1367.40  | 457.26  | 59804.44  | 4212.78   | 12701.75  | 51315.48  | 64017.22  |
| 2012  | 45.77     | 9.64      | 10.10     | 45.31     | 55.42     | 1387.91  | 464.12  | 63529.96  | 4475.22   | I 4023.74 | 53981.44  | 68005.18  |
| 2013  | 47.91     | 10.09     | 10.99     | 47.01     | 58.00     | 1408.73  | 471.08  | 67489.92  | 4754.17   | I 5483.32 | 56760.77  | 72244.09  |
| 2014  | 50.14     | 10.56     | 11.96     | 48.75     | 60.71     | 1429.86  | 478.15  | 71698.35  | 5050.62   | 17094.82  | 59654.16  | 76748.98  |
| 2015  | 52.48     | 11.06     | 13.00     | 50.53     | 63.54     | 1451.31  | 485.32  | 76168.60  | 5365.52   | I 8874.05 | 62660.07  | 81534.12  |
| 2016  | 54.92     | 11.57     | 14.15     | 52.35     | 66.49     | 1473.08  | 492.60  | 80908.25  | 5699.39   | 20838.45  | 65769.19  | 86607.64  |
| 2017  | 57.47     | 12.11     | 15.39     | 54.18     | 69.57     | 1495.18  | 499.99  | 85921.75  | 6052.56   | 23007.31  | 68967.01  | 91974.31  |
| 2018  | 60.10     | 12.66     | 16.74     | 56.03     | 72.76     | 1517.60  | 507.49  | 91212.39  | 6425.25   | 25401.90  | 72235.74  | 97637.64  |
| 2019  | 62.83     | 13.24     | 18.21     | 57.86     | 76.07     | 1540.37  | 515.10  | 96782.21  | 6817.60   | 28045.72  | 75554.09  | 103599.81 |
| 2020  | 65.65     | 13.83     | 19.81     | 59.67     | 79.48     | 1563.47  | 522.83  | 102641.75 | 7230.36   | 30964.70  | 78907.41  | 109872.11 |
|       |           |           |           |           |           |          |         |           |           |           |           | Continued |

Appendix 3

| TABI | -E III.13 | DOMEST |        | ATION PF | SOJECTIC | <b>NS</b> (Continu | ed)            |
|------|-----------|--------|--------|----------|----------|--------------------|----------------|
|      |           |        |        |          |          | FC                 | FC             |
|      |           |        |        |          |          | Domestic civil     | Total domestic |
|      | SKM       | LF     | RGNF   | RMEDF    | H        | aviation Avtur     | Avtur          |
| Year | (million) | (%)    | (\$m)  |          | (L/skm)  | (WI)               | (WL)           |
| 1982 | 14933.23  | 70.1   | 81552  | 118.74   | 0.0646   | 964.5              | 1205.65        |
| 1983 | 14247.86  | 65.9   | 80053  | 129.71   | 0.0656   | 934.9              | 1168.65        |
| 1984 | 13966.23  | 6.69   | 85632  | 131.46   | 0.0666   | 930.7              | 1163.32        |
| 1985 | 14733.10  | 72.0   | 90338  | 127.53   | 0.0648   | 954.6              | 1193.22        |
| 1986 | 16109.85  | 71.9   | 92375  | 124.81   | 0.0637   | 1026.7             | 1283.38        |
| 1987 | 17333.77  | 71.4   | 96573  | 123.66   | 0.0615   | 1066.9             | 1333.58        |
| 1988 | 18321.84  | 74.4   | 101256 | 123.08   | 0.0623   | 1142.3             | 1427.82        |
| 1989 | 18821.36  | 75.2   | 106166 | 121.10   | 0.0598   | 1125.5             | 1406.88        |
| 0661 | 14846.97  | 70.9   | 108305 | 126.96   | 0.0606   | 899.4              | 1124.31        |
| 1661 | 21748.11  | 69.7   | 107204 | 19.111   | 0.0529   | 1150.2             | 1437.69        |
| 1992 | 25703.40  | 77.1   | 109118 | 103.59   | 0.0488   | 1255.6             | 1569.45        |
| 1993 | 26293.80  | 75.5   | 113063 | 97.12    | 0.0500   | 1313.6             | 1642.06        |
| 1994 | 32154.35  | 74.2   | 119169 | 97.89    | 0.0428   | 1377.7             | 1722.14        |
| 1995 | 36767.51  | 71.9   | 124360 | 94.76    | 0.0435   | 1601.1             | 2001.33        |
| 9661 | 39761.39  | 71.5   | 128457 | 91.41    | 0.0440   | 1748.9             | 2186.10        |
| 1997 | 41423.35  | 70.8   | 133455 | 99.85    | 0.0441   | 1826.6             | 2283.27        |
| 1998 | 41076.58  | 72.4   | 140314 | 101.66   | 0.0445   | I 828.5            | 2285.62        |
| 6661 | 41466.83  | 73.3   | 146821 | 101.85   | 0.0434   | 1801.4             | 2251.71        |
| 2000 | 42952.84  | 75.0   | 153540 | 111.98   | 0.0440   | I 888.6            | 2360.72        |
| 2001 | 46268.85  | 75.0   | 159248 | 108.19   | 0.0433   | 2001.23            | 2501.54        |
| 2002 | 49470.70  | 75.0   | 164821 | 106.79   | 0.0425   | 2104.86            | 2631.08        |
|      |           |        |        |          |          |                    | Continued      |

BTRE Report 107

| (pər         | ΓĊ | Total          | domestic Avtur | (WL)      | 2754.16  | 2883.58  | 3014.17  | 3148.86  | 3289.69  | 3436.25  | 3588.95  | 3748.17  | 3915.80  | 4091.97  | 4276.21  | 4468.85   | 4670.14   | 4879.92   | 5097.88   | 5323.62   | 5556.68   | 5797.10   | <u>'S (2001);</u>       |
|--------------|----|----------------|----------------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------------------|
| UNS (Continu | FC | Domestic civil | aviation Avtur | (WL)      | 2203.33  | 2306.86  | 2411.33  | 2519.09  | 2631.75  | 2749.00  | 2871.16  | 2998.54  | 3132.64  | 3273.57  | 3420.97  | 3575.08   | 3736.11   | 3903.94   | 4078.31   | 4258.90   | 4445.35   | 4637.68   | (2001); AVSTAT          |
|              |    |                | H              | (L/skm)   | 0.0419   | 0.0412   | 0.0405   | 0.0398   | 0.0392   | 0.0386   | 0.0379   | 0.0373   | 0.0367   | 0.0361   | 0.0355   | 0.0349    | 0.0344    | 0.0338    | 0.0333    | 0.0327    | 0.0322    | 0.0317    | atabase; DISR           |
|              |    |                | RMEDF          |           | 105.40   | 104.03   | 102.68   | 101.34   | 100.02   | 98.72    | 97.44    | 96.17    | 94.92    | 93.69    | 92.47    | 91.27     | 90.08     | 88.91     | 87.76     | 86.61     | 85.49     | 84.38     | Indicators Da           |
|              |    |                | RGNF           | (\$m)     | 170590   | 176561   | 182140   | 187987   | 193890   | 006661   | 205997   | 212198   | 218649   | 225230   | 231919   | 238714    | 245589    | 252490    | 259358    | 266127    | 272727    | 279136    | 001c); BTRE             |
| DOMES        |    |                | LF             | (%)       | 75.0     | 75.0     | 75.0     | 75.0     | 75.0     | 75.0     | 75.0     | 75.0     | 75.0     | 75.0     | 75.0     | 75.0      | 75.0      | 75.0      | 75.0      | 75.0      | 75.0      | 75.0      | lates; ABS (2<br>5a).   |
| E III. 13    |    |                | SKM            | (million) | 52642.60 | 56029.07 | 59536.36 | 63226.81 | 67148.56 | 71301.66 | 75703.43 | 80371.36 | 85356.30 | 90673.58 | 96325.46 | 102331.97 | 108712.16 | 115476.85 | 122632.42 | 130183.52 | 138133.08 | 146496.15 | BTRE estim<br>BTCE (199 |
| IABL         |    |                |                | Year      | 2003     | 2004     | 2005     | 2006     | 2007     | 2008     | 2009     | 2010     | 2011     | 2012     | 2013     | 2014      | 2015      | 2016      | 2017      | 2018      | 2019      | 2020      | Sources:                |

TABLE III.13 DOMESTIC AVIATION PROJECTIONS (Cont

Appendix 3

BTRE Report 107

| TABLE III.14 | <b>AVIATION GASOLINE FUEL CONSUMPTION</b> |
|--------------|-------------------------------------------|
|              | PROJECTIONS                               |

|         | Fuel Consum                                                           | nption  |
|---------|-----------------------------------------------------------------------|---------|
| Year    | (million                                                              | litres) |
| 1974    | 1                                                                     | 05.74   |
| 1975    |                                                                       | 05.74   |
| 1976    |                                                                       | 05.74   |
| 1977    | 1                                                                     | 10.27   |
| 1978    | 1                                                                     | 14.80   |
| 1979    | 1                                                                     | 14.80   |
| 1980    | 1                                                                     | 14.80   |
| 1981    | 1                                                                     | 13.29   |
| 1982    | 1                                                                     | 11.78   |
| 1983    | 1                                                                     | 10.27   |
| 1984    |                                                                       | 08.76   |
| 1985    |                                                                       | 08.76   |
| 1986    |                                                                       | 08.76   |
| 1987    | 1                                                                     | 13.29   |
| 1988    | I                                                                     | 17.82   |
| 1989    |                                                                       | 23.87   |
| 1990    |                                                                       | 29.91   |
| 1991    |                                                                       | 05.74   |
| 1992    |                                                                       | 99.70   |
| 1993    |                                                                       | 05.74   |
| 1994    |                                                                       | 02.60   |
| 1995    |                                                                       | 04.50   |
| 1996    | li li                                                                 | 01.50   |
| 1997    | li li                                                                 | 02.54   |
| 1998    | li li                                                                 | 04.00   |
| 1999    |                                                                       | 05.80   |
| 2000    |                                                                       | 03.30   |
| 2001    |                                                                       | 03.30   |
| 2002    |                                                                       | 03.30   |
| 2003    |                                                                       | 03.30   |
| 2004    |                                                                       | 03.30   |
| 2005    |                                                                       | 03.30   |
| 2006    |                                                                       | 03.30   |
| 2007    |                                                                       | 03.30   |
| 2008    |                                                                       | 03.30   |
| 2009    |                                                                       | 03.30   |
| 2010    |                                                                       | 03.30   |
| 2011    |                                                                       | 03.30   |
| 2012    |                                                                       | 03.30   |
| 2013    |                                                                       | 03.30   |
| 2014    |                                                                       | 03.30   |
| 2013    |                                                                       | 03.30   |
| 2016    |                                                                       | 03.30   |
| 2017    |                                                                       | 03.30   |
| 2018    |                                                                       | 03.30   |
| 2019    |                                                                       | 03.30   |
| 2020    |                                                                       | 03.30   |
| Sources | BTRE estimates: DISR (2001): BTCE (1995a): Bush et al. (1993: p. 112) |         |

Appendix 3

| NS        | SSIO  | S EMI | USE GA | NHO             | O GREE | ECTE            | PROJ  |         |      |
|-----------|-------|-------|--------|-----------------|--------|-----------------|-------|---------|------|
| Total CO  |       |       |        |                 |        |                 |       |         |      |
| equivaler | N20   | со    | NMVOC  | СН <sub>4</sub> | NOX    | с0 <sub>2</sub> | FC    | FC      |      |
| (Gg       | (Gg)  | (Gg)  | (Gg)   | (Gg)            | (Gg)   | (Gg)            | (PJ)  | (ML)    | Year |
| 1803.     | 0.053 | 2.081 | 0.263  | 0.029           | 7.113  | 1786.2          | 26.34 | 715.89  | 1974 |
| 1991.     | 0.058 | 2.298 | 0.291  | 0.032           | 7.853  | 1971.9          | 29.08 | 790.34  | 1975 |
| 2014.     | 0.059 | 2.325 | 0.294  | 0.032           | 7.945  | 1995.1          | 29.43 | 799.64  | 1976 |
| 2073.     | 0.061 | 2.393 | 0.303  | 0.033           | 8.177  | 2053.4          | 30.29 | 822.99  | 1977 |
| 2214.     | 0.065 | 2.555 | 0.323  | 0.036           | 8.732  | 2192.7          | 32.34 | 878.83  | 1978 |
| 2179.     | 0.064 | 2.514 | 0.318  | 0.035           | 8.594  | 2158.0          | 31.83 | 864.90  | 1979 |
| 2273.     | 0.066 | 2.623 | 0.332  | 0.037           | 8.965  | 2251.3          | 33.21 | 902.32  | 1980 |
| 2265.     | 0.066 | 2.614 | 0.331  | 0.036           | 8.933  | 2243.2          | 33.09 | 899.08  | 1981 |
| 2430.     | 0.071 | 2.804 | 0.355  | 0.039           | 9.583  | 2406.5          | 35.49 | 964.52  | 1982 |
| 2355.     | 0.069 | 2.718 | 0.344  | 0.038           | 9.289  | 2332.7          | 34.41 | 934.92  | 983  |
| 2344.     | 0.068 | 2.706 | 0.342  | 0.038           | 9.247  | 2322.0          | 34.25 | 930.66  | 984  |
| 2405.     | 0.070 | 2.775 | 0.351  | 0.039           | 9.485  | 2381.7          | 35.13 | 954.58  | 985  |
| 2586.     | 0.076 | 2.985 | 0.378  | 0.042           | 10.201 | 2561.7          | 37.78 | 1026.70 | 986  |
| 2687.     | 0.079 | 3.102 | 0.393  | 0.043           | 10.600 | 2661.9          | 39.26 | 1066.86 | 987  |
| 2877.     | 0.084 | 3.321 | 0.420  | 0.046           | 11.349 | 2850.0          | 42.04 | 1142.26 | 1988 |
| 2835.     | 0.083 | 3.272 | 0.414  | 0.046           | 11.183 | 2808.2          | 41.42 | 1125.50 | 1989 |
| 2266.     | 0.066 | 2.615 | 0.331  | 0.036           | 8.937  | 2244.2          | 33.10 | 899.45  | 1990 |
| 2897.     | 0.085 | 3.344 | 0.423  | 0.047           | 11.428 | 2869.7          | 42.33 | 1150.15 | 1991 |
| 3163.     | 0.092 | 3.650 | 0.462  | 0.051           | 12.475 | 3132.7          | 46.20 | 1255.56 | 1992 |
| 3309.     | 0.097 | 3.819 | 0.483  | 0.053           | 13.052 | 3277.6          | 48.34 | 1313.65 | 1993 |
| 3471.     | 0.101 | 4.005 | 0.507  | 0.056           | 13.689 | 3437.5          | 50.70 | 1377.71 | 1994 |
| 4033.     | 0.118 | 4.655 | 0.589  | 0.065           | 15.908 | 3994.7          | 58.92 | 1601.06 | 1995 |
| 4406.     | 0.129 | 5.084 | 0.644  | 0.071           | 17.377 | 4363.5          | 64.36 | 1748.88 | 1996 |
| 4602.     | 0.134 | 5.310 | 0.672  | 0.074           | 18.149 | 4557.5          | 67.22 | 1826.62 | 1997 |
| 4606.     | 0.135 | 5.316 | 0.673  | 0.074           | 18.168 | 4562.2          | 67.29 | 1828.49 | 1998 |
| 4538.     | 0.133 | 5.237 | 0.663  | 0.073           | 17.898 | 4494.5          | 66.29 | 1801.37 | 1999 |
| 4758.     | 0.139 | 5.490 | 0.695  | 0.076           | 18.765 | 4712.1          | 69.50 | 1888.57 | 2000 |

## TABLE III.15 DOMESTIC AVIATION TURBINE FUEL—

| TAB     | LE 111.15    | DON<br>PRO<br>(Cont | 1ESTIC<br>JECTE | D GRE  | TION<br>ENHO | TURBII<br>USE GA | NE FU<br>AS EM | EL—<br>ISSIC | NS                    |
|---------|--------------|---------------------|-----------------|--------|--------------|------------------|----------------|--------------|-----------------------|
|         |              |                     |                 |        |              |                  |                |              | Total CO <sub>2</sub> |
|         | FC           | FC                  | со <sub>2</sub> | ΝΟχ    | CH4          | NMVOC            | CO             | N20          | equivalent            |
| Year    | (ML)         | (PJ)                | (Gg)            | (Gg)   | (Gg)         | (Gg)             | (Gg)           | (Gg)         | (Gg)                  |
| 2001    | 2001.23      | 73.65               | 4993.2          | 19.884 | 0.081        | 0.736            | 5.818          | 0.147        | 5042.0                |
| 2002    | 2104.86      | 77.46               | 5251.7          | 20.914 | 0.085        | 0.775            | 6.119          | 0.155        | 5303.I                |
| 2003    | 2203.33      | 81.08               | 5497.4          | 21.892 | 0.089        | 0.811            | 6.406          | 0.162        | 5551.2                |
| 2004    | 2306.86      | 84.89               | 5755.7          | 22.921 | 0.093        | 0.849            | 6.707          | 0.170        | 5812.0                |
| 2005    | 2411.33      | 88.74               | 6016.4          | 23.959 | 0.098        | 0.887            | 7.010          | 0.177        | 6075.2                |
| 2006    | 2519.09      | 92.70               | 6285.2          | 25.030 | 0.102        | 0.927            | 7.323          | 0.185        | 6346.7                |
| 2007    | 2631.75      | 96.85               | 6566.3          | 26.149 | 0.107        | 0.968            | 7.651          | 0.194        | 6630.5                |
| 2008    | 2749.00      | 101.16              | 6858.9          | 27.314 | 0.111        | 1.012            | 7.992          | 0.202        | 6925.9                |
| 2009    | 2871.16      | 105.66              | 7163.7          | 28.528 | 0.116        | 1.057            | 8.347          | 0.211        | 7233.7                |
| 2010    | 2998.54      | 110.35              | 7481.5          | 29.793 | 0.121        | 1.103            | 8.717          | 0.221        | 7554.6                |
| 2011    | 3132.64      | 115.28              | 7816.1          | 31.126 | 0.127        | 1.153            | 9.107          | 0.231        | 7892.5                |
| 2012    | 3273.57      | 120.47              | 8167.7          | 32.526 | 0.133        | 1.205            | 9.517          | 0.241        | 8247.6                |
| 2013    | 3420.97      | 125.89              | 8535.5          | 33.991 | 0.138        | 1.259            | 9.945          | 0.252        | 8618.9                |
| 2014    | 3575.08      | 131.56              | 8920.0          | 35.522 | 0.145        | 1.316            | 10.393         | 0.263        | 9007.2                |
| 2015    | 3736.11      | 137.49              | 9321.7          | 37.122 | 0.151        | 1.375            | 10.862         | 0.275        | 9412.9                |
| 2016    | 3903.94      | 143.66              | 9740.5          | 38.790 | 0.158        | 1.437            | 11.350         | 0.287        | 9835.7                |
| 2017    | 4078.31      | 150.08              | 10175.5         | 40.522 | 0.165        | 1.501            | 11.856         | 0.300        | 10275.1               |
| 2018    | 4258.90      | 156.73              | 10626.1         | 42.316 | 0.172        | 1.567            | 12.381         | 0.313        | 10730.0               |
| 2019    | 4445.35      | 163.59              | 11091.3         | 44.169 | 0.180        | 1.636            | 12.924         | 0.327        | 11199.8               |
| 2020    | 4637.68      | 170.67              | 11571.2         | 46.080 | 0.188        | 1.707            | 13.483         | 0.341        | 11684.4               |
| Sources | : BTRE estir | nates; B            | FCE (1995       | a).    |              |                  |                |              |                       |

Appendix 3

|                      |        | PROJ        | ECTE                | <b>GREE</b> | INHO  | USE GA | S EM           | ISSIO | NS                   |
|----------------------|--------|-------------|---------------------|-------------|-------|--------|----------------|-------|----------------------|
|                      |        |             |                     |             |       |        |                |       | Total CO             |
|                      | FC     | FC          | <i>(</i> <b>)</b> , | NO          | сu.   | NMVOC  | <b>C</b> 0     | N-O   | oguivalon            |
|                      | (MI)   | /PI)        | (Ca)                |             | (Ca)  | ((Ca)  |                | (Ca)  | equivalen            |
| л<br>7 Л             | (//IL) | <u>(rj)</u> | 2200                | 0.244       |       | 1 795  | 79.90          | 0.002 | <u>(</u> 08)<br>2420 |
| / <del>1</del><br>75 | 105.74 | 3.50        | 230.0               | 0.200       | 0.177 | 1.795  | 79.00          | 0.003 | 243.                 |
| 76                   | 105.74 | 3.50        | 230.0               | 0.266       | 0.199 | 1.795  | 79.00          | 0.003 | 243.3                |
| 70                   | 103.74 | 3.50        | 230.0               | 0.200       | 0.177 | 1.775  | 77.00<br>02.22 | 0.003 | 243.                 |
| 79<br>79             | 114.80 | 3.05        | 240.2               | 0.277       | 0.208 | 1.072  | 86 64          | 0.003 | 234.                 |
| 70                   | 114.00 | 3.00        | 230.4               | 0.207       | 0.217 | 1.747  | 06.04          | 0.003 | 204.0                |
| 20                   | 114.00 | 3.00        | 230.4               | 0.207       | 0.217 | 1.747  | 06.04          | 0.003 | 204.0                |
| 50<br>51             | 117.00 | 3.00        | 230.4               | 0.207       | 0.217 | 1.777  | 00.04          | 0.003 | 204.0                |
| ו כ<br>רי            | 113.27 | 3.75        | 255.0               | 0.265       | 0.214 | 1.724  | 03.50          | 0.003 | 200.0                |
| 5∠<br>55             | 111.70 | 3.70        | 231.0               | 0.201       | 0.211 | 1.070  | 07.30          | 0.003 | 257.1                |
| 53                   | 110.27 | 3.65        | 248.2               | 0.277       | 0.208 | 1.872  | 83.22          | 0.003 | 253.0                |
| 54<br>55             | 108.76 | 3.60        | 244.8               | 0.274       | 0.205 | 1.847  | 82.08          | 0.003 | 250.1                |
| 55                   | 108.76 | 3.60        | 244.8               | 0.274       | 0.205 | 1.847  | 82.08          | 0.003 | 250.                 |
| 36                   | 108.76 | 3.60        | 244.8               | 0.274       | 0.205 | 1.847  | 82.08          | 0.003 | 250.                 |
| 57                   | 113.29 | 3.75        | 255.0               | 0.285       | 0.214 | 1.924  | 85.50          | 0.003 | 260.0                |
| 38                   | 117.82 | 3.90        | 265.2               | 0.296       | 0.222 | 2.001  | 88.92          | 0.004 | 2/1.0                |
| 39                   | 123.87 | 4.10        | 278.8               | 0.312       | 0.234 | 2.103  | 93.48          | 0.004 | 284.5                |
| 90                   | 129.91 | 4.30        | 292.4               | 0.327       | 0.245 | 2.206  | 98.04          | 0.004 | 298.8                |
| 91<br>22             | 105.74 | 3.50        | 238.0               | 0.266       | 0.199 | 1./95  | 79.80          | 0.003 | 243.                 |
| 92                   | 99.70  | 3.30        | 224.4               | 0.251       | 0.188 | 1.693  | 75.24          | 0.003 | 229.                 |
| 93                   | 105.74 | 3.50        | 238.0               | 0.266       | 0.199 | 1./95  | 79.80          | 0.003 | 243.                 |
| 94<br>               | 102.60 | 3.40        | 230.9               | 0.258       | 0.194 | 1.742  | //.43          | 0.003 | 236.0                |
| 95<br>               | 104.50 | 3.46        | 235.2               | 0.263       | 0.197 | 1.//4  | /8.86          | 0.003 | 240                  |
| 96<br>               | 101.50 | 3.36        | 228.5               | 0.255       | 0.192 | 1./24  | /6.60          | 0.003 | 233.4                |
| 97                   | 102.54 | 3.39        | 230.8               | 0.258       | 0.193 | 1.741  | 77.38          | 0.003 | 235.8                |
| 98                   | 104.00 | 3.44        | 234.1               | 0.262       | 0.196 | 1.766  | 78.49          | 0.003 | 239.2                |
| 99                   | 105.80 | 3.50        | 238.1               | 0.266       | 0.200 | 1.797  | 79.85          | 0.003 | 243.3                |
| 00                   | 103.30 | 3.42        | 232.5               | 0.260       | 0.195 | 1.754  | 77.96          | 0.003 | 237.6                |
| 01                   | 103.30 | 3.42        | 232.5               | 0.260       | 0.195 | 1.754  | 77.96          | 0.003 | 237.6                |
| 02                   | 103.30 | 3.42        | 232.5               | 0.260       | 0.195 | 1.754  | 77.96          | 0.003 | 237.6                |
| 03                   | 103.30 | 3.42        | 232.5               | 0.260       | 0.195 | 1.754  | 77.96          | 0.003 | 237.6                |
| 04                   | 103.30 | 3.42        | 232.5               | 0.260       | 0.195 | 1.754  | 77.96          | 0.003 | 237.0                |
| 05                   | 103.30 | 3.42        | 232.5               | 0.260       | 0.195 | 1.754  | 77.96          | 0.003 | 237.0                |
| 06                   | 103.30 | 3.42        | 232.5               | 0.260       | 0.195 | 1.754  | 77.96          | 0.003 | 237.6                |
| 07                   | 103.30 | 3.42        | 232.5               | 0.260       | 0.195 | 1.754  | 77.96          | 0.003 | 237.6                |
| 08                   | 103.30 | 3.42        | 232.5               | 0.260       | 0.195 | 1.754  | 77.96          | 0.003 | 237.6                |
| 09                   | 103.30 | 3.42        | 232.5               | 0.260       | 0.195 | 1.754  | 77.96          | 0.003 | 237.6                |
| 10                   | 103.30 | 3.42        | 232.5               | 0.260       | 0.195 | 1.754  | 77.96          | 0.003 | 237.6                |

# TABLE III.16 DOMESTIC AVIATION GASOLINE—

| TABL     | E 111.16   | DOM<br>PROJ<br>(Conti | ESTIC<br>ECTEL<br>nued) | AVIA1<br>D GREE |       | GASOL<br>USE GA | INE—<br>AS EM | ISSIO | NS                    |
|----------|------------|-----------------------|-------------------------|-----------------|-------|-----------------|---------------|-------|-----------------------|
|          |            |                       |                         |                 |       |                 |               |       | Total CO <sub>2</sub> |
|          | FC         | FC                    | со <sub>2</sub>         | NOX             | CH4   | NMVOC           | СО            | N20   | equivalent            |
| Year     | (ML)       | (PJ)                  | (Gg)                    | (Gg)            | (Gg)  | (Gg)            | (Gg)          | (Gg)  | (Gg)                  |
| 2011     | 103.30     | 3.42                  | 232.5                   | 0.260           | 0.195 | 1.754           | 77.96         | 0.003 | 237.6                 |
| 2012     | 103.30     | 3.42                  | 232.5                   | 0.260           | 0.195 | 1.754           | 77.96         | 0.003 | 237.6                 |
| 2013     | 103.30     | 3.42                  | 232.5                   | 0.260           | 0.195 | 1.754           | 77.96         | 0.003 | 237.6                 |
| 2014     | 103.30     | 3.42                  | 232.5                   | 0.260           | 0.195 | 1.754           | 77.96         | 0.003 | 237.6                 |
| 2015     | 103.30     | 3.42                  | 232.5                   | 0.260           | 0.195 | 1.754           | 77.96         | 0.003 | 237.6                 |
| 2016     | 103.30     | 3.42                  | 232.5                   | 0.260           | 0.195 | 1.754           | 77.96         | 0.003 | 237.6                 |
| 2017     | 103.30     | 3.42                  | 232.5                   | 0.260           | 0.195 | 1.754           | 77.96         | 0.003 | 237.6                 |
| 2018     | 103.30     | 3.42                  | 232.5                   | 0.260           | 0.195 | 1.754           | 77.96         | 0.003 | 237.6                 |
| 2019     | 103.30     | 3.42                  | 232.5                   | 0.260           | 0.195 | 1.754           | 77.96         | 0.003 | 237.6                 |
| 2020     | 103.30     | 3.42                  | 232.5                   | 0.260           | 0.195 | 1.754           | 77.96         | 0.003 | 237.6                 |
| Sources: | BTRE estir | mates; BT             | CE (1995                | a).             |       |                 |               |       |                       |

Appendix 3

| TAB  | LE III.17 | тот    | AL DC  | MEST  | ΙΟΑΥ      | ΙΟΙΤΑΙ |        | SION | 1          |
|------|-----------|--------|--------|-------|-----------|--------|--------|------|------------|
|      |           | PRO    | JECTIO | ONS   |           |        |        |      |            |
|      |           |        |        |       |           |        |        |      | Total CO 2 |
|      | FC        | FC     | C02    | NOX   | СН₄       | NMVOC  | со     | N20  | equivalent |
| Year | (ML)      | (PJ)   | (Gg)   | (Gg)  | ,<br>(Gg) | (Gg)   | (Gg)   | (Gg) | (Gg)       |
| 1974 | 821.63    | 29.84  | 2024.2 | 7.38  | 0.23      | 2.06   | 81.88  | 0.06 | 2047.6     |
| 1975 | 896.08    | 32.58  | 2209.9 | 8.12  | 0.23      | 2.09   | 82.10  | 0.06 | 2235.2     |
| 1976 | 905.38    | 32.93  | 2233.1 | 8.21  | 0.23      | 2.09   | 82.12  | 0.06 | 2258.7     |
| 1977 | 933.26    | 33.94  | 2301.6 | 8.45  | 0.24      | 2.18   | 85.61  | 0.06 | 2327.9     |
| 1978 | 993.63    | 36.14  | 2451.1 | 9.02  | 0.25      | 2.27   | 89.19  | 0.07 | 2479.1     |
| 1979 | 979.70    | 35.63  | 2416.4 | 8.88  | 0.25      | 2.27   | 89.15  | 0.07 | 2444.0     |
| 1980 | 1017.12   | 37.01  | 2509.7 | 9.25  | 0.25      | 2.28   | 89.26  | 0.07 | 2537.4     |
| 1981 | 1012.37   | 36.84  | 2498.2 | 9.22  | 0.25      | 2.25   | 88.11  | 0.07 | 2525.7     |
| 1982 | 1076.30   | 39.19  | 2658.1 | 9.86  | 0.25      | 2.25   | 87.16  | 0.07 | 2687.1     |
| 1983 | 1045.19   | 38.05  | 2580.9 | 9.57  | 0.25      | 2.22   | 85.94  | 0.07 | 2609.1     |
| 1984 | 1039.42   | 37.85  | 2566.8 | 9.52  | 0.24      | 2.19   | 84.78  | 0.07 | 2594.9     |
| 1985 | 1063.34   | 38.73  | 2626.5 | 9.76  | 0.24      | 2.20   | 84.85  | 0.07 | 2655.1     |
| 1986 | 1135.46   | 41.38  | 2806.5 | 10.47 | 0.25      | 2.22   | 85.06  | 0.08 | 2836.9     |
| 1987 | 1180.15   | 43.01  | 2916.9 | 10.89 | 0.26      | 2.32   | 88.60  | 0.08 | 2948.5     |
| 1988 | 1260.08   | 45.93  | 3115.2 | 11.65 | 0.27      | 2.42   | 92.24  | 0.09 | 3148.8     |
| 1989 | 1249.37   | 45.52  | 3087.0 | 11.49 | 0.28      | 2.52   | 96.75  | 0.09 | 3120.5     |
| 1990 | 1029.36   | 37.40  | 2536.6 | 9.26  | 0.28      | 2.54   | 100.66 | 0.07 | 2564.9     |
| 1991 | 1255.89   | 45.83  | 3107.7 | 11.69 | 0.25      | 2.22   | 83.14  | 0.09 | 3140.9     |
| 1992 | 1355.26   | 49.50  | 3357.1 | 12.73 | 0.24      | 2.15   | 78.89  | 0.10 | 3392.6     |
| 1993 | 1419.39   | 51.84  | 3515.6 | 13.32 | 0.25      | 2.28   | 83.62  | 0.10 | 3552.9     |
| 1994 | 1480.31   | 54.10  | 3668.4 | 13.95 | 0.25      | 2.25   | 81.44  | 0.10 | 3707.0     |
| 1995 | 1705.56   | 62.38  | 4229.9 | 16.17 | 0.26      | 2.36   | 83.52  | 0.12 | 4274.1     |
| 1996 | 1850.38   | 67.72  | 4592.0 | 17.63 | 0.26      | 2.37   | 81.68  | 0.13 | 4639.6     |
| 1997 | 1929.16   | 70.61  | 4788.3 | 18.41 | 0.27      | 2.41   | 82.70  | 0.14 | 4837.9     |
| 1998 | 1932.49   | 70.73  | 4796.3 | 18.43 | 0.27      | 2.44   | 83.80  | 0.14 | 4846.0     |
| 1999 | 1907.17   | 69.79  | 4732.6 | 18.16 | 0.27      | 2.46   | 85.08  | 0.14 | 4781.8     |
| 2000 | 1991.87   | 72.92  | 4944.6 | 19.02 | 0.27      | 2.45   | 83.45  | 0.14 | 4995.7     |
| 2001 | 2104.53   | 77.06  | 5225.7 | 20.14 | 0.28      | 2.49   | 83.78  | 0.15 | 5279.6     |
| 2002 | 2208.16   | 80.88  | 5484.2 | 21.17 | 0.28      | 2.53   | 84.08  | 0.16 | 5540.7     |
| 2003 | 2306.63   | 84.50  | 5729.9 | 22.15 | 0.28      | 2.56   | 84.36  | 0.17 | 5788.7     |
| 2004 | 2410.16   | 88.31  | 5988.2 | 23.18 | 0.29      | 2.60   | 84.66  | 0.17 | 6049.6     |
| 2005 | 2514.63   | 92.16  | 6248.9 | 24.22 | 0.29      | 2.64   | 84.97  | 0.18 | 6312.8     |
| 2006 | 2622.39   | 96.12  | 6517.7 | 25.29 | 0.30      | 2.68   | 85.28  | 0.19 | 6584.3     |
| 2007 | 2735.05   | 100.27 | 6798.8 | 26.41 | 0.30      | 2.72   | 85.61  | 0.20 | 6868.1     |
| 2008 | 2852.30   | 104.58 | 7091.4 | 27.57 | 0.31      | 2.77   | 85.95  | 0.21 | 7163.5     |
| 2009 | 2974.46   | 109.08 | 7396.2 | 28.79 | 0.31      | 2.81   | 86.31  | 0.21 | 7471.3     |
| 2010 | 3101.84   | 113.77 | 7714.0 | 30.05 | 0.32      | 2.86   | 86.68  | 0.22 | 7792.2     |
|      |           |        |        |       |           |        |        |      | Continued  |

|          |           | PRO       | ΙΕϹΤΙΟ          | NS (Co | ontinued | 1)    |       |      |                       |
|----------|-----------|-----------|-----------------|--------|----------|-------|-------|------|-----------------------|
|          |           |           |                 |        |          |       |       |      | Total CO <sub>2</sub> |
|          | FC        | FC        | со <sub>2</sub> | NOX    | CH4      | NMVOC | со    | N20  | equivalent            |
| Year     | (ML)      | (PJ)      | (Gg)            | (Gg)   | (Gg)     | (Gg)  | (Gg)  | (Gg) | (Gg)                  |
| 2011     | 3235.94   | 118.70    | 8048.6          | 31.39  | 0.32     | 2.91  | 87.07 | 0.23 | 8130.1                |
| 2012     | 3376.87   | 123.89    | 8400.2          | 32.79  | 0.33     | 2.96  | 87.48 | 0.24 | 8485.2                |
| 2013     | 3524.27   | 129.31    | 8768.0          | 34.25  | 0.33     | 3.01  | 87.90 | 0.25 | 8856.5                |
| 2014     | 3678.38   | 134.98    | 9152.5          | 35.78  | 0.34     | 3.07  | 88.35 | 0.27 | 9244.8                |
| 2015     | 3839.41   | 140.91    | 9554.3          | 37.38  | 0.35     | 3.13  | 88.82 | 0.28 | 9650.5                |
| 2016     | 4007.24   | 147.08    | 9973.0          | 39.05  | 0.35     | 3.19  | 89.31 | 0.29 | 10073.3               |
| 2017     | 4181.61   | 153.50    | 10408.1         | 40.78  | 0.36     | 3.25  | 89.81 | 0.30 | 10512.6               |
| 2018     | 4362.20   | 160.15    | 10858.6         | 42.58  | 0.37     | 3.32  | 90.34 | 0.32 | 10967.6               |
| 2019     | 4548.65   | 167.01    | 11323.8         | 44.43  | 0.37     | 3.39  | 90.88 | 0.33 | 11437.4               |
| 2020     | 4740.98   | 174.09    | 11803.7         | 46.34  | 0.38     | 3.46  | 91.44 | 0.34 | 11921.9               |
| Sources: | BTRE esti | imates; B | TCE (1995a      | ı).    |          |       |       |      |                       |

## TABLE III.17 TOTAL DOMESTIC AVIATION EMISSION PROJECTIONS (Continued)

Appendix 3

| ТАВ  | LE III.18 | INTER    | NATION   | AL AVI  | ATION     | PROJ | ЕСТІС | ONS       |
|------|-----------|----------|----------|---------|-----------|------|-------|-----------|
|      |           |          | AVKMIN A | AVKMOUT | IPKM      | LF   |       | ТІРКМ     |
| Year | INPASS    | OUTPASS  | (km)     | (km)    | (million) | (%)  | Alpha | (million) |
| 1982 | 953400    | 1252300  | 9923.45  | 9398.99 | 42462.74  | 63.7 | 0.95  | 44469.09  |
| 1983 | 931700    | 1255500  | 9684.80  | 9188.62 | 41119.28  | 60.3 | 0.96  | 42893.38  |
| 1984 | 989000    | 1306400  | 9583.04  | 9219.18 | 43043.12  | 63.6 | 0.96  | 44724.24  |
| 1985 | 1055000   | 1494800  | 9564.04  | 9222.92 | 47752.97  | 66.8 | 0.97  | 49423.57  |
| 1986 | 1258300   | 1491600  | 9404.50  | 9107.86 | 50837.93  | 67.7 | 0.97  | 52410.24  |
| 1987 | 1584500   | 1578600  | 9384.32  | 8857.65 | 57704.30  | 68.4 | 0.97  | 59401.86  |
| 1988 | 1990500   | 1639000  | 9340.02  | 8869.68 | 66257.43  | 70.9 | 0.97  | 68106.75  |
| 1989 | 2217300   | 1836100  | 9524.83  | 9014.51 | 75341.91  | 69.4 | 0.97  | 77331.40  |
| 1990 | 2148800   | 2089000  | 9347.45  | 9068.73 | 78060.74  | 67.4 | 0.98  | 80004.72  |
| 1991 | 2239500   | 2107400  | 9398.25  | 9021.51 | 80118.65  | 64.9 | 0.98  | 81993.65  |
| 1992 | 2507900   | 2177200  | 9137.87  | 9042.80 | 85209.70  | 65.7 | 0.98  | 87076.16  |
| 1993 | 2795800   | 2289600  | 9042.61  | 9014.35 | 91841.17  | 65.0 | 0.98  | 93715.48  |
| 1994 | 3158900   | 2296000  | 9102.73  | 9009.44 | 98880.56  | 67.6 | 0.98  | 100898.53 |
| 1995 | 3553500   | 2417900  | 9096.78  | 9068.08 | 108502.19 | 66.9 | 0.98  | 110716.52 |
| 1996 | 3960500   | 2601300  | 8816.80  | 9047.79 | 116909.89 | 66.0 | 0.98  | 119295.81 |
| 1997 | 4257400   | 2826400  | 8833.51  | 9082.65 | 126557.94 | 67.4 | 0.98  | 129140.76 |
| 1998 | 4239800   | 3039100  | 9059.80  | 9069.61 | 131950.33 | 66.7 | 0.98  | 134643.20 |
| 1999 | 4299900   | 3201900  | 9219.88  | 8819.40 | 135766.76 | 68.9 | 0.98  | 138537.51 |
| 2000 | 4671300   | 3338200  | 9371.62  | 8973.08 | 147463.14 | 69.3 | 0.98  | 150472.59 |
| 2001 | 5275652   | 3733163  | 9371.62  | 8973.08 | 165878.71 | 65.0 | 0.98  | 169984.92 |
| 2002 | 5808942   | 4006484  | 9371.62  | 8973.08 | 180779.37 | 65.0 | 0.98  | 185254.43 |
| 2003 | 6318753   | 4251269  | 9371.62  | 8973.08 | 194727.81 | 65.0 | 0.98  | 199548.17 |
| 2004 | 6873307   | 4511009  | 9371.62  | 8973.08 | 209783.28 | 65.0 | 0.98  | 214976.32 |
| 2005 | 7476530   | 4769559  | 9371.62  | 8973.08 | 225729.62 | 65.0 | 0.98  | 231317.40 |
| 2006 | 8132694   | 5034985  | 9371.62  | 8973.08 | 242791.63 | 65.0 | 0.98  | 248801.77 |
| 2007 | 8846445   | 5312917  | 9371.62  | 8973.08 | 261157.45 | 65.0 | 0.98  | 267622.22 |
| 2008 | 9622837   | 5601404  | 9371.62  | 8973.08 | 280886.76 | 65.0 | 0.98  | 287839.92 |
| 2009 | 10467367  | 5900985  | 9371.62  | 8973.08 | 302092.33 | 65.0 | 0.98  | 309570.42 |
| 2010 | 11386017  | 6212046  | 9371.62  | 8973.08 | 324893.13 | 65.0 | 0.98  | 332935.64 |
| 2011 | 12385290  | 6539944  | 9371.62  | 8973.08 | 349507.26 | 65.0 | 0.98  | 358159.07 |
| 2012 | 13472262  | 6884259  | 9371.62  | 8973.08 | 376059.76 | 65.0 | 0.98  | 385368.86 |
| 2013 | 14654630  | 7242302  | 9371.62  | 8973.08 | 404646.66 | 65.0 | 0.98  | 414663.40 |
| 2014 | 15940767  | 7613865  | 9371.62  | 8973.08 | 435421.16 | 65.0 | 0.98  | 446199.70 |
| 2015 | 17339779  | 7998288  | 9371.62  | 8973.08 | 468542.09 | 65.0 | 0.98  | 480140.52 |
| 2016 | 18861573  | 8393315  | 9371.62  | 8973.08 | 504154.64 | 65.0 | 0.98  | 516634.63 |
| 2017 | 20516924  | 8795664  | 9371.62  | 8973.08 | 542401.89 | 65.0 | 0.98  | 555828.67 |
| 2018 | 22317554  | 9201445  | 9371.62  | 8973.08 | 583433.75 | 65.0 | 0.98  | 597876.24 |
| 2019 | 24276214  | 9606145  | 9371.62  | 8973.08 | 627408.15 | 65.0 | 0.98  | 642939.20 |
| 2020 | 26406771  | 10006737 | 9371.62  | 8973.08 | 674530.78 | 65.0 | 0.98  | 691228.32 |
|      |           |          |          |         |           |      |       | Continued |

BTRE Report 107

| TABL     | EIII.18 IN                      | TERNAT                     | IONAL                       | ΑΥΙΑΤΙΟ             | ON PRO      | JECTION     | IS      |
|----------|---------------------------------|----------------------------|-----------------------------|---------------------|-------------|-------------|---------|
|          | (Co                             | ntinued)                   |                             |                     |             |             |         |
|          | SKM                             | AFC                        | TFC                         | FI                  | G7GDP       | RNFGDP      | RTWI    |
| Year     | (million)                       | (ML)                       | (ML)                        | (L/skm)             | (\$billion) | (\$billion) | (Index) |
| 1982     | 69810.19                        | 1018.80                    | 2425.71                     | 0.03475             | 38376       | 326.125     | 80.08   |
| 1983     | 71133.30                        | 991.80                     | 2361.43                     | 0.03320             | 38568       | 321.203     | 75.79   |
| 1984     | 70321.14                        | 989.50                     | 2355.95                     | 0.03350             | 40420       | 334.021     | 77.40   |
| 1985     | 73987.38                        | 1114.20                    | 2652.86                     | 0.03586             | 41942       | 353.092     | 71.43   |
| 1986     | 77415.42                        | 1136.40                    | 2705.71                     | 0.03495             | 43412       | 368.444     | 62.10   |
| 1987     | 86844.83                        | 1200.10                    | 2857.38                     | 0.03290             | 44542       | 378.588     | 57.43   |
| 1988     | 96060.30                        | 1357.30                    | 3231.67                     | 0.03364             | 46386       | 399.653     | 60.79   |
| 1989     | 111428.53                       | 1567.00                    | 3730.95                     | 0.03348             | 48259       | 416.568     | 70.47   |
| 1990     | 118701.36                       | 1711.60                    | 4075.24                     | 0.03433             | 49783       | 430.689     | 70.98   |
| 1991     | 126338.44                       | 1780.60                    | 4239.52                     | 0.03356             | 50269       | 430.849     | 69.99   |
| 1992     | 132628.54                       | 1889.08                    | 4497.81                     | 0.03391             | 50926       | 432.923     | 67.83   |
| 1993     | 144273.06                       | 2042.00                    | 4861.90                     | 0.03370             | 51580       | 446.732     | 59.52   |
| 1994     | 149225.15                       | 2101.10                    | 5002.61                     | 0.03352             | 52592       | 465.517     | 58.62   |
| 1995     | 165600.55                       | 2300.47                    | 5477.32                     | 0.03308             | 54027       | 490.459     | 60.5 I  |
| 1996     | 180674.25                       | 2478.92                    | 5902.19                     | 0.03267             | 55319       | 507.995     | 64.66   |
| 1997     | 191657.88                       | 2560.23                    | 6095.78                     | 0.03181             | 57020       | 524.657     | 68.24   |
| 1998     | 201920.60                       | 2840.72                    | 6763.62                     | 0.03350             | 58548       | 550.817     | 66.81   |
| 1999     | 201128.49                       | 2707.77                    | 6447.08                     | 0.03205             | 59856       | 578.941     | 63.70   |
| 2000     | 217043.72                       | 2526.19                    | 6014.75                     | 0.02771             | 61958       | 603.748     | 62.94   |
| 2001     | 261515.26                       | 3006.22                    | 7157.67                     | 0.02737             | 64170       | 628.291     | 59.19   |
| 2002     | 285006.82                       | 3235.82                    | 7704.33                     | 0.02703             | 65808       | 650.865     | 58.5 I  |
| 2003     | 306997.18                       | 3442.45                    | 8196.32                     | 0.02670             | 67453       | 673.646     | 58.5 I  |
| 2004     | 330732.80                       | 3662.82                    | 8721.00                     | 0.02637             | 69140       | 697.223     | 58.5 I  |
| 2005     | 355872.93                       | 3892.58                    | 9268.06                     | 0.02604             | 70868       | 720.137     | 58.5 I  |
| 2006     | 382771.95                       | 4135.12                    | 9845.52                     | 0.02572             | 72640       | 743.120     | 58.5 I  |
| 2007     | 411726.49                       | 4393.00                    | 10459.53                    | 0.02540             | 74456       | 766.647     | 58.5 I  |
| 2008     | 442830.64                       | 4666.54                    | 11110.81                    | 0.02509             | 76317       | 790.528     | 58.5 I  |
| 2009     | 476262.18                       | 4956.88                    | 11802.09                    | 0.02478             | 78225       | 814.786     | 58.5 I  |
| 2010     | 512208.67                       | 5265.19                    | 12536.16                    | 0.02447             | 80181       | 839.433     | 58.5 I  |
| 2011     | 551013.95                       | 5594.15                    | 13319.40                    | 0.02417             | 82185       | 864.857     | 58.5 I  |
| 2012     | 592875.17                       | 5944.83                    | 14154.36                    | 0.02387             | 84240       | 890.986     | 58.5 I  |
| 2013     | 637943.70                       | 6317.76                    | 15042.29                    | 0.02358             | 86346       | 917.581     | 58.5 I  |
| 2014     | 686461.08                       | 6714.31                    | 15986.46                    | 0.02329             | 88505       | 944.603     | 58.51   |
| 2015     | 738677.72                       | 7135.85                    | 16990.11                    | 0.02300             | 90717       | 971.984     | 58.5 I  |
| 2016     | 794822.5 I                      | 7583.42                    | 18055.77                    | 0.02272             | 92985       | 999.550     | 58.5 I  |
| 2017     | 855121.03                       | 8058.00                    | 19185.72                    | 0.02244             | 95310       | 1027.073    | 58.5 I  |
| 2018     | 919809.60                       | 8560.57                    | 20382.30                    | 0.02216             | 97693       | 1054.301    | 58.51   |
| 2019     | 989137.24                       | 9092.14                    | 21647.94                    | 0.02189             | 100135      | 1080.959    | 58.5 I  |
| 2020     | 1063428.19                      | 9654.33                    | 22986.51                    | 0.02162             | 102638      | 1106.886    | 58.5 I  |
| Sources: | BTRE estimates<br>BTCE (1995a); | ; ABS (2001<br>DISR (2001) | c); BTRE Ind<br>; RBA (2001 | licators Data<br>). | base; AVST  | ATS (2001); |         |

|                                |               |              |            |        |        |        |                |             |        | 2       |
|--------------------------------|---------------|--------------|------------|--------|--------|--------|----------------|-------------|--------|---------|
|                                | Distance      |              |            |        |        | Pass   | senger number. | s (by year) |        |         |
| Country                        | (km)          | 1992         | 1993       | 1994   | 1995   | 1996   | 1997           | 1998        | 1999   | 2000    |
| Vew Zealand                    | 2200          | 459400       | 480600     | 487500 | 501800 | 612200 | 675800         | 695800      | 718800 | 773000  |
| <b>Malaysia</b>                | 6300          | 52700        | 69800      | 87400  | 103500 | 122400 | 138500         | 124800      | 128100 | 146800  |
| apan                           | 7800          | 602500       | 651700     | 001069 | 742200 | 813500 | 802300         | 797100      | 725800 | 705600  |
| ndonesia                       | 5500          | 39500        | 56300      | 88200  | 124200 | 146400 | 163300         | 120000      | 100500 | 85200   |
| Other Asia                     | 7500          | 333700       | 455200     | 613300 | 771500 | 934400 | 1021000        | 904300      | 867400 | 994200  |
| Europe                         | 17000         | 555900       | 594200     | 676500 | 747400 | 756200 | 835400         | 914100      | 983900 | 1131500 |
| Africa                         | 00011         | 18900        | 27600      | 41100  | 42200  | 46700  | 56200          | 58400       | 77800  | 72000   |
| acific Islands                 | 4000          | 88300        | 93300      | 102900 | 107100 | 001011 | 115700         | 118700      | 136200 | 135200  |
| <b>Jnited States</b>           | 12000         | 283200       | 270500     | 287200 | 295100 | 310400 | 321300         | 355700      | 393800 | 436900  |
| Other                          | 10000         | 102900       | 102000     | 111900 | 123400 | 145200 | 158000         | 171000      | 201700 | 226000  |
|                                |               |              |            |        |        |        |                |             |        |         |
| assengers (million)            |               | 2.539        | 2.803      | 3.188  | 3.560  | 3.999  | 4.289          | 4.262       | 4.336  | 4.708   |
| <b>Fotal kilometres (billi</b> | on)           | 23.201       | 25.348     | 29.020 | 32.388 | 35.263 | 37.891         | 38.612      | 39.977 | 44.125  |
| AVKM                           |               | 9137.9       | 9042.6     | 9102.7 | 9096.8 | 8816.8 | 8833.5         | 9059.8      | 9219.9 | 9371.6  |
| Sources: BTRE estim            | ates; ABS (20 | 001 c); BTRE | : (1995a). |        |        |        |                |             |        |         |

TABLE III.19 KILOMETRES FLOWN BY INBOUND INTERNATIONAL AVIATION PASSENGERS

Appendix 3

| TABLE III.20          | KILOME        | TRES FL     | OWN BY        | OUTBO        |            | <b>FERNATI</b> | ONAL AV      | <b><i>IIATION</i></b> | PASSEN | GERS    |
|-----------------------|---------------|-------------|---------------|--------------|------------|----------------|--------------|-----------------------|--------|---------|
|                       | Distance      |             |               |              | Pas        | senger numbe   | rs (by year) |                       |        |         |
| Country               | (km)          | 1992        | 1993          | 1994         | 1995       | 1996           | 1997         | 1998                  | 1999   | 2000    |
| New Zealand           | 2200          | 330000      | 345600        | 350900       | 361100     | 396900         | 409600       | 429100                | 477600 | 506500  |
| Malaysia              | 6300          | 74100       | 81800         | 85500        | 85800      | 90806          | 006101       | 104200                | 111700 | 126400  |
| Japan                 | 7800          | 47300       | 47000         | 43900        | 42500      | 44800          | 50400        | 56600                 | 61800  | 64400   |
| Indonesia             | 5500          | 175400      | 197500        | 206200       | 213800     | 238300         | 279500       | 324000                | 349000 | 261900  |
| Other Asia            | 7500          | 448300      | 488400        | 490400       | 549000     | 603800         | 647600       | 681000                | 737500 | 782600  |
| Europe                | 17000         | 459700      | 485200        | 498500       | 530400     | 560100         | 611700       | 664100                | 648900 | 703200  |
| Africa                | 11000         | 21800       | 27200         | 30000        | 35500      | 39700          | 54500        | 51100                 | 50500  | 57700   |
| Pacific Islands       | 4000          | 183800      | 187900        | 180100       | 172000     | 167300         | 175900       | 199300                | 219500 | 242400  |
| United States         | 12000         | 322400      | 324300        | 291300       | 293800     | 328300         | 338100       | 346200                | 323900 | 373600  |
| Other                 | 00001         | 110800      | 114800        | 127300       | 139300     | 154400         | 167600       | 176600                | 208800 | 213800  |
| Presonance (million)  |               | 7 I 76      | 207           | 2 0 K        | 3 4 J E    | 7676           | 020 C        | 2 0 2 4               | 101 ~  | 2 2 2 5 |
|                       |               | 2.1.2       | 70C-7         | 20.110       | 72010      | 11 5 6 6       |              |                       |        |         |
| I otal kilometres (bi | (uoili        | CC0.71      | 20./30        | 467.07       | 21.774     | 23./45         | 99/.67       | 106.12                | 78.127 | 29.703  |
| AVKM                  |               | 9034.5      | 9006.5        | 9.1006       | 9060.6     | 9040.9         | 9076.3       | 9063.6                | 8813.9 | 8967.7  |
| Sources: BTRE estin   | mates; ABS (2 | 001)c; BTRE | Indicators Da | tabase; BTCI | E (1995a). |                |              |                       |        |         |

BTRE Report 107

Appendix 3

| AFCAFCCO2NOXCH4NMVOCCON20equivaleYear(ML)(PJ)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg) <th></th> <th></th> <th></th> <th>PRO</th> <th>JECTE</th> <th>D GRE</th> <th>ENH</th> <th>OUSE E</th> <th>MISSI</th> <th>ONS</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |        |        | PRO    | JECTE           | D GRE  | ENH   | OUSE E | MISSI | ONS   |                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|--------|--------|-----------------|--------|-------|--------|-------|-------|-----------------------|
| AFCAFC $CO_2$ $NO_X$ $CH_4$ NMVOC $CO$ $N_2O$ equivaleYear(ML)(PJ)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg)(Gg) <th></th> <th>Total CO<sub>2</sub></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |        |        |        |                 |        |       |        |       |       | Total CO <sub>2</sub> |
| Year         (ML)         (PJ)         (Gg)         (Gg) <th< td=""><td></td><td>AFC</td><td>AFC</td><td>AFC</td><td>со<sub>2</sub></td><td>NOX</td><td>CH4</td><td>NMVOC</td><td>СО</td><td>N20</td><td>equivalent</td></th<> |         | AFC    | AFC    | AFC    | со <sub>2</sub> | NOX    | CH4   | NMVOC  | СО    | N20   | equivalent            |
| 1974       756.2       27.83       1886.7       7.235       0.011       0.111       1.391       0.056       1904         1975       834.8       30.72       2082.9       7.988       0.012       0.123       1.536       0.061       2102         1976       844.7       31.08       2107.5       8.082       0.012       0.124       1.554       0.062       2127         1977       869.3       31.99       2169.0       8.318       0.013       0.128       1.6       0.064       2189         1978       928.3       34.16       2316.2       8.882       0.014       0.137       1.708       0.068       2336         1979       913.6       33.62       2279.4       8.741       0.013       0.134       1.681       0.067       2301         1980       953.1       35.07       2378.0       9.119       0.014       0.14       1.747       0.07       2392         1981       949.7       34.95       2369.5       9.087       0.014       0.14       1.821       0.073       2492         1983       991.8       36.50       2474.6       9.49       0.015       0.146       1.821       0.073       2492 <td>(ear</td> <td>(ML)</td> <td>(ML)</td> <td>(PJ)</td> <td>(Gg)</td> <td>(Gg)</td> <td>(Gg)</td> <td>(Gg)</td> <td>(Gg)</td> <td>(Gg)</td> <td>(Gg)</td>                                                                                                                              | (ear    | (ML)   | (ML)   | (PJ)   | (Gg)            | (Gg)   | (Gg)  | (Gg)   | (Gg)  | (Gg)  | (Gg)                  |
| 1975834.830.722082.97.9880.0120.1231.5360.06121021976844.731.082107.58.0820.0120.1241.5540.06221271977869.331.992169.08.3180.0130.1281.60.06421891978928.334.162316.28.8820.0140.1371.7080.06823361979913.633.622279.48.7410.0130.1341.6810.06723011980953.135.072378.09.1190.0140.141.7470.0723921981949.734.952369.59.0870.0140.141.7470.07239219821018.837.492541.99.7480.0150.151.8750.07525661983991.836.502474.69.490.0150.1461.8210.07324921984989.536.412468.89.4680.0150.1461.8210.073249219851114.241.002780.010.6610.0160.1462.050.08228061986136.441.822835.410.8730.0170.1672.0910.084286219871200.144.162994.311.4830.0180.1772.2080.088302219881357.349.953386.512.9870.020.22.497 <t< td=""><td>974 7</td><td>756.2</td><td>756.2</td><td>27.83</td><td>1886.7</td><td>7.235</td><td>0.011</td><td>0.111</td><td>1.391</td><td>0.056</td><td>1904.8</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 974 7   | 756.2  | 756.2  | 27.83  | 1886.7          | 7.235  | 0.011 | 0.111  | 1.391 | 0.056 | 1904.8                |
| 1976844.731.082107.58.0820.0120.1241.5540.06221271977869.331.992169.08.3180.0130.1281.60.06421891978928.334.162316.28.8820.0140.1371.7080.06823361979913.633.622279.48.7410.0130.1341.6810.06723011980953.135.072378.09.1190.0140.141.7470.0723921981949.734.952369.59.0870.0140.141.7470.07239219821018.837.492541.99.7480.0150.1561.8750.07525661983991.836.502474.69.490.0150.1461.8210.073249219851114.241.002780.010.6610.0160.1642.050.082280619861136.441.822835.410.8730.0170.1672.0910.084286219871200.144.162994.311.4830.0180.1772.2080.088302219881357.349.953386.512.9870.020.22.4970.1341819891567.057.673909.714.9930.0230.2312.8830.115394719901711.662.994270.516.3770.0260.2623.276 <td>975 8</td> <td>834.8</td> <td>834.8</td> <td>30.72</td> <td>2082.9</td> <td>7.988</td> <td>0.012</td> <td>0.123</td> <td>1.536</td> <td>0.061</td> <td>2102.9</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 975 8   | 834.8  | 834.8  | 30.72  | 2082.9          | 7.988  | 0.012 | 0.123  | 1.536 | 0.061 | 2102.9                |
| 1977869.331.992169.08.3180.0130.1281.60.06421891978928.334.162316.28.8820.0140.1371.7080.06823381979913.633.622279.48.7410.0130.1341.6810.06723011980953.135.072378.09.1190.0140.141.7470.0724001981949.734.952369.59.0870.0140.141.7470.07239219821018.837.492541.99.7480.0150.151.8750.07525661983991.836.502474.69.490.0150.1461.8210.07324921984989.536.412468.89.4680.0150.1461.8210.073249219851114.241.002780.010.6610.0160.1642.050.082280619861136.441.822835.410.8730.0170.1672.0910.084286219871200.144.162994.311.4830.0180.1772.2080.088302219881357.349.953386.512.9870.020.22.4970.1341819891567.057.673909.714.9930.0230.2312.8830.115394719901711.662.994270.516.3770.0260.2623.276 <td>976 8</td> <td>844.7</td> <td>844.7</td> <td>31.08</td> <td>2107.5</td> <td>8.082</td> <td>0.012</td> <td>0.124</td> <td>1.554</td> <td>0.062</td> <td>2127.6</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 976 8   | 844.7  | 844.7  | 31.08  | 2107.5          | 8.082  | 0.012 | 0.124  | 1.554 | 0.062 | 2127.6                |
| 1978       928.3       34.16       2316.2       8.882       0.014       0.137       1.708       0.068       2338         1979       913.6       33.62       2279.4       8.741       0.013       0.134       1.681       0.067       2301         1980       953.1       35.07       2378.0       9.119       0.014       0.14       1.754       0.07       2400         1981       949.7       34.95       2369.5       9.087       0.014       0.14       1.747       0.07       2392         1982       1018.8       37.49       2541.9       9.748       0.015       0.15       1.875       0.075       2566         1983       991.8       36.50       2474.6       9.49       0.015       0.146       1.821       0.073       2492         1984       989.5       36.41       2468.8       9.468       0.015       0.146       1.821       0.073       2492         1985       1114.2       41.00       2780.0       10.661       0.016       0.167       2.091       0.084       2862         1986       1357.3       49.95       3386.5       12.987       0.02       0.2       2.497       0.1       3418 <td>977 8</td> <td>869.3</td> <td>869.3</td> <td>31.99</td> <td>2169.0</td> <td>8.318</td> <td>0.013</td> <td>0.128</td> <td>1.6</td> <td>0.064</td> <td>2189.7</td>                                                                                                                   | 977 8   | 869.3  | 869.3  | 31.99  | 2169.0          | 8.318  | 0.013 | 0.128  | 1.6   | 0.064 | 2189.7                |
| 1979913.633.622279.48.7410.0130.1341.6810.06723011980953.135.072378.09.1190.0140.141.7540.0724001981949.734.952369.59.0870.0140.141.7470.07239219821018.837.492541.99.7480.0150.151.8750.07525661983991.836.502474.69.490.0150.1461.8250.07324921984989.536.412468.89.4680.0150.1461.8210.073249219851114.241.002780.010.6610.0160.1642.050.082280619861136.441.822835.410.8730.0170.1672.0910.084286219871200.144.162994.311.4830.0180.1772.2080.088302219881357.349.953386.512.9870.020.22.4970.1341819891567.057.673909.714.9930.0230.2312.8830.115394719901711.662.994270.516.3770.0260.2623.2760.131448519921889.169.524713.318.0750.0280.2783.4760.139475819932042.075.155094.919.5380.030.3013.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 978 9   | 928.3  | 928.3  | 34.16  | 2316.2          | 8.882  | 0.014 | 0.137  | 1.708 | 0.068 | 2338.3                |
| 1980       953.1       35.07       2378.0       9.119       0.014       0.14       1.754       0.07       2400         1981       949.7       34.95       2369.5       9.087       0.014       0.14       1.747       0.07       2392         1982       1018.8       37.49       2541.9       9.748       0.015       0.15       1.875       0.075       2566         1983       991.8       36.50       2474.6       9.49       0.015       0.146       1.825       0.073       2492         1984       989.5       36.41       2468.8       9.468       0.015       0.146       1.821       0.073       2492         1985       1114.2       41.00       2780.0       10.661       0.016       0.164       2.05       0.082       2806         1986       1136.4       41.82       2835.4       10.873       0.017       0.167       2.091       0.084       2862         1987       1200.1       44.16       2994.3       11.483       0.018       0.177       2.208       0.088       3022         1988       1357.3       49.95       3386.5       12.987       0.02       0.2       2.497       0.1       3418<                                                                                                                                                                                                                                                                                    | 979 9   | 913.6  | 913.6  | 33.62  | 2279.4          | 8.741  | 0.013 | 0.134  | 1.681 | 0.067 | 2301.2                |
| 1981       949.7       34.95       2369.5       9.087       0.014       0.14       1.747       0.07       2392         1982       1018.8       37.49       2541.9       9.748       0.015       0.15       1.875       0.075       2566         1983       991.8       36.50       2474.6       9.49       0.015       0.146       1.825       0.073       2496         1984       989.5       36.41       2468.8       9.468       0.015       0.146       1.821       0.073       2492         1985       1114.2       41.00       2780.0       10.661       0.016       0.164       2.05       0.082       2806         1986       1136.4       41.82       2835.4       10.873       0.017       0.167       2.091       0.084       2862         1987       1200.1       44.16       2994.3       11.483       0.018       0.177       2.208       0.088       3022         1988       1357.3       49.95       3386.5       12.987       0.02       0.2       2.497       0.1       3416         1989       1567.0       57.67       3909.7       14.993       0.023       0.231       2.883       0.115       3                                                                                                                                                                                                                                                                                    | 980 9   | 953.1  | 953.I  | 35.07  | 2378.0          | 9.119  | 0.014 | 0.14   | 1.754 | 0.07  | 2400.8                |
| 1982       1018.8       37.49       2541.9       9.748       0.015       0.15       1.875       0.075       2566         1983       991.8       36.50       2474.6       9.49       0.015       0.146       1.825       0.073       2498         1984       989.5       36.41       2468.8       9.468       0.015       0.146       1.821       0.073       2492         1985       1114.2       41.00       2780.0       10.661       0.016       0.164       2.05       0.082       2806         1986       1136.4       41.82       2835.4       10.873       0.017       0.167       2.091       0.084       2862         1987       1200.1       44.16       2994.3       11.483       0.018       0.177       2.208       0.088       3022         1988       1357.3       49.95       3386.5       12.987       0.02       0.2       2.497       0.1       3418         1989       1567.0       57.67       3909.7       14.993       0.023       0.231       2.883       0.115       3947         1990       1711.6       62.99       4270.5       16.377       0.026       0.262       3.276       0.131       <                                                                                                                                                                                                                                                                                | 981 9   | 949.7  | 949.7  | 34.95  | 2369.5          | 9.087  | 0.014 | 0.14   | 1.747 | 0.07  | 2392.2                |
| 1983       991.8       36.50       2474.6       9.49       0.015       0.146       1.825       0.073       2498         1984       989.5       36.41       2468.8       9.468       0.015       0.146       1.821       0.073       2492         1985       1114.2       41.00       2780.0       10.661       0.016       0.164       2.05       0.082       2806         1986       1136.4       41.82       2835.4       10.873       0.017       0.167       2.091       0.084       2862         1987       1200.1       44.16       2994.3       11.483       0.018       0.177       2.208       0.088       3022         1988       1357.3       49.95       3386.5       12.987       0.02       0.2       2.497       0.1       3418         1989       1567.0       57.67       3909.7       14.993       0.023       0.231       2.883       0.115       3947         1990       1711.6       62.99       4270.5       16.377       0.026       0.262       3.276       0.131       4485         1992       1889.1       69.52       4713.3       18.075       0.028       0.278       3.476       0.139                                                                                                                                                                                                                                                                                      | 982 10  | 1018.8 | 1018.8 | 37.49  | 2541.9          | 9.748  | 0.015 | 0.15   | 1.875 | 0.075 | 2566.3                |
| 1984         989.5         36.41         2468.8         9.468         0.015         0.146         1.821         0.073         2492           1985         1114.2         41.00         2780.0         10.661         0.016         0.164         2.05         0.082         2806           1986         1136.4         41.82         2835.4         10.873         0.017         0.167         2.091         0.084         2862           1987         1200.1         44.16         2994.3         11.483         0.018         0.177         2.208         0.088         3022           1988         1357.3         49.95         3386.5         12.987         0.02         0.2         2.497         0.1         3418           1989         1567.0         57.67         3909.7         14.993         0.023         0.231         2.883         0.115         3947           1990         1711.6         62.99         4270.5         16.377         0.026         0.262         3.276         0.131         4485           1992         1889.1         69.52         4713.3         18.075         0.028         0.278         3.476         0.139         4758           1993         2042.0 <td>983 9</td> <td>991.8</td> <td>991.8</td> <td>36.50</td> <td>2474.6</td> <td>9.49</td> <td>0.015</td> <td>0.146</td> <td>1.825</td> <td>0.073</td> <td>2498.2</td>                                 | 983 9   | 991.8  | 991.8  | 36.50  | 2474.6          | 9.49   | 0.015 | 0.146  | 1.825 | 0.073 | 2498.2                |
| 1985       1114.2       41.00       2780.0       10.661       0.016       0.164       2.05       0.082       2806         1986       1136.4       41.82       2835.4       10.873       0.017       0.167       2.091       0.084       2862         1987       1200.1       44.16       2994.3       11.483       0.018       0.177       2.208       0.088       3022         1988       1357.3       49.95       3386.5       12.987       0.02       0.2       2.497       0.1       3418         1989       1567.0       57.67       3909.7       14.993       0.023       0.231       2.883       0.115       3947         1990       1711.6       62.99       4270.5       16.377       0.026       0.262       3.276       0.131       4485         1991       1780.6       65.53       4442.7       17.037       0.026       0.262       3.276       0.131       4485         1992       1889.1       69.52       4713.3       18.075       0.028       0.278       3.476       0.139       4758         1993       2042.0       75.15       5094.9       19.538       0.03       0.301       3.757       0.15                                                                                                                                                                                                                                                                                   | 984 9   | 989.5  | 989.5  | 36.41  | 2468.8          | 9.468  | 0.015 | 0.146  | 1.821 | 0.073 | 2492.5                |
| 1986       1136.4       41.82       2835.4       10.873       0.017       0.167       2.091       0.084       2862         1987       1200.1       44.16       2994.3       11.483       0.018       0.177       2.208       0.088       3022         1988       1357.3       49.95       3386.5       12.987       0.02       0.2       2.497       0.1       3418         1989       1567.0       57.67       3909.7       14.993       0.023       0.231       2.883       0.115       3947         1990       1711.6       62.99       4270.5       16.377       0.026       0.262       3.276       0.131       4485         1991       1780.6       65.53       4442.7       17.037       0.026       0.262       3.276       0.131       4485         1992       1889.1       69.52       4713.3       18.075       0.028       0.278       3.476       0.139       4758         1993       2042.0       75.15       5094.9       19.538       0.03       0.301       3.757       0.15       5143         1994       2101.1       77.32       5242.3       20.103       0.031       0.309       3.866       0.155                                                                                                                                                                                                                                                                                  | 985     | 1114.2 | 1114.2 | 41.00  | 2780.0          | 10.661 | 0.016 | 0.164  | 2.05  | 0.082 | 2806.6                |
| 1987         1200.1         44.16         2994.3         11.483         0.018         0.177         2.208         0.088         3022           1988         1357.3         49.95         3386.5         12.987         0.02         0.2         2.497         0.1         3418           1989         1567.0         57.67         3909.7         14.993         0.023         0.231         2.883         0.115         3947           1990         1711.6         62.99         4270.5         16.377         0.025         0.252         3.149         0.126         4311           1991         1780.6         65.53         4442.7         17.037         0.026         0.262         3.276         0.131         4485           1992         1889.1         69.52         4713.3         18.075         0.028         0.278         3.476         0.139         4758           1993         2042.0         75.15         5094.9         19.538         0.03         0.301         3.757         0.15         5143           1994         2101.1         77.32         5242.3         20.103         0.031         0.309         3.866         0.155         5292                                                                                                                                                                                                                                    | 986     | 1136.4 | 1136.4 | 41.82  | 2835.4          | 10.873 | 0.017 | 0.167  | 2.091 | 0.084 | 2862.5                |
| 1988         1357.3         49.95         3386.5         12.987         0.02         0.2         2.497         0.1         3418           1989         1567.0         57.67         3909.7         14.993         0.023         0.231         2.883         0.115         3947           1990         1711.6         62.99         4270.5         16.377         0.025         0.252         3.149         0.126         4311           1991         1780.6         65.53         4442.7         17.037         0.026         0.262         3.276         0.131         4485           1992         1889.1         69.52         4713.3         18.075         0.028         0.278         3.476         0.139         4758           1993         2042.0         75.15         5094.9         19.538         0.03         0.301         3.757         0.15         5143           1994         2101.1         77.32         5242.3         20.103         0.031         0.309         3.866         0.155         5292                                                                                                                                                                                                                                                                                                                                                                                   | 987 12  | 1200.1 | 1200.1 | 44.16  | 2994.3          | 11.483 | 0.018 | 0.177  | 2.208 | 0.088 | 3022.9                |
| 1989         1567.0         57.67         3909.7         14.993         0.023         0.231         2.883         0.115         3947           1990         1711.6         62.99         4270.5         16.377         0.025         0.252         3.149         0.126         4311           1991         1780.6         65.53         4442.7         17.037         0.026         0.262         3.276         0.131         4485           1992         1889.1         69.52         4713.3         18.075         0.028         0.278         3.476         0.139         4758           1993         2042.0         75.15         5094.9         19.538         0.03         0.301         3.757         0.15         5143           1994         2101.1         77.32         5242.3         20.103         0.031         0.309         3.866         0.155         5292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 988 13  | 1357.3 | 1357.3 | 49.95  | 3386.5          | 12.987 | 0.02  | 0.2    | 2.497 | 0.1   | 3418.9                |
| 19901711.662.994270.516.3770.0250.2523.1490.126431119911780.665.534442.717.0370.0260.2623.2760.131448519921889.169.524713.318.0750.0280.2783.4760.139475819932042.075.155094.919.5380.030.3013.7570.15514319942101.177.325242.320.1030.0310.3093.8660.1555292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 989 15  | 1567.0 | 1567.0 | 57.67  | 3909.7          | 14.993 | 0.023 | 0.231  | 2.883 | 0.115 | 3947.1                |
| 1991         1780.6         65.53         4442.7         17.037         0.026         0.262         3.276         0.131         4485           1992         1889.1         69.52         4713.3         18.075         0.028         0.278         3.476         0.131         4485           1993         2042.0         75.15         5094.9         19.538         0.03         0.301         3.757         0.15         5143           1994         2101.1         77.32         5242.3         20.103         0.031         0.309         3.866         0.155         5292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 990 17  | 1711.6 | 1711.6 | 62.99  | 4270.5          | 16.377 | 0.025 | 0.252  | 3.149 | 0.126 | 4311.4                |
| 1992         1889.1         69.52         4713.3         18.075         0.028         0.278         3.476         0.139         4758           1993         2042.0         75.15         5094.9         19.538         0.03         0.301         3.757         0.15         5143           1994         2101.1         77.32         5242.3         20.103         0.031         0.309         3.866         0.155         5292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 991 17  | 1780.6 | 1780.6 | 65.53  | 4442.7          | 17.037 | 0.026 | 0.262  | 3.276 | 0.131 | 4485.2                |
| 1993         2042.0         75.15         5094.9         19.538         0.03         0.301         3.757         0.15         5143           1994         2101.1         77.32         5242.3         20.103         0.031         0.309         3.866         0.155         5292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 992 18  | 1889.1 | 1889.1 | 69.52  | 4713.3          | 18.075 | 0.028 | 0.278  | 3.476 | 0.139 | 4758.4                |
| 1994 2101.1 77.32 5242.3 20.103 0.031 0.309 3.866 0.155 5292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 993 20  | 2042.0 | 2042.0 | 75.15  | 5094.9          | 19.538 | 0.03  | 0.301  | 3.757 | 0.15  | 5143.6                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 994 21  | 2101.1 | 2101.1 | 77.32  | 5242.3          | 20.103 | 0.031 | 0.309  | 3.866 | 0.155 | 5292.5                |
| 1995 2300.5 84.66 5739.8 22.011 0.034 0.339 4.233 0.169 5794                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 995 23  | 2300.5 | 2300.5 | 84.66  | 5739.8          | 22.011 | 0.034 | 0.339  | 4.233 | 0.169 | 5794.7                |
| 1996 2478.9 91.22 6185.0 23.718 0.036 0.365 4.561 0.182 6244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 996 24  | 2478.9 | 2478.9 | 91.22  | 6185.0          | 23.718 | 0.036 | 0.365  | 4.561 | 0.182 | 6244.2                |
| 1997 2560.2 94.22 6387.9 24.496 0.038 0.377 4.711 0.188 6449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 997 25  | 2560.2 | 2560.2 | 94.22  | 6387.9          | 24.496 | 0.038 | 0.377  | 4.711 | 0.188 | 6449.0                |
| 1998 2840.7 104.54 7087.7 27.18 0.042 0.418 5.227 0.209 7155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 998 28  | 2840.7 | 2840.7 | 104.54 | 7087.7          | 27.18  | 0.042 | 0.418  | 5.227 | 0.209 | 7155.5                |
| 1999 2707.8 99.65 6756.0 25.908 0.04 0.399 4.982 0.199 6820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 999 27  | 2707.8 | 2707.8 | 99.65  | 6756.0          | 25.908 | 0.04  | 0.399  | 4.982 | 0.199 | 6820.6                |
| 2000 2526.2 92.96 6303.0 24.171 0.037 0.372 4.648 0.186 6363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2000 25 | 2526.2 | 2526.2 | 92.96  | 6303.0          | 24.171 | 0.037 | 0.372  | 4.648 | 0.186 | 6363.2                |

 TABLE III.21
 INTERNATIONAL AVIATION TURBINE FUEL—

| TABL     | E 111.21 | INT<br>PRC | ERNAT           | TIONA<br>D GRE | L AVI  | ATION<br>OUSE E | I TURI<br>EMISSI | BINE I<br>ONS | FUEL—                 |
|----------|----------|------------|-----------------|----------------|--------|-----------------|------------------|---------------|-----------------------|
|          |          | (Con       | tinued)         |                |        |                 |                  |               |                       |
|          |          |            |                 |                |        |                 |                  |               | Total CO <sub>2</sub> |
|          | AFC      | AFC        | со <sub>2</sub> | ΝΟχ            | CH4    | NMVOC           | СО               | N20           | equivalent            |
| Year     | (ML)     | (PJ)       | (Gg)            | (Gg)           | (Gg)   | (Gg)            | (Gg)             | (Gg)          | (Gg)                  |
| 2001     | 3006.2   | 110.63     | 7500.6          | 28.764         | 0.044  | 0.443           | 5.531            | 0.221         | 7572.4                |
| 2002     | 3235.8   | 119.08     | 8073.5          | 30.96          | 0.048  | 0.476           | 5.954            | 0.238         | 8150.7                |
| 2003     | 3442.5   | 126.68     | 8589.1          | 32.937         | 0.05 I | 0.507           | 6.334            | 0.253         | 8671.2                |
| 2004     | 3662.8   | 134.79     | 9138.9          | 35.046         | 0.054  | 0.539           | 6.74             | 0.27          | 9226.3                |
| 2005     | 3892.6   | 143.25     | 9712.2          | 37.244         | 0.057  | 0.573           | 7.162            | 0.286         | 9805.0                |
| 2006     | 4135.1   | 152.17     | 10317.3         | 39.565         | 0.061  | 0.609           | 7.609            | 0.304         | 10416.0               |
| 2007     | 4393.0   | 161.66     | 10960.7         | 42.032         | 0.065  | 0.647           | 8.083            | 0.323         | 11065.5               |
| 2008     | 4666.5   | 171.73     | 11643.2         | 44.649         | 0.069  | 0.687           | 8.586            | 0.343         | 11754.6               |
| 2009     | 4956.9   | 182.41     | 12367.6         | 47.427         | 0.073  | 0.73            | 9.121            | 0.365         | 12485.9               |
| 2010     | 5265.2   | 193.76     | 13136.9         | 50.377         | 0.078  | 0.775           | 9.688            | 0.388         | 13262.5               |
| 2011     | 5594.2   | 205.87     | 13957.6         | 53.525         | 0.082  | 0.823           | 10.293           | 0.412         | 14091.1               |
| 2012     | 5944.8   | 218.77     | 14832.6         | 56.88          | 0.088  | 0.875           | 10.938           | 0.438         | 14974.4               |
| 2013     | 6317.8   | 232.49     | 15763.1         | 60.448         | 0.093  | 0.93            | 11.625           | 0.465         | 15913.8               |
| 2014     | 6714.3   | 247.09     | 16752.5         | 64.243         | 0.099  | 0.988           | 12.354           | 0.494         | 16912.7               |
| 2015     | 7135.9   | 262.60     | 17804.2         | 68.276         | 0.105  | 1.05            | 13.13            | 0.525         | 17974.5               |
| 2016     | 7583.4   | 279.07     | 18921.0         | 72.558         | 0.112  | 1.116           | 13.953           | 0.558         | 19101.9               |
| 2017     | 8058.0   | 296.54     | 20105.0         | 77.099         | 0.119  | 1.186           | 14.827           | 0.593         | 20297.3               |
| 2018     | 8560.6   | 315.03     | 21359.0         | 81.908         | 0.126  | 1.26            | 15.751           | 0.63          | 21563.2               |
| 2019     | 9092.I   | 334.59     | 22685.2         | 86.994         | 0.134  | 1.338           | 16.73            | 0.669         | 22902.2               |
| 2020     | 9654.3   | 355.28     | 24088.0         | 92.373         | 0.142  | 1.421           | 17.764           | 0.711         | 24318.3               |
| Sources: | BTRE es  | timates;   | BTCE (199       | 95a).          |        |                 |                  |               |                       |

|      |        | PRO    | JECTIO          | NS    |      |       |        |      |                 |
|------|--------|--------|-----------------|-------|------|-------|--------|------|-----------------|
|      |        |        |                 |       |      |       |        |      | Total           |
|      |        |        |                 |       |      |       |        |      | со <sub>2</sub> |
|      | AFC    | AFC    | со <sub>2</sub> | NOX   | CH4  | NMVOC | СО     | N20  | equivalent      |
| Year | (ML)   | (PJ)   | (Gg)            | (Gg)  | (Gg) | (Gg)  | (Gg)   | (Gg) | (Gg)            |
| 1974 | 1577.8 | 57.67  | 3910.9          | 14.61 | 0.24 | 2.17  | 83.27  | 0.11 | 3952.4          |
| 1975 | 1730.9 | 63.3 I | 4292.9          | 16.11 | 0.24 | 2.21  | 83.63  | 0.12 | 4338.I          |
| 1976 | 1750.0 | 64.01  | 4340.6          | 16.29 | 0.24 | 2.21  | 83.68  | 0.12 | 4386.3          |
| 1977 | 1802.6 | 65.93  | 4470.6          | 16.77 | 0.25 | 2.3   | 87.21  | 0.13 | 4517.7          |
| 1978 | 1921.9 | 70.30  | 4767.3          | 17.9  | 0.27 | 2.41  | 90.9   | 0.14 | 4817.4          |
| 1979 | 1893.3 | 69.25  | 4695.8          | 17.62 | 0.27 | 2.4   | 90.83  | 0.13 | 4745.2          |
| 1980 | 1970.2 | 72.08  | 4887.8          | 18.37 | 0.27 | 2.42  | 91.01  | 0.14 | 4938.2          |
| 1981 | 1962.1 | 71.78  | 4867.8          | 18.3  | 0.26 | 2.39  | 89.86  | 0.14 | 4917.9          |
| 1982 | 2095.I | 76.69  | 5200.I          | 19.61 | 0.26 | 2.4   | 89.04  | 0.15 | 5253.4          |
| 1983 | 2037.0 | 74.55  | 5055.4          | 19.06 | 0.26 | 2.36  | 87.76  | 0.15 | 5107.3          |
| 1984 | 2028.9 | 74.26  | 5035.7          | 18.99 | 0.26 | 2.33  | 86.61  | 0.14 | 5087.3          |
| 1985 | 2177.5 | 79.73  | 5406.5          | 20.42 | 0.26 | 2.36  | 86.9   | 0.16 | 5461.7          |
| 1986 | 2271.9 | 83.20  | 5641.8          | 21.35 | 0.26 | 2.39  | 87.15  | 0.16 | 5699.3          |
| 1987 | 2380.3 | 87.17  | 5911.2          | 22.37 | 0.27 | 2.49  | 90.81  | 0.17 | 5971.4          |
| 1988 | 2617.4 | 95.88  | 6501.7          | 24.63 | 0.29 | 2.62  | 94.73  | 0.19 | 6567.7          |
| 1989 | 2816.4 | 103.18 | 6996.7          | 26.49 | 0.3  | 2.75  | 99.64  | 0.2  | 7067.7          |
| 1990 | 2741.0 | 100.39 | 6807.I          | 25.64 | 0.31 | 2.79  | 103.8  | 0.2  | 6876.3          |
| 1991 | 3036.5 | 111.35 | 7550.3          | 28.73 | 0.27 | 2.48  | 86.42  | 0.22 | 7626.1          |
| 1992 | 3244.3 | 119.02 | 8070.4          | 30.8  | 0.27 | 2.43  | 82.37  | 0.23 | 8151.0          |
| 1993 | 3461.4 | 126.99 | 8610.5          | 32.86 | 0.28 | 2.58  | 87.38  | 0.25 | 8696.5          |
| 1994 | 3581.4 | 131.42 | 8910.7          | 34.05 | 0.28 | 2.56  | 85.3   | 0.26 | 8999.5          |
| 1995 | 4006.0 | 147.04 | 9969.7          | 38.18 | 0.3  | 2.7   | 87.75  | 0.29 | 10068.8         |
| 1996 | 4329.3 | 158.94 | 10777.0         | 41.35 | 0.3  | 2.73  | 86.25  | 0.31 | 10883.8         |
| 1997 | 4489.4 | 164.83 | 11176.2         | 42.9  | 0.31 | 2.79  | 87.41  | 0.33 | 11286.9         |
| 1998 | 4773.2 | 175.27 | 11884.0         | 45.61 | 0.31 | 2.86  | 89.03  | 0.35 | 12001.5         |
| 1999 | 4614.9 | 169.44 | 11488.6         | 44.07 | 0.31 | 2.86  | 90.06  | 0.34 | 11602.4         |
| 2000 | 4518.1 | 165.88 | 11247.5         | 43.2  | 0.31 | 2.82  | 88. I  | 0.33 | 11359.0         |
| 2001 | 5110.8 | 187.69 | 12726.3         | 48.91 | 0.32 | 2.93  | 89.3 I | 0.37 | 12852.0         |
| 2002 | 5444.0 | 199.96 | 13557.7         | 52.13 | 0.33 | 3     | 90.03  | 0.4  | 13691.4         |
| 2003 | 5749.I | 211.18 | 14319.0         | 55.09 | 0.33 | 3.07  | 90.7   | 0.42 | 14459.9         |
| 2004 | 6073.0 | 223.10 | 15127.1         | 58.23 | 0.34 | 3.14  | 91.4   | 0.44 | 15275.9         |
| 2005 | 6407.2 | 235.40 | 15961.0         | 61.46 | 0.35 | 3.21  | 92.13  | 0.47 | 16117.8         |
| 2006 | 6757.5 | 248.29 | 16835.0         | 64.85 | 0.36 | 3.29  | 92.89  | 0.49 | 17000.2         |
| 2007 | 7128.1 | 261.93 | 17759.6         | 68.44 | 0.37 | 3.37  | 93.69  | 0.52 | 17933.7         |
| 2008 | 7518.8 | 276.31 | 18734.6         | 72.22 | 0.37 | 3.45  | 94.54  | 0.55 | 18918.1         |
| 2009 | 7931.3 | 291.49 | 19763.8         | 76.22 | 0.38 | 3.54  | 95.43  | 0.58 | 19957.2         |
| 2010 | 8367.0 | 307.52 | 20850.8         | 80.43 | 0.39 | 3.63  | 96.36  | 0.61 | 21054.7         |

TABLE III.22 TOTAL CIVIL AVIATION EMISSION

Continued...

|          |          | PRO       | ECTIO           | NS (Co | ntinue | d)    |        |      |                 |
|----------|----------|-----------|-----------------|--------|--------|-------|--------|------|-----------------|
|          |          |           |                 |        |        |       |        |      | Total           |
|          |          |           |                 |        |        |       |        |      | со <sub>2</sub> |
|          | AFC      | AFC       | со <sub>2</sub> | ΝΟχ    | CH4    | NMVOC | CO     | N20  | equivalent      |
| Year     | (ML)     | (PJ)      | (Gg)            | (Gg)   | (Gg)   | (Gg)  | (Gg)   | (Gg) | (Gg)            |
| 2011     | 8830.I   | 324.57    | 22006.2         | 84.91  | 0.40   | 3.73  | 97.36  | 0.65 | 22221.2         |
| 2012     | 9321.7   | 342.66    | 23232.8         | 89.67  | 0.41   | 3.83  | 98.41  | 0.68 | 23459.6         |
| 2013     | 9842.0   | 361.80    | 24531.0         | 94.7   | 0.43   | 3.94  | 99.53  | 0.72 | 24770.3         |
| 2014     | 10392.7  | 382.07    | 25905.0         | 100.02 | 0.44   | 4.06  | 100.71 | 0.76 | 26157.5         |
| 2015     | 10975.3  | 403.51    | 27358.5         | 105.66 | 0.45   | 4.18  | 101.95 | 0.08 | 27625.0         |
| 2016     | 11590.7  | 426.15    | 28893.9         | 111.61 | 0.46   | 4.31  | 103.26 | 0.85 | 29175.2         |
| 2017     | 12239.6  | 450.04    | 30513.1         | 117.88 | 0.48   | 4.44  | 104.64 | 0.90 | 30810.0         |
| 2018     | 12922.8  | 475.18    | 32217.6         | 124.48 | 0.49   | 4.58  | 106.09 | 0.95 | 32530.9         |
| 2019     | 13640.8  | 501.60    | 34009.I         | 131.42 | 0.51   | 4.73  | 107.61 | 1.00 | 34339.6         |
| 2020     | 14395.3  | 529.37    | 35891.7         | 138.71 | 0.52   | 4.88  | 109.21 | 1.05 | 36240.3         |
| Sources: | BTRE est | imates; B | TCE (1995a      | a).    |        |       |        |      |                 |

# TABLE III.22 TOTAL CIVIL AVIATION EMISSION

# a b b e u q i x

### **RAIL PROJECTIONS**

#### **RAIL MODEL SPECIFICATION**

The BTRE model uses a combination of mathematical and econometric models to project rail task levels and the resulting fuel consumption. Because railways use both liquid fossil fuels and electricity, total 'fuel consumption' is expressed in petajoules of energy end-use. Fuel consumption is modelled as the product of the railway task and of fuel intensity. The railway task is broken down into the passenger and freight task, each of which has three sectors. The passenger task is comprised of urban passengers on light rail, urban passengers on heavy rail and non-urban passengers. The freight task is comprised of government bulk freight, government non-bulk freight and private freight. Passenger numbers and freight tonnages are modelled and then multiplied by average distances travelled to obtain task levels in passenger–kilometres (pkm) and tonne–kilometres (tkm).

The main bulk commodities carried on government railways are coal and grain, which are carried mostly from inland Australia to coastal ports for export. The tonnage of government bulk freight carried is therefore modelled as a function of total coal and grain export levels (BTCE 1991b: pp. 10–11).

The main commodity carried by private railway systems is iron ore. Production levels of iron ore are therefore used as the explanatory variable when modelling the tonnage of private freight carried.

Non-bulk freight tonnes carried on the government railways are assumed to be a function of income, as measured by the real gross non-farm product (BTCE 1991b: p. 8). Previous research has found freight rates to be statistically insignificant. Freight rates, therefore, are not included here as an explanatory variable (see BTCE 1995a: p. 44).

Non-urban passengers are modelled as a function of income (as measured by the real gross non-farm product). In earlier research, fares were found to be statistically insignificant and so are not included here as an explanatory variable (see BTCE 1995a: p. 44).

Urban rail passenger numbers are modelled separately for light rail (trams and monorail) and heavy rail (trains). For both light and heavy urban rail passengers, income levels and fares were the major explanatory variables. Income levels are measured by Australian private final consumption, and the fares variable (AUSTFAR) is an average over all urban public transport systems. As public transport fares increase (other things being equal) it is expected that fewer people will travel by train or tram.

Long-term projections are, arguably, best carried out using relatively simple models that rely only on variables of most significance in the longer term. The final specification of the model used by the BTRE is outlined in equations IV. I to IV.7. See table IV.1 for a summary of statistics and diagnostics of the regression models.

|                                                               |                                                                                            | Independent      |                | Standard |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------|----------------|----------|
| Dependent variable                                            | Diagnostics                                                                                | variables        | Coefficient    | Error    |
| In GBT                                                        | Adj. R <sup>2</sup> = 0.97                                                                 | Constant         | 3.13           | 0.26     |
|                                                               | Period: 1983Q1 to 2000Q2                                                                   | In CGEXP         | 0.72           | 0.03     |
|                                                               | EM: OLS                                                                                    | ERRDUM           | 0.08           | 0.01     |
| In GNBT                                                       | Adj. R <sup>2</sup> = 0.77                                                                 | Constant         | 5.33           | 0.87     |
|                                                               | Period: 1983Q2 to 1993Q4                                                                   | In RGNF          | 0.91           | 0.08     |
|                                                               | EM: OLS                                                                                    |                  |                |          |
| In PFT                                                        | Adj. R <sup>2</sup> = 0.96                                                                 | Constant         | 7.49           | 0.26     |
|                                                               | Period: 1984Q1 to 2000Q2                                                                   | In IOP           | 0.98           | 0.03     |
|                                                               | EM: OLS                                                                                    | ERRDUM           | 0.12           | 0.01     |
| In PASNU                                                      | Adj. R <sup>2</sup> = 0.64                                                                 | Constant         | 12.75          | 1.05     |
|                                                               | Period: 1981Q1 to 1999Q2                                                                   | In RGNF          | 0.16           | 0.09     |
|                                                               | EM: OLS                                                                                    | BIDUM            | 0.06           | 0.03     |
|                                                               |                                                                                            | SERDUM           | -0.07          | 0.02     |
|                                                               |                                                                                            | ADUM             | -0.04          | 0.02     |
|                                                               |                                                                                            | AIRDUM           | 0.09           | 0.04     |
|                                                               |                                                                                            | ERRDUM           | 0.07           | 0.02     |
| In PASU(H)                                                    | Adj. R <sup>2</sup> = 0.89                                                                 | Constant         | 14.72          | 0.27     |
|                                                               | Period: 1981Q1 to 2000Q2                                                                   | In RAUSPFC       | 0.53           | 0.06     |
|                                                               | EM: OLS                                                                                    | In AUSTFAR       | -0.44          | 0.10     |
| In PASU(L)                                                    | Adj. R <sup>2</sup> = 0.51                                                                 | Constant         | -1.02          | 1.70     |
|                                                               | Period: 1991 to 2000 (A)                                                                   | In RAUSPFC       | 0.53           | 0.46     |
|                                                               | EM: OLS                                                                                    | In AUSTFAR       | -0.20          | 1.16     |
| Notes: Adj. R <sup>2</sup> refe<br>Period refe<br>denotes anr | ers to the adjusted R <sup>2</sup> statistic.<br>The stimation period, when<br>roual data. | re Q denotes qua | rterly data an | d A      |

#### TABLE IV.I RESULTS OF THE BTRE RAIL MODEL

EM refers to the estimation method used, where OLS denotes Ordinary Least Squares estimation. Source: BTRE estimates.

Fuel consumption is derived by multiplying the task level for each of the rail sectors by the estimated fuel intensity for each sector, and summing across all sectors.

 $FC = (GBTKM \times FI_{GB}) + (GNBTKM \times FI_{GNB}) + (PFTKM \times FI_{PFT})$ + (PASKMNU × FI\_{PASNU}) + (PASKMU(H) × FI\_{PASU-H}) + (PASKMU(L) × FI\_{PASU-L}) (IV.1)

where

FC is total rail fuel consumed (measured in petajoules of energy end-use);

GBTKM is government bulk freight tonne-kilometres (measured in billion tonne-kilometres);

FI<sub>GB</sub> is the fuel intensity of trains carrying government bulk freight (measured in megajoules of energy end-use per tonne-kilometre);

GNBTKM is government non-bulk freight tonne-kilometres (measured in billion tonne-kilometres);

FI<sub>GNB</sub> is the fuel intensity of trains carrying government non-bulk freight (measured in megajoules per tonne-kilometre);

PFTKM is private freight tonne-kilometres (measured in billion tonne-kilometres);

FI<sub>PF</sub> is the fuel intensity of trains carrying government private freight (measured in megajoules per tonne-kilometre);

PASKMNU is the number of non-urban passenger kilometres travelled (measured in billion passenger-kilometres);

FIPASNU is the fuel intensity of non-urban trains carrying passengers (measured in megajoules per passenger-kilometre);

PASKMU(H) is the number of heavy rail urban passenger kilometres travelled (measured in billion passenger-kilometres);

FI<sub>PASU-H</sub> is the fuel intensity of urban trains carrying passengers (measured in megajoules per passenger-kilometre);

PASKMU(L) is the number of light rail urban passenger kilometres travelled (measured in billion passenger-kilometres); and

FI<sub>PASU-L</sub> is the fuel intensity of urban trams and monorail carrying passengers (measured in megajoules per passenger-kilometre).

Government bulk freight tonnes carried are modelled as a function of the combined export level for coal and grain. The model is estimated on the basis of Ordinary Least Squares estimation (OLS) using quarterly data.

In GBT = 3.13 + 0.72 In CGEXP + 0.08 ERRDUM (IV.2)

where GBT is government bulk freight tonnes carried (measured in million tonnes), CGEXP is the aggregate level of coal and grain exports (measured in thousand tonnes), and ERRDUM is an error dummy variable from 1995Q1 (i.e. the first quarter of 1995) onwards.

Government bulk freight tonne–kilometres travelled is derived by multiplying government bulk freight tonnes carried by an average haul distance.

where GBTKM is government bulk freight tonne-kilometres, GBT is government bulk freight tonnes carried and the average haul distance is the average distance travelled by government bulk freight (measured in kilometres).

Government non-bulk freight tonnes carried are modelled as a function of income, as measured by real gross non-farm product. The model is estimated on quarterly data (available only to 1993) using OLS.

where GNBT is government non-bulk freight tonnes carried (measured in million tonnes) and RGNF is the real gross non-farm product. Government non-bulk tonne–kilometres travelled are derived by multiplying the government non-bulk tonnes carried by an average haul distance.

where GNBTKM is government non-bulk freight tonne–kilometres, GNBT is government non-bulk freight tonnes carried and the average haul distance is the average distance travelled by government non-bulk freight (measured in kilometres).

Private freight tonnes carried are modelled as a function of iron ore production levels. The model is estimated on quarterly data using OLS.

where PFT is private freight tonnes carried (measured in million tonnes), IOP is the level of iron ore production (measured in thousand tonnes), and ERRDUM is an error dummy variable from 1992Q1 to 1994Q2.

Private freight tonne-kilometres travelled are derived by multiplying private freight tonnes carried by an average haul distance.

where PFTKM is private freight tonne-kilometres and the average haul distance is the average distance travelled by private freight (measured in kilometres).

Non-urban passenger numbers are modelled as a function of real gross nonfarm product. The model also includes a number of dummy variables to capture the effects of service frequency cuts in Victoria, the introduction of discount airfares, rail strikes, and the bicentenary celebrations in 1988. The model is estimated on quarterly data using OLS.

where PASNU is the number of non-urban passengers, RGNF is real gross non-farm product, SERDUM is a dummy variable to account for service frequency cuts in Victorian trains from 1993Q3 onward, ADUM is a dummy variable which accounts for the introduction of discount airfares (from 1991Q1 onwards), AIRDUM is a dummy variable to allow for the airline pilots' dispute (in 1989-90), BIDUM is a dummy variable for the Bicentenary (1988Q1 to 1988Q3), and ERRDUM is an error dummy variable (1981Q1 to 1985Q4).

Non-urban passenger-kilometres (PASKMNU) are derived by multiplying nonurban passenger numbers (PASNU) by an average trip distance, that is

Urban passenger numbers on trains are modelled as a function of real Australian private final consumption and a real urban public transport fares index. The model is estimated on quarterly data using OLS.

n PASU(H) = 
$$14.72 + 0.53$$
 ln RAUSPFC – 0.44 ln AUSTFAR (IV.6)

where PASU(H) is the number of passengers travelling on urban heavy rail, RAUSPFC is real Australian private final consumption and AUSTFAR is a real urban public transport fares index (across all public transport modes).

Urban heavy rail passenger kilometres, PASKMU(H), are then derived by multiplying urban heavy rail passenger numbers, PASU(H), by an average trip distance:

Urban passenger numbers on trams and monorail are also modelled as a function of real Australian private final consumption and a real urban public transport fares index. The model is estimated on annual data using OLS.

$$\ln PASU(L) = -1.02 + 0.53 \ln RAUSPFC - 0.20 \ln AUSTFAR$$
(IV.7)

where PASU(L) is the number of passengers travelling on urban light rail, with again RAUSPFC real Australian private final consumption and AUSTFAR a real urban public transport fares index (across all public transport modes).

Urban light rail passenger kilometres, PASKMU(L), are also derived by multiplying urban light rail passenger numbers, PASU(L) by an average trip distance:

Data collected for each of the variables in equations IV. I to IV.7a are detailed in table IV.7.

All models assume constant elasticities and are estimated using Ordinary Least Squares. All models, except urban light rail passengers, are estimated using

quarterly data (which are then summed to give yearly estimates). PASU(L) is estimated using annual data.

Figures IV.1 to IV.6 graph the historical (or 'actual') and the fitted (or 'predicted') values for the dependent variables in each of the models. Utilising equation IV.1, each of the calculated rail tasks can be multiplied by its relevant fuel intensity and then summed to obtain an estimate of the total rail energy consumption (end-use).

Variables used in the analysis are specified as follows:

*RGNF*. The seasonally adjusted real gross non-farm product is an income variable and uses 1999 as the base year. It has been increasing every year since 1982, with the exception of the 1982–83 financial year. It can be expected that as income levels rise the number of non-urban rail passengers will increase, as will government non-bulk freight tonnes carried.

GNBT. Government non-bulk freight tonnes refers to tonnes carried, which differ from tonnes consigned. Tonnes carried are calculated for each State, even when the load travels from one State to another, and will be approximately 2.3 times the level of tonnes consigned (based on Apelbaum 1993: p. 37). Non-bulk commodities include beverages, tobacco, manufactured goods, machinery, transport equipment and live animals. Quarterly figures for government non-bulk tonnes were unavailable from 1994 onwards. Annual figures for 1994–1996 are BTRE estimates and figures for 1997 and 1998 are derived from Apelbaum (2001). The 1999 and 2000 figures are 'forecasts' derived from equation IV.3 above. In the ten year period from 1988 to 1998, the level of government non-bulk tonnes carried increased by 32 per cent.

*GBT.* Government bulk freight carried consists of crude materials, mineral fuels, lubricants, animal and vegetable oils, fats and waxes, chemical products, briquettes, grains, food, cement, gypsum, bulk fertiliser, iron, steel and petroleum. The major commodities, coal and grain, constitute approximately 75 per cent of the bulk goods carried on government railways (BTCE 1991b: p. 10). Between 1990 and 2000 bulk freight tonnes carried increased by 55 per cent. It is expected that as export levels of coal and grain increase the level of bulk freight tonnes carried will also increase.

*PFT*. The major commodity carried on private railways is iron ore, though sugar and coal also constitute a substantial proportion of the freight carried. Between 1990 and 2000 tonnes carried by private railways increased by 35 per cent.







BTRE Report 107





Appendix 4





Rail passenger numbers—PASNU, PASU(H), PASU(L). Over the last 10 years, urban train and tram passenger numbers have increased by 21 per cent and 19 per cent, respectively, whilst non-urban rail passenger numbers have declined by 9.5 per cent during the same period.

AUSTFAR. AUSTFAR is an index of real urban public transport fares (across all public transport modes) and uses 1990 as the base year. The data is collected from each State for the BTRE Indicators Database (2002a). Since 1990, real fares have risen by 29 per cent. It is expected that as fares increase fewer passengers will travel by public transport, including rail.

Average distances. Average distances were derived separately for each segment of the rail sector.

For the government freight sector average distances travelled were calculated from data contained in Apelbaum (1997: p. 43) and from the ABS (1986a) for the years 1981–82 to 1983–84. Figures for 1990–91 and for 1994–95 were calculated using data from Apelbaum (1997: p. 43). The 1994–95 figure for government non-bulk freight was estimated using data in Apelbaum (1997). The average distance travelled was set to increase from 1984–85 at a trend growth rate to Apelbaum's figure for the year 1990–91 and again for the 1994–95 figure. The 1994–95 figures were assumed to remain constant for the years 1995–96 to 1999–2000.

The private freight average haul distance was calculated by dividing tonne-kilometres travelled by tonnes carried. The historical data needed are available for the years 1981–82 to 1990–91 in Cosgrove and Gargett (1992). Data for 1991–92 and 1992–93 were obtained from the Bureau's Indicators Database (BTRE 2002a). Data for 1994–95 were calculated using figures contained in Apelbaum (1997: p. 43), and for 1997–98, estimated using figures contained in Apelbaum (2001). A time series for average distance travelled was derived by applying the trend rate of decline for the intervening years. The 1997–98 figure was assumed to remain constant for the years 1998–99 and 1999–2000.

For both urban and non-urban passengers, average trip lengths to the year 1989–90 were calculated by dividing passenger-kilometres by passenger numbers from data available in Cosgrove and Gargett (1992) and the BTRE Indicators Database (2002a). Data for 1990–91, 1994–95 and 1997–98 were calculated using figures in Apelbaum (2001) and the intervening years were set to follow the prevailing trend line.

Table IV.2 summarises the estimated average distances travelled for each of the five main rail categories.

| Year   | Non-urban  | Urban      | Non-bulk | Bulk           | Private |
|--------|------------|------------|----------|----------------|---------|
| ending | þassengers | passengers | freight  | freight        | freight |
| June   | (km þer    | þassenger) | -        | (km þer tonne) |         |
| 1982   | 320.5      | 14.0       | 495.5    | 239.5          | 226.5   |
| 1983   | 314.2      | 14.0       | 485.6    | 224.6          | 227.3   |
| 1984   | 309.8      | 14.0       | 545.0    | 224.8          | 215.7   |
| 1985   | 292.9      | 14.1       | 558.7    | 225.3          | 220.2   |
| 1986   | 303.1      | 14.0       | 572.7    | 225.8          | 231.8   |
| 1987   | 293.4      | 14.0       | 587.0    | 226.2          | 229.6   |
| 1988   | 300.6      | 14.1       | 601.8    | 226.7          | 227.9   |
| 1989   | 287.9      | 14.3       | 616.9    | 227.2          | 212.6   |
| 1990   | 243.9      | 14.7       | 632.3    | 227.7          | 219.6   |
| 1991   | 248.2      | 14.8       | 648.2    | 228.2          | 223.4   |
| 1992   | 255.9      | 14.7       | 657.0    | 224.7          | 232.6   |
| 1993   | 263.9      | 15.0       | 666.0    | 221.4          | 224.9   |
| 1994   | 272.2      | 15.1       | 675.0    | 218.0          | 222.4   |
| 1995   | 280.6      | 15.1       | 684.2    | 214.7          | 219.9   |
| 1996   | 264.0      | 14.6       | 684.2    | 220.0          | 224.3   |
| 1997   | 248.5      | 14.0       | 684.2    | 220.0          | 228.7   |
| 1998   | 233.2      | 13.6       | 684.2    | 220.0          | 233.2   |
| 1999   | 233.2      | 13.6       | 684.2    | 220.0          | 233.2   |
| 2000   | 233.2      | 13.6       | 684.2    | 220.0          | 233.2   |

## TABLE IV.2ESTIMATED AVERAGE RAIL DISTANCESTRAVELLED, BY RAIL TASK

Sources: BTRE estimates; ABS (1986: p. 4); Apelbaum (2001: p. 4; 1997: p. 43; 1993: p. 37); Cosgrove & Gargett (1992: pp. 234, 236, 238, 239); BTRE Indicators Database.

Fuel intensity. Fuel consumption is modelled as the product of the task and the fuel intensity (measured in megajoules of energy used per unit task). The task comprises the six categories: private freight tonne-kilometres, government non-bulk tonne-kilometres, government bulk tonne-kilometres, urban heavy-rail passenger-kilometres, urban light rail passenger-kilometres, and non-urban passenger-kilometres. Historical fuel intensities were derived by dividing the energy consumed for a particular sector by its task level in years where the availability of raw data permitted. Some representative values, used in trying to compile consistent time-series for energy intensities, are given in table IV.3. These are based on Apelbaum (2001, 1997) and BTRE data.
| TABLE        | 14.3                          | REP                 | RESEN                     | ONSU<br>TATIV | MPTIO<br>E VALI | N, TAS<br>UES US |            | A V D/     | VED FL      | JEL IN]    | LENSI      | -Y FOR      | RAIL-      |          |             |       |
|--------------|-------------------------------|---------------------|---------------------------|---------------|-----------------|------------------|------------|------------|-------------|------------|------------|-------------|------------|----------|-------------|-------|
|              |                               |                     | 1984-85                   |               |                 | 1987–88          |            |            | 1 6-066 1   |            |            | 1994–95     |            |          | 1997–98     |       |
|              |                               |                     | Task                      | FI            |                 | Task             | FI         |            | Task        | FI         |            | Task        | H          |          | Task        | H     |
|              |                               | EC                  | (billion                  | /ſw)          | EC              | (billion         | /ſw)       | EC         | (billion    | /ſw)       | EC         | (billion    | /ſw)       | EC       | (billion    | /ſw)  |
| Rail Sector  |                               | (PJ)                | tkm)                      | tkm)          | (PJ)            | tkm)             | tkm)       | (PJ)       | tkm)        | tkm)       | (PJ)       | tkm)        | tkm)       | (FJ)     | tkm)        | tkm)  |
| Freight      |                               |                     |                           |               |                 |                  |            |            |             |            |            |             |            |          |             |       |
| Govt. bulk   |                               |                     |                           |               |                 |                  |            |            |             |            |            |             |            |          |             |       |
| Electric     | -                             | 0.42                | n.a.                      | n.a.          | 1.22            | n.a.             | n.a.       | 2.18       | n.a.        | n.a.       | 2.21       | n.a.        | n.a.       | 1.92     | n.a.        | n.a.  |
| Non-elec     | ttric I                       | 1.78                | n.a.                      | n.a.          | 10.59           | n.a.             | n.a.       | 6.96       | n.a.        | n.a.       | 6.45       | n.a.        | n.a.       | 7.87     | n.a.        | n.a.  |
| Total govt.  | bulk I.                       | 2.20                | 30.36                     | 0.40          | 11.81           | 33.36            | 0.35       | 9.14       | 36.20       | 0.25       | 8.66       | 39.38       | 0.22       | 9.79     | 48.93       | 0.20  |
| Govt. non-   | bulk                          | 9.63                | I 3.85                    | 0.70          | 9.95            | 17.41            | 0.57       | 9.93       | 19.17       | 0.52       | 11.13      | 21.69       | 0.51       | 10.34    | 26.19       | 0.39  |
| Total govt.  | 2                             | .1.83               | 44.21                     | 0.49          | 21.76           | 50.77            | 0.43       | 19.07      | 55.36       | 0.34       | 19.80      | 61.07       | 0.32       | 20.12    | 75.12       | 0.27  |
| Private      |                               | 3.74                | 28.40                     | 0.13          | 4.09            | 31.12            | 0.13       | 4.42       | 35.76       | 0.12       | 4.49       | 43.79       | 0.10       | 4.80     | 51.15       | 0.09  |
| Passenger    |                               |                     | (billion/                 | /ſw)          |                 | (billion/        | /ſw)       |            | (billion/   | /ſw)       |            | (billion/   | /ſw)       |          | (billion/   | /ſW)  |
| Urban (hea   | (AVI                          |                     | pkm)                      | pkm)          |                 | pkm)             | pkm)       |            | pkm)        | pkm)       |            | pkm)        | pkm)       |          | pkm)        | pkm)  |
| Electric     |                               | 2.86                | n.a.                      | n.a.          | 3.07            | n.a.             | n.a.       | 3.05       | n.a.        | n.a.       | 3.19       | n.a.        | n.a.       | 3.45     | n.a.        | n.a.  |
| Non-elec     | tric                          | 0.77                | n.a.                      | n.a.          | 0.72            | n.a.             | n.a.       | 09.0       | n.a.        | n.a.       | 0.40       | n.a.        | n.a.       | 09.0     | n.a.        | n.a.  |
| Total heav   | y rail                        | 3.63                | 5.61                      | 0.65          | 3.79            | 6.45             | 0.59       | 3.65       | 6.75        | 0.54       | 3.59       | 7.51        | 0.48       | 4.05     | 7.77        | 0.52  |
| Light rail ( | elec.)                        | 0.22                | 0.69                      | 0.32          | 0.21            | 0.73             | 0.29       | 0.22       | 0.70        | 0.32       | 0.23       | 0.57        | 0.40       | 0.27     | 0.62        | 0.44  |
| Total urba   | F                             | 3.85                | 6.30                      | 0.61          | 4.00            | 7.18             | 0.56       | 3.87       | 7.45        | 0.52       | 3.82       | 8.08        | 0.47       | 4.32     | 8.39        | 0.52  |
| Total non-   | urban                         | 2.70                | 2.89                      | 0.93          | 2.62            | 2.84             | 0.92       | 2.18       | 2.48        | 0.88       | 16.1       | 2.27        | 0.84       | 2.40     | 2.38        | 1.0.1 |
| n.a. r       | ot availab                    | e                   |                           |               |                 |                  |            |            |             |            |            |             |            |          |             |       |
| Notes:       | . EC = en                     | ergy co             | onsumption                | n (petajou    | les), FI = fi   | uel intensit     | :y (megajo | ules per t | ınit task). |            |            |             |            |          |             |       |
| ч (т)<br>-   | . Litei gy i<br>I. It is assu | i sə ingi           | ere that ele              | ectricity c   | onsumed i       | in the freig     | ht sector  | is only du | e to trains | carrying b | ulk freigh |             |            |          |             |       |
| Sources: E   | BTRE estin<br>TRE Indic       | nates u<br>tators [ | sing data fi<br>Database. | rom Bush      | et al. (199     | 3: р. 112);      | Apelbaum   | ا (2001; ا | 997: p. 126 | ; 1993: pp | . 94–95, I | 00, 153, 15 | 68); Cosgr | ove & Ga | rgett (199) | 2);   |
|              |                               |                     |                           |               |                 |                  |            |            |             |            |            |             |            |          |             |       |

BTRE Report 107

Due to lack of data on the amount of fuel consumed by each category, fuel intensities could only be calculated for some years. Time series for each category were thus derived by interpolating for intervening years. Table IV.4 details the derived (smoothed) fuel intensity series for each of the rail tasks.

**ASSUMED FUEL INTENSITY TREND FOR RAIL** 

**TABLE IV.4** 

#### Light Non-Heavy Government Government Year urban rail urban rail urban non-bulk bulk Private ending passenger þassenger þassenger freight freight freight (MJ/pkm) (MJ/tkm) June 0.15 1982 1.08 0.75 0.37 0.81 0.47 1983 1.03 0.15 0.71 0.35 0.77 0.44 1984 0.98 0.68 0.33 0.73 0.42 0.14 1985 0.93 0.65 0.32 0.70 0.40 0.13 1986 0.93 0.31 0.39 0.13 0.63 0.65 1987 0.93 0.30 0.37 0.13 0.61 0.61 1988 0.92 0.59 0.29 0.57 0.35 0.13 1989 0.91 0.57 0.30 0.55 0.32 0.13 1990 0.89 0.56 0.31 0.54 0.28 0.13 1991 0.88 0.54 0.32 0.52 0.25 0.12 1992 0.87 0.52 0.34 0.52 0.24 0.12 1993 0.86 0.51 0.36 0.52 0.24 0.11 0.85 0.38 0.51 0.23 0.11 1994 0.49 1995 0.84 0.48 0.40 0.51 0.22 0.10 1996 0.21 0.10 0.89 0.49 0.41 0.47 1997 0.95 0.51 0.21 0.10 0.43 0.43 1998 0.09 1.01 0.20 0.52 0.44 0.39 1999 1.01 0.52 0.44 0.39 0.20 0.09 2000 1.01 0.52 0.44 0.39 0.20 0.09 Notes: Some detailed data were available for some years, in particular 1984-85, 1987-88,

Isome detailed data were available for some years, in particular 1964–66, 1967–66, 1990–91, 1994–95 and 1997–98. Most values are very approximate (many being interpolated or assumed). Series have also been smoothed.
 Part of the decline in heavy rail urban passenger and government bulk freight

intensities is due to the increasing penetration of electric rail. Since end-use figures do not include generation and transmission losses for electricity, MJ end-use per unit task estimates for electric rail are substantially lower than for diesel rail. Sources: BTRE estimates using data contained in Bush et al. (1993: p. 112);

Apelbaum (2001: p. 5; 1997: p. 126; 1993: pp. 94–95, 98, 100, 153, 158); Cosgrove & Gargett (1992); BTRE Indicators Database. freight

An average fuel intensity index for the total rail sector can be calculated (using 1987–88 as a base year) by applying the 1987–88 fuel intensities to each of the rail tasks for each year (to determine an estimate of what annual fuel consumption would have been without any fuel efficiency improvements). The 'actual' annual fuel consumption series given in Bush et al. (1993: p. 112) and Apelbaum (2001) divided by the corrected fuel consumption (CFC) multiplied by 100 gives an average fuel intensity index. In 1987–88 (the base year), the average fuel intensity index equals 100. Equations IV.8 and IV.9 summarise the calculation.

$$CFC = \sum_{n} (Task_{n} \times Fl_{1988,n})$$
(IV.8)

for n = GB, GNB, PF, PASNU, PASU(H) AND PASU(L)

Average FI (index) = (FC / CFC) x 100 (IV.9)

where CFC is the corrected fuel consumption (detrending for fuel intensity decreases), Task<sub>n</sub> is the specific rail task, Fl<sub>1988,n</sub> is the specific fuel intensity in 1987–88 and FC is the actual total fuel consumption. (Table IV.9 presents the average fuel intensity series for rail transport.)

#### Assumptions

In order to project total fuel consumption to the year 2019-20 it has been necessary to make assumptions about the explanatory variables in equations IV.I to IV.7.

Real gross non-farm product (RGNF) was assumed to increase by an average of 3 per cent per annum to the year 2019–20. The exact annual growth rate projections were an average of GTEM, G-Cubed and Monash projections (AGO 2001, pers. comm.)—see Appendix VI, table VI.3. Real Australian private final consumption (RAUSPFC) was assumed to grow at the same rate as RGNF.

Iron ore production levels have been forecast by ABARE (2001: p. 141) to increase by 3 per cent per annum between 2000–01 and 2005–06. It was assumed that ABARE's trend increase over the period from 2000–01 to 2005–06 will continue to the year 2019–20.

ABARE (2001: p. 34) also forecast increases in coal and grain exports for the period 1999–2000 to 2005–06 of 3.2 per cent. These trends were assumed to continue to the year 2019–20.

The real urban fares index (AUSTFAR) was assumed to remain unchanged from the fourth quarter 2000 level (at 136.4) over the projection period.

Average distances travelled by passengers were assumed to remain constant at the level estimated for 2000, for both non-urban and urban travel.

Average freight haul distances were assumed to remain constant at their 1994–95 levels for government railways (684 kilometres for government nonbulk railways and 220 kilometres for government bulk railways). Average freight haul distances were assumed to remain constant at their 1997–98 levels (233 kilometres) for private railways.

Based on long-term trends, it was assumed that fuel efficiency would improve by between 10 and 15 per cent by the year 2019–20, depending on the rail sector (see table IV.8). Though the level of fuel efficiency improvement is a fairly arbitrary assumption, rail is responsible for only a small proportion of total transport energy consumption and the overall base case is not strongly influenced by it. For example, fuel intensity increasing or decreasing by an extra 5 percentage points would only vary projected total transport emissions by less than 0.2 per cent.

#### Fuel projection results and scenarios

Using the BTRE model and the assumptions about the independent variables detailed above, total rail energy consumption is projected to increase from about 32 PJ in 2000 to around 38 PJ in the year 2010 and to around 46 PJ in the year 2020. Table IV.7 details the results of the projection models for each of the variables. Figure IV.7 graphs the actual and projected trends in total rail energy consumption.



Rail energy end-use is thus estimated to increase by approximately 44 per cent between 1999–2000 and 2019–20. During the same period government nonbulk tonnes carried is estimated to increase by 94 per cent, with government bulk tonnes increasing by 54 per cent and private freight tonnes carried by 96 per cent. For passengers, urban numbers are estimated to increase by 40 per cent and non-urban passenger numbers by only 10 per cent. Basically, rail transport is projected to maintain reasonably strong growth. Table IV.5 details the effect of changing the assumption on fuel efficiency improvements (as fuel efficiency improves, the level of fuel consumption falls).

## TABLE IV.5 RAIL ENERGY CONSUMPTION USING ALTERNATIVE LEVELS OF FUEL EFFICIENCY

| Energy end-use of                                                 | consumption in 2019–20 |
|-------------------------------------------------------------------|------------------------|
| Fuel efficiency improvement by 2019–20                            | (petajoules)           |
| 0 per cent                                                        | 53.4                   |
| 10–15 per cent <sup>a</sup>                                       | 45.8                   |
| 20 per cent                                                       | 42.7                   |
| a. Base case scenario. The base case has slower projected efficie | ncy improvement than   |

Base case scenario. The base case has slower projected efficiency improvement than historically for some sectors, and could possibly be regarded as a likely upper bound for future rail energy consumption.

Source: BTRE estimates.

#### **GREENHOUSE GAS EMISSIONS**

Railway traction consumes predominantly automotive diesel oil (ADO) and electricity. Based on figures contained in Apelbaum (2001), industrial diesel fuel (IDF), coal and natural gas (NG) consume less than one-tenth of 1 per cent of total fuel consumption for rail transport and are therefore considered insignificant for total emission projection purposes. Each fuel source of energy is responsible for different rates of emission for each of the greenhouse gases. Once projected, it is necessary to breakdown total fuel consumption estimates into the separate fuel types in order to make forecasts of emission levels.

It is assumed that IDF (plus coal and NG) consumption remains at negligible levels over the forecast period.

Electricity consumption is primarily due to the movement of urban passengers and government bulk freight. By multiplying urban passenger–kilometres by the urban passenger fuel intensity, total energy consumed (end-use) for the movement of urban passengers can be calculated.

In 1997–98, over 95 per cent of the urban rail passenger transport task was accomplished by electric rail. It is assumed that this proportion will not change significantly over the period 1999–2000 to 2019–20.

It is assumed that electricity will retain its 20 per cent share of energy consumption by government bulk rail freight, as the sector grows.

The level of ADO consumed is the residual of the total energy consumption projections once the IDF and electricity consumption projections have been subtracted. Table IV.10 details the energy projections.

On an end-use basis, electricity use does not result in emissions of greenhouse gases. Yet the generation of electricity is responsible for significant rates of emission. Emissions from the generation of electricity used by trains and trams are estimated as follows.

Emission levels depend upon the primary fuel used to generate the electricity. New South Wales, Queensland, South Australia and Western Australia use black coal as the major fuel to generate electricity, with smaller amounts of natural gas also being used. Victoria uses brown coal and natural gas.

The energy needed to generate electricity depends on the efficiency with which electricity is generated, and this varies from State to State. The efficiency of electricity generation and transmission is typically stated in terms of the percentage of energy input (PJ of coal, say) which is transformed into energy output (PJ of electricity). Based on figures from Apelbaum (2001, 1993), the average Australian efficiency, excluding Victoria, is around 33.9 per cent (and for Victoria about 27 per cent). That is, for every petajoule of electricity consumed by electric trains and trams, approximately 3 PJ of primary energy are required to generate the electricity generation will improve by 10 per cent by the year 2020.

Emission rates differ between the different fuels used to generate the electricity. For Victoria, emission rates will differ during the day because, essentially, brown coal is used for the base load and natural gas for peak loads (Armour & Jordan 1992: p. 7). The BTCE (1995a: p. 59) used figures contained in Armour and Jordan (1992: p.9) and statistics provided by the Victorian Public Transport Corporation (PTC) on proportions of rail car kilometres travelled during peak and off-peak times. These statistics allowed the calculation that on average approximately 283 grams of CO<sub>2</sub> were released for every megajoule of enduse electricity consumed in 1993 by Victorian trains. For the rest of Australia, it was calculated that approximately 271 grams of CO<sub>2</sub> were produced, on average, per megajoule of end-use electricity consumed (BTCE 1995a, NGGIC 1994, Apelbaum 1993). Based on Apelbaum (2001), the BTRE has estimated a weighted average of around 270 grams of CO<sub>2</sub> equivalent per megajoule (of electricity end-use consumed by Australian railways for traction) for the year 2000.

Table IV.6 details the conversion factors used to calculate greenhouse gas emissions for trains and trams.

#### TABLE IV.6RAIL EMISSION CONVERSION FACTORS

|                  | (grams per megajoule el | nd-use) |       |
|------------------|-------------------------|---------|-------|
| Gas              | Electricity             | ADO     | IDF   |
| co <sub>2</sub>  | 268.92                  | 69.70   | 69.70 |
| NOX              | 1.030                   | 1.710   | 1.710 |
| CH <sub>4</sub>  | 0.016                   | 0.006   | 0.006 |
| NMVOC            | 0.0                     | 0.124   | 0.124 |
| со               | 0.043                   | 0.580   | 0.580 |
| N <sub>2</sub> O | 0.002                   | 0.002   | 0.002 |

Notes: 0.0 means assumed negligible. Emission factors for electricity use include the combustion of primary fuels

by electric power stations, whereas all other conversion factors refer solely to end-use emissions.

Sources: IPCC/OECD (1994: p. 1.44); BTRE estimates based on NGGIC (1994: p. 12); Amour & Jordan (1992: p. 9); and BTCE (1995a).

Multiplying the fuel consumption of each fuel type by the relevant emission factor (and summing over all fuels), rail carbon dioxide equivalent emission levels are projected to increase from 3518 gigagrams in 1999–2000 to 4114 gigagrams in 2009–10 and to 4848 gigagrams in the year 2014–15. Excluding emissions from electricity generation, carbon dioxide equivalent emission levels are projected to increase from 1782 gigagrams in 1999–2000 to 2186 gigagrams in 2009–10 and to 2651 gigagrams in the year 2019–20 (see table IV.11).

(Note that for projection purposes, the task split between 'government' and 'private' is based on the division of the Australian rail task between public and privately owned railways as at the year 2000. Current (and future) rail privatisation and ownership changes will make the division given here fairly arbitrary — and projections of 'total' rail freight tasks are more meaningful than the 'government' and 'private' freight subtotals.)

The models used to project fuel consumption for rail depend on both the rail task levels and fuel intensity. The BTRE models were derived for use in long-term projections and therefore do not include all variables which may be relevant in the short-term. Of course, the results of the BTRE projections also depend heavily on the assumptions used for the future values of the models' explanatory variables.

|               | RA      | IL PROJ | ECTION      | N       |           |        |         |         |           |           |        |             |           |
|---------------|---------|---------|-------------|---------|-----------|--------|---------|---------|-----------|-----------|--------|-------------|-----------|
| NU            |         |         |             |         |           |        | (H)N    | n(L)    |           |           |        |             |           |
| average PASKA | PASKA   | _       |             |         |           |        | average | average |           |           |        |             |           |
| trip NL       | N       | ~       | RGNF        | PASU(H) | PASU(L)   | PASU   | triþ    | trip    | PASKMU(H) | PASKMU(L) | PASKMU | RAUSPFC     | AUSTFAR   |
| (km) (billior | (billio | (-      | (\$million) |         | (million) |        | (km)    | (km)    |           | (billion) |        | (\$million) | (index)   |
| 320.5 2.      | 5       | 98      | 326125      | 352.00  | 102.00    | 454.00 | 16.3    | 6.12    | 5.74      | 0.62      | 6.36   | 95225.0     | 52.7      |
| 314.2 3.      | М       | 07      | 321203      | 341.15  | 100.85    | 442.00 | 16.3    | 6.12    | 5.56      | 0.62      | 6.18   | 107398      | 59.4      |
| 309.8 2       | 7       | .94     | 334021      | 338.36  | 105.64    | 444.00 | 16.4    | 6.12    | 5.55      | 0.65      | 6.20   | 117515      | 64.4      |
| 292.9 2       | 7       | .89     | 353092      | 339.71  | 104.13    | 443.84 | 16.5    | 6.24    | 5.61      | 0.65      | 6.25   | 127632      | 68.6      |
| 303.1 2       | 7       | .67     | 368444      | 366.01  | 113.39    | 479.40 | 16.4    | 6.21    | 6.00      | 0.70      | 6.71   | 143156      | 74.4      |
| 293.4 2       | 7       | .64     | 378588      | 375.41  | 117.49    | 492.90 | 16.4    | 6.21    | 6.16      | 0.73      | 6.89   | I 57285     | 82.7      |
| 300.6 2       | 7       | .84     | 399653      | 395.73  | 110.02    | 505.75 | 16.3    | 6.21    | 6.45      | 0.68      | 7.13   | 175871      | 89.I      |
| 287.9 2       | 7       | .68     | 416568      | 412.65  | 111.13    | 523.78 | 16.5    | 6.21    | 6.81      | 0.69      | 7.50   | l 96039     | 92.5      |
| 243.9 2       | 7       | .35     | 430689      | 413.10  | 87.12     | 500.22 | 16.5    | 6.21    | 6.83      | 0.54      | 7.37   | 217340      | 100.0     |
| 248.2         | .,      | 2.36    | 430849      | 402.06  | 105.53    | 507.58 | 17.0    | 6.29    | 6.83      | 0.66      | 7.49   | 232508      | 106.9     |
| 255.9         | .,      | 2.26    | 432923      | 404.45  | 110.69    | 515.14 | 17.1    | 5.98    | 6.93      | 0.66      | 7.59   | 244194      | 108.8     |
| 263.9         |         | 2.26    | 446732      | 396.55  | 98.09     | 494.64 | 17.3    | 5.68    | 6.85      | 0.56      | 7.41   | 255389      | 111.3     |
| 272.2         |         | 2.21    | 465517      | 403.06  | 95.32     | 498.38 | 17.4    | 5.40    | 7.03      | 0.51      | 7.54   | 266377      | 113.8     |
| 280.6         |         | 2.30    | 490459      | 417.24  | 105.82    | 523.06 | 17.6    | 5.13    | 7.33      | 0.54      | 7.88   | 282723      | 117.5     |
| 264.0 2       |         | 2.25    | 507995      | 434.23  | 111.10    | 545.34 | 17.0    | 5.11    | 7.37      | 0.57      | 7.94   | 301673      | 122.6     |
| 248.5 2       | C       | .13     | 524657      | 461.21  | 121.73    | 582.94 | 16.4    | 5.08    | 7.55      | 0.62      | 8.17   | 315354      | 124.3     |
| 233.2         | -       | .98     | 550817      | 456.91  | 116.55    | 573.46 | 15.8    | 5.06    | 7.22      | 0.59      | 7.81   | 335130      | 123.5     |
| 233.2 2       |         | 00.     | 578941      | 472.05  | 121.60    | 593.64 | 15.8    | 5.06    | 7.46      | 0.61      | 8.07   | 353985      | 122.1     |
| 233.2         |         | 0.01    | 603748      | 484.99  | 126.10    | 611.08 | 15.8    | 5.06    | 7.66      | 0.64      | 8.30   | 373113      | 128.9     |
| 233.2         |         | 2.02    | 628291      | 480.89  | 124.70    | 605.59 | 15.8    | 5.06    | 7.60      | 0.63      | 8.23   | 398628      | 136.2     |
| 233.2         |         | 2.03    | 650865      | 489.35  | 126.99    | 616.34 | 15.8    | 5.06    | 7.73      | 0.64      | 8.38   | 412580      | 136.4     |
|               |         |         |             |         |           |        |         |         |           |           |        |             | Continued |

Appendix 4

| TABL   | E IV.7  | RAI     | IL PROJ   | ECTION      | S (Contin | (pən      |        |         |         |           |           |        |             |           |
|--------|---------|---------|-----------|-------------|-----------|-----------|--------|---------|---------|-----------|-----------|--------|-------------|-----------|
| Year   |         | NU      |           |             |           |           |        | (H)N    | n(L)    |           |           |        |             |           |
| ending |         | average | PASKM     |             |           |           |        | average | average |           |           |        |             |           |
| June   | PASNU   | trip    | NU        | RGNF        | PASU(H)   | PASU(L)   | PASU   | triþ    | triþ    | PASKMU(H) | PASKMU(L) | PASKMU | RAUSPFC     | AUSTFAR   |
|        | (000,)  | (km)    | (billion) | (\$million) |           | (million) |        | (km)    | (km)    |           | (billion) |        | (\$million) | (index)   |
| 2003   | 8771.46 | 233.2   | 2.05      | 673646      | 498.28    | 129.33    | 627.61 | 15.8    | 5.06    | 7.87      | 0.65      | 8.53   | 427020      | 136.4     |
| 2004   | 8820.86 | 233.2   | 2.06      | 697223      | 507.37    | 131.72    | 639.09 | 15.8    | 5.06    | 8.02      | 0.67      | 8.68   | 441966      | 136.4     |
| 2005   | 8867.55 | 233.2   | 2.07      | 720137      | 516.63    | 134.14    | 650.77 | 15.8    | 5.06    | 8.16      | 0.68      | 8.84   | 457434      | 136.4     |
| 2006   | 8913.14 | 233.2   | 2.08      | 743120      | 526.06    | 136.62    | 662.67 | 15.8    | 5.06    | 8.31      | 0.69      | 9.00   | 473445      | 136.4     |
| 2007   | 8958.61 | 233.2   | 2.09      | 766647      | 535.66    | 139.13    | 674.79 | 15.8    | 5.06    | 8.47      | 0.70      | 9.17   | 490015      | 136.4     |
| 2008   | 9003.58 | 233.2   | 2.10      | 790528      | 545.43    | 141.70    | 687.13 | 15.8    | 5.06    | 8.62      | 0.72      | 9.34   | 507166      | 136.4     |
| 2009   | 9048.11 | 233.2   | 2.11      | 814786      | 555.39    | 144.31    | 69.66  | 15.8    | 5.06    | 8.78      | 0.73      | 9.51   | 524917      | 136.4     |
| 2010   | 9092.24 | 233.2   | 2.12      | 839433      | 565.52    | 146.96    | 712.48 | 15.8    | 5.06    | 8.94      | 0.74      | 9.68   | 543289      | 136.4     |
| 2011   | 9136.63 | 233.2   | 2.13      | 864857      | 575.84    | 149.67    | 725.51 | 15.8    | 5.06    | 9.10      | 0.76      | 9.86   | 562304      | 136.4     |
| 2012   | 9181.13 | 233.2   | 2.14      | 890986      | 586.35    | 152.43    | 738.78 | 15.8    | 5.06    | 9.27      | 0.77      | 10.04  | 581984      | 136.4     |
| 2013   | 9225.32 | 233.2   | 2.15      | 917581      | 597.05    | 155.24    | 752.28 | 15.8    | 5.06    | 9.44      | 0.78      | 10.22  | 602354      | 136.4     |
| 2014   | 9269.13 | 233.2   | 2.16      | 944603      | 607.94    | 158.10    | 766.04 | 15.8    | 5.06    | 9.6       | 0.80      | 10.41  | 623436      | 136.4     |
| 2015   | 9312.47 | 233.2   | 2.17      | 971984      | 619.04    | 161.01    | 780.05 | 15.8    | 5.06    | 9.78      | 0.81      | 10.60  | 645256      | 136.4     |
| 2016   | 9355.08 | 233.2   | 2.18      | 999550      | 630.33    | 163.98    | 794.31 | 15.8    | 5.06    | 9.96      | 0.83      | 10.79  | 667840      | 136.4     |
| 2017   | 9396.65 | 233.2   | 2.19      | 1027073     | 641.83    | 167.00    | 808.83 | 15.8    | 5.06    | 10.14     | 0.84      | 10.99  | 691215      | 136.4     |
| 2018   | 9436.88 | 233.2   | 2.20      | 1054301     | 653.55    | 170.07    | 823.62 | 15.8    | 5.06    | 10.33     | 0.86      | 11.19  | 715407      | 136.4     |
| 2019   | 9475.42 | 233.2   | 2.21      | 1080959     | 665.47    | 173.21    | 838.68 | 15.8    | 5.06    | 10.52     | 0.88      | 11.39  | 740447      | 136.4     |
| 2020   | 9512.16 | 233.2   | 2.22      | 1106886     | 677.62    | 176.40    | 854.01 | 15.8    | 5.06    | 10.71     | 0.89      | 11.60  | 766362      | 136.4     |
|        |         |         |           |             |           |           |        |         |         |           |           |        |             | Continued |

206

BTRE Report 107

| TABLE  | IV.7     | RAIL PR  | ROJECTI   | ONS (Cont | tinued)   |           |           |            |           |         |         |           |
|--------|----------|----------|-----------|-----------|-----------|-----------|-----------|------------|-----------|---------|---------|-----------|
| Year   | GNBT     | GBT      | GNB       | GB        |           |           |           |            |           | CGEXP   | IOP     |           |
| ending | (million | (million | average   | average   | GNBTKM    | GBTKM     | PFT       | PF average | PFTKM     | 000,)   | 000,)   | ΓĊ        |
| June   | tonnes)  | tonnes)  | haul (km) | haul (km) | (billion) | (billion) | (million) | haul (km)  | (billion) | tonnes) | tonnes) | (PJ)      |
| 1982   | 28.52    | 99.54    | 495.50    | 239.50    | 14.13     | 23.84     | 87.27     | 226.45     | 19.76     | 54519   | 86.19   | 30.5      |
| 1983   | 23.00    | 101.85   | 485.60    | 224.60    | 11.17     | 22.88     | 90.28     | 227.27     | 20.52     | 62699   | 81.39   | 28. I     |
| 1984   | 25.04    | 117.43   | 545.00    | 224.80    | 13.65     | 26.40     | 117.70    | 215.74     | 25.39     | 80514   | 79.74   | 30.4      |
| 1985   | 24.79    | 134.75   | 558.67    | 225.28    | 13.85     | 30.36     | 128.98    | 220.16     | 28.40     | 001601  | 91.54   | 32. I     |
| 1986   | 26.81    | 145.62   | 572.68    | 225.76    | 15.35     | 32.87     | 125.59    | 231.75     | 29.11     | 111863  | 92.93   | 31.2      |
| 1987   | 27.42    | 148.72   | 587.05    | 226.24    | 16.10     | 33.65     | 133.36    | 229.55     | 30.61     | 116144  | 96.89   | 32.4      |
| I 988  | 28.94    | 147.14   | 601.77    | 226.72    | 17.41     | 33.36     | 136.51    | 227.94     | 31.12     | 116978  | 102.61  | 32.3      |
| 1989   | 31.97    | 143.74   | 616.87    | 227.20    | 19.72     | 32.66     | 132.67    | 212.59     | 28.20     | 110716  | 97.59   | 30.5      |
| 0661   | 30.83    | 155.31   | 632.34    | 227.69    | 19.49     | 35.36     | 150.55    | 219.59     | 33.06     | 119937  | 110.06  | 30.2      |
| 1661   | 29.57    | 158.63   | 648.20    | 228.17    | 19.17     | 36.20     | 160.06    | 223.42     | 35.76     | 128689  | 111.56  | 30.0      |
| 1992   | 30.01    | 166.18   | 657.02    | 224.74    | 19.72     | 37.35     | 181.66    | 232.56     | 42.25     | 134861  | 116.08  | 29.4      |
| I 993  | 32.70    | 171.29   | 665.96    | 221.35    | 21.78     | 37.92     | 182.74    | 224.87     | 41.09     | 141347  | 116.13  | 28.9      |
| 1994   | 33.56    | 178.01   | 675.02    | 218.02    | 22.65     | 38.81     | 192.27    | 222.38     | 42.76     | 143907  | 123.78  | 30.8      |
| 1995   | 31.71    | 183.38   | 684.20    | 214.74    | 21.69     | 39.38     | 199.14    | 219.91     | 43.79     | 146628  | 137.00  | 30.2      |
| 1996   | 30.55    | 193.55   | 684.20    | 220.00    | 20.90     | 42.58     | 208.56    | 224.26     | 46.77     | 153957  | 147.88  | 29.5      |
| 1997   | 37.53    | 218.04   | 684.20    | 220.00    | 25.68     | 47.97     | 216.00    | 228.68     | 49.40     | 168238  | 154.35  | 31.8      |
| 1 998  | 38.28    | 222.42   | 684.20    | 220.00    | 26.19     | 48.93     | 219.33    | 233.20     | 51.15     | 177854  | 157.39  | 30.8      |
| 666    | 37.02    | 227.64   | 684.20    | 220.00    | 25.33     | 50.08     | 202.00    | 233.20     | 47.11     | 190608  | 147.27  | 30.6      |
| 2000   | 38.58    | 240.39   | 684.20    | 220.00    | 26.39     | 52.89     | 203.47    | 233.20     | 47.45     | 197045  | 152.40  | 31.7      |
|        |          |          |           |           |           |           |           |            |           |         |         | Continued |

Appendix 4

| Year     | GNBT                         | GBT                         | GNB                           | GB                                |                                |                         |              |                 |               | CGEXP            | IOP     |       |
|----------|------------------------------|-----------------------------|-------------------------------|-----------------------------------|--------------------------------|-------------------------|--------------|-----------------|---------------|------------------|---------|-------|
| ending   | (million                     | (million                    | average                       | average                           | GNBTKM                         | GBTKM                   | PFT          | PF average      | PFTKM         | 000,)            | 000,)   | FC    |
| June     | tonnes)                      | tonnes)                     | haul (km)                     | haul (km)                         | (billion)                      | (billion)               | (million)    | haul (km)       | (billion)     | tonnes)          | tonnes) | (PJ)  |
| 2001     | 40.07                        | 241.36                      | 684.20                        | 220.00                            | 27.42                          | 53.10                   | 230.23       | 233.20          | 53.69         | 202071           | 167.48  | 32.5  |
| 2002     | 41.44                        | 246.67                      | 684.20                        | 220.00                            | 28.35                          | 54.27                   | 236.96       | 233.20          | 55.26         | 208283           | 172.51  | 33.0  |
| 2003     | 42.85                        | 252.26                      | 684.20                        | 220.00                            | 29.32                          | 55.50                   | 243.89       | 233.20          | 56.88         | 214865           | 177.68  | 33.6  |
| 2004     | 44.30                        | 257.97                      | 684.20                        | 220.00                            | 30.31                          | 56.75                   | 251.03       | 233.20          | 58.54         | 221655           | 183.01  | 34.3  |
| 2005     | 45.80                        | 263.80                      | 684.20                        | 220.00                            | 31.34                          | 58.04                   | 258.37       | 233.20          | 60.25         | 228659           | 188.50  | 34.9  |
| 2006     | 47.35                        | 269.78                      | 684.20                        | 220.00                            | 32.40                          | 59.35                   | 265.93       | 233.20          | 62.01         | 235884           | 194.16  | 35.5  |
| 2007     | 48.95                        | 275.88                      | 684.20                        | 220.00                            | 33.49                          | 60.69                   | 273.70       | 233.20          | 63.83         | 243338           | 199.98  | 36.2  |
| 2008     | 50.60                        | 282.13                      | 684.20                        | 220.00                            | 34.62                          | 62.07                   | 281.71       | 233.20          | 65.69         | 251028           | 205.98  | 36.8  |
| 2009     | 52.30                        | 288.51                      | 684.20                        | 220.00                            | 35.78                          | 63.47                   | 289.95       | 233.20          | 67.62         | 258960           | 212.16  | 37.5  |
| 2010     | 54.05                        | 295.04                      | 684.20                        | 220.00                            | 36.98                          | 64.91                   | 298.43       | 233.20          | 69.59         | 267144           | 218.53  | 38.2  |
| 2011     | 55.86                        | 301.72                      | 684.20                        | 220.00                            | 38.22                          | 66.38                   | 307.16       | 233.20          | 71.63         | 275585           | 225.08  | 38.9  |
| 2012     | 57.73                        | 308.55                      | 684.20                        | 220.00                            | 39.50                          | 67.88                   | 316.14       | 233.20          | 73.72         | 284294           | 231.84  | 39.6  |
| 2013     | 59.66                        | 315.54                      | 684.20                        | 220.00                            | 40.82                          | 69.42                   | 325.39       | 233.20          | 75.88         | 293277           | 238.79  | 40.3  |
| 2014     | 61.65                        | 322.68                      | 684.20                        | 220.00                            | 42.18                          | 70.99                   | 334.91       | 233.20          | 78.10         | 302545           | 245.95  | 41.0  |
| 2015     | 63.70                        | 329.98                      | 684.20                        | 220.00                            | 43.58                          | 72.60                   | 344.70       | 233.20          | 80.38         | 312105           | 253.33  | 41.8  |
| 2016     | 65.81                        | 337.45                      | 684.20                        | 220.00                            | 45.03                          | 74.24                   | 354.78       | 233.20          | 82.74         | 321968           | 260.93  | 42.5  |
| 2017     | 68.00                        | 345.09                      | 684.20                        | 220.00                            | 46.52                          | 75.92                   | 365.16       | 233.20          | 85.15         | 332142           | 268.76  | 43.3  |
| 2018     | 70.25                        | 352.90                      | 684.20                        | 220.00                            | 48.06                          | 77.64                   | 375.84       | 233.20          | 87.65         | 342638           | 276.82  | 44. I |
| 2019     | 72.57                        | 360.89                      | 684.20                        | 220.00                            | 49.65                          | 79.40                   | 386.83       | 233.20          | 90.21         | 353465           | 285.13  | 44.9  |
| 2020     | 74.97                        | 369.06                      | 684.20                        | 220.00                            | 51.29                          | 81.19                   | 398.15       | 233.20          | 92.85         | 364635           | 293.68  | 45.8  |
| Sources: | BTRE estima<br>State Rail an | ites; BTRE I<br>d Transit A | Indicators D<br>uthorities (2 | atabase; Apell<br>2001, pers. coi | baum (2001; 1<br>mm.); ABS (20 | 997: pp. 43, 4<br>01d). | 4, 45); Cosg | grove & Gargeti | t (1992); ABS | i (1986a, p. 4); |         |       |

208

TABLE IV.7 RAIL PROIECTIONS (Continued)

BTRE Report 107

Appendix 4

| TABL     | E IV.8    | ASSUME          |                  | C FUEL INT        | ENSITIES        |           |
|----------|-----------|-----------------|------------------|-------------------|-----------------|-----------|
| Year     |           |                 |                  |                   |                 |           |
| ending   | PASNU     | PASU (H)        | PASU (L)         | GNB               | GB              | PF        |
| June     | (MJ/pkm)  | (MJ/pkm)        | (MJ/pkm)         | (MJ/tkm)          | (MJ/tkm)        | (MJ/tkm)  |
| 1982     | 1.08      | 0.75            | 0.37             | 0.81              | 0.47            | 0.15      |
| 1983     | 1.03      | 0.71            | 0.35             | 0.77              | 0.44            | 0.15      |
| 1984     | 0.98      | 0.68            | 0.33             | 0.73              | 0.42            | 0.14      |
| 1985     | 0.93      | 0.65            | 0.32             | 0.70              | 0.40            | 0.13      |
| 1986     | 0.93      | 0.63            | 0.31             | 0.65              | 0.39            | 0.13      |
| 1987     | 0.93      | 0.61            | 0.30             | 0.61              | 0.37            | 0.13      |
| 1988     | 0.92      | 0.59            | 0.29             | 0.57              | 0.35            | 0.13      |
| 1989     | 0.91      | 0.57            | 0.30             | 0.55              | 0.32            | 0.13      |
| 1990     | 0.89      | 0.56            | 0.31             | 0.54              | 0.28            | 0.13      |
| 1991     | 0.88      | 0.54            | 0.32             | 0.52              | 0.25            | 0.12      |
| 1992     | 0.87      | 0.52            | 0.34             | 0.52              | 0.24            | 0.12      |
| 1993     | 0.86      | 0.51            | 0.36             | 0.52              | 0.24            | 0.11      |
| 1994     | 0.85      | 0.49            | 0.38             | 0.51              | 0.23            | 0.11      |
| 1995     | 0.84      | 0.48            | 0.40             | 0.51              | 0.22            | 0.10      |
| 1996     | 0.89      | 0.49            | 0.41             | 0.47              | 0.21            | 0.10      |
| 1997     | 0.95      | 0.51            | 0.43             | 0.43              | 0.21            | 0.10      |
| 1998     | 1.01      | 0.52            | 0.44             | 0.39              | 0.20            | 0.09      |
| 1999     | 1.01      | 0.52            | 0.44             | 0.39              | 0.20            | 0.09      |
| 2000     | 1.01      | 0.52            | 0.44             | 0.39              | 0.20            | 0.09      |
| 2001     | 1.00      | 0.51            | 0.43             | 0.39              | 0.20            | 0.09      |
| 2002     | 1.00      | 0.51            | 0.43             | 0.39              | 0.20            | 0.09      |
| 2003     | 0.99      | 0.51            | 0.43             | 0.39              | 0.20            | 0.09      |
| 2004     | 0.99      | 0.51            | 0.43             | 0.38              | 0.19            | 0.09      |
| 2005     | 0.98      | 0.50            | 0.43             | 0.38              | 0.19            | 0.09      |
| 2006     | 0.98      | 0.50            | 0.42             | 0.38              | 0.19            | 0.09      |
| 2007     | 0.97      | 0.50            | 0.42             | 0.37              | 0.19            | 0.09      |
| 2008     | 0.97      | 0.49            | 0.42             | 0.37              | 0.19            | 0.09      |
| 2009     | 0.96      | 0.49            | 0.42             | 0.37              | 0.19            | 0.09      |
| 2010     | 0.96      | 0.49            | 0.41             | 0.36              | 0.18            | 0.09      |
| 2011     | 0.95      | 0.49            | 0.41             | 0.36              | 0.18            | 0.09      |
| 2012     | 0.95      | 0.48            | 0.41             | 0.36              | 0.18            | 0.09      |
| 2013     | 0.94      | 0.48            | 0.41             | 0.36              | 0.18            | 0.08      |
| 2014     | 0.94      | 0.48            | 0.41             | 0.35              | 0.18            | 0.08      |
| 2015     | 0.93      | 0.48            | 0.40             | 0.35              | 0.18            | 0.08      |
| 2016     | 0.93      | 0.47            | 0.40             | 0.35              | 0.18            | 0.08      |
| 2017     | 0.92      | 0.47            | 0.40             | 0.34              | 0.17            | 0.08      |
| 2018     | 0.92      | 0.47            | 0.40             | 0.34              | 0.17            | 0.08      |
| 2019     | 0.91      | 0.47            | 0.40             | 0.34              | 0.17            | 0.08      |
| 2020     | 0.91      | 0.46            | 0.39             | 0.34              | 0.17            | 0.08      |
| Sources: | BTRE esti | mates using dat | a contained in B | ush et al. (1993: | p. 112); Apelba | um (2001; |
|          | 1997; 199 | 3); Cosgrove &  | Gargett (1992,)  | ; BIRE Indicator  | s Database.     |           |

BTRE Report 107

| Year end | ng June Average FI index                                                                                                                                                                     |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1982     | 121.1                                                                                                                                                                                        |
| 1983     | 120.9                                                                                                                                                                                        |
| 1984     | 114.6                                                                                                                                                                                        |
| 1985     | 113.2                                                                                                                                                                                        |
| 1986     | 103.2                                                                                                                                                                                        |
| 1987     | 103.6                                                                                                                                                                                        |
| 1988     | 100.0                                                                                                                                                                                        |
| 1989     | 92.5                                                                                                                                                                                         |
| 1990     | 88.4                                                                                                                                                                                         |
| 1991     | 86.6                                                                                                                                                                                         |
| 1992     | 81.1                                                                                                                                                                                         |
| 1993     | 77.2                                                                                                                                                                                         |
| 1994     | 79.7                                                                                                                                                                                         |
| 1995     | 78.0                                                                                                                                                                                         |
| 1996     | 74.5                                                                                                                                                                                         |
| 1997     | 71.6                                                                                                                                                                                         |
| 1998     | 68.9                                                                                                                                                                                         |
| 1999     | 68.7                                                                                                                                                                                         |
| 2000     | 68.4                                                                                                                                                                                         |
| 2001     | 68.0                                                                                                                                                                                         |
| 2002     | 67.4                                                                                                                                                                                         |
| 2003     | 66.9                                                                                                                                                                                         |
| 2004     | 66.4                                                                                                                                                                                         |
| 2005     | 65.8                                                                                                                                                                                         |
| 2006     | 65.3                                                                                                                                                                                         |
| 2007     | 64.8                                                                                                                                                                                         |
| 2008     | 64.3                                                                                                                                                                                         |
| 2009     | 63.7                                                                                                                                                                                         |
| 2010     | 63.2                                                                                                                                                                                         |
| 2011     | 62.7                                                                                                                                                                                         |
| 2012     | 62.2                                                                                                                                                                                         |
| 2013     | 61.7                                                                                                                                                                                         |
| 2014     | 61.2                                                                                                                                                                                         |
| 2015     | 60.7                                                                                                                                                                                         |
| 2016     | 60.3                                                                                                                                                                                         |
| 2017     | 59.8                                                                                                                                                                                         |
| 2018     | 59.3                                                                                                                                                                                         |
| 2019     | 58.8                                                                                                                                                                                         |
| 2020     | 58.3                                                                                                                                                                                         |
| Notes:   | Part of the decline in intensity is due to the increasing penetration of electric rail.<br>End-use figures for electricity consumption do not include generation and<br>transmission losses. |
| sources: | 1997; 1993); Cosgrove & Gargett (1992); BTRE Indicators Database.                                                                                                                            |

#### TABLE IV.9 RAIL FUEL INTENSITY INDEX

210

----

Appendix 4

| TABLE IV.10      | RAIL ENERGY CONS<br>(END-USE) | UMPTION PROJEC | CTIONS |
|------------------|-------------------------------|----------------|--------|
|                  | (petajoules)                  |                |        |
| Year ending June | ADO/IDF                       | Electricity    | Total  |
| 1990             | 24.71                         | 5.46           | 30.2   |
| 1991             | 24.51                         | 5.50           | 30.0   |
| 1992             | 23.75                         | 5.66           | 29.4   |
| 1993             | 23.30                         | 5.63           | 28.9   |
| 1994             | 25.12                         | 5.65           | 30.8   |
| 1995             | 24.25                         | 5.93           | 30.2   |
| 1996             | 23.73                         | 5.76           | 29.5   |
| 1997             | 25.63                         | 6.14           | 31.8   |
| 1998             | 24.74                         | 6.03           | 30.8   |
| 1999             | 24.38                         | 6.22           | 30.6   |
| 2000             | 25.29                         | 6.42           | 31.7   |
| 2001             | 26.12                         | 6.35           | 32.5   |
| 2002             | 26.62                         | 6.43           | 33.0   |
| 2003             | 27.13                         | 6.51           | 33.6   |
| 2004             | 27.66                         | 6.60           | 34.3   |
| 2005             | 28.19                         | 6.68           | 34.9   |
| 2006             | 28.74                         | 6.77           | 35.5   |
| 2007             | 29.30                         | 6.86           | 36.2   |
| 2008             | 29.86                         | 6.95           | 36.8   |
| 2009             | 30.44                         | 7.04           | 37.5   |
| 2010             | 31.03                         | 7.13           | 38.2   |
| 2011             | 31.63                         | 7.22           | 38.9   |
| 2012             | 32.25                         | 7.32           | 39.6   |
| 2013             | 32.88                         | 7.41           | 40.3   |
| 2014             | 33.52                         | 7.51           | 41.0   |
| 2015             | 34.17                         | 7.61           | 41.8   |
| 2016             | 34.83                         | 7.71           | 42.5   |
| 2017             | 35.51                         | 7.81           | 43.3   |
| 2018             | 36.21                         | 7.91           | 44.1   |
| 2019             | 36.91                         | 8.02           | 44.9   |
| 2020             | 37.63                         | 8.12           | 45.8   |

Sources: BTRE estimates; Apelbaum (2001; 1997: pp. 121-123); Bush et al. (1993)

BTRE Report 107

|        | Total | <i>c</i> 02          | equivalent | 3218 | 3213 | 3205  | 3163  | 3297 | 3312  | 3229  | 3465 | 3375  | 3398  | 3518 | 3558 | 3614 | 3673 | 3733 | 3794  | 3855 | 3918  | 3982 | Continued |
|--------|-------|----------------------|------------|------|------|-------|-------|------|-------|-------|------|-------|-------|------|------|------|------|------|-------|------|-------|------|-----------|
|        |       | valent               | Elec       | 1477 | 1486 | 1532  | 1522  | 1527 | 1604  | 1557  | 1660 | 1632  | 1681  | 1737 | 1718 | 1739 | 1762 | 1784 | 1807  | 1831 | 1855  | 1879 |           |
|        |       | CO <sub>2</sub> equi | Non-elec   | 1741 | 1727 | 1673  | 1641  | 1769 | 1 708 | 1672  | 1806 | 1743  | 1717  | 1782 | 1840 | 1875 | 1161 | 1948 | 1 986 | 2025 | 2064  | 2104 |           |
|        |       |                      | Elec       | 0.01 | 0.01 | 0.01  | 0.01  | 0.01 | 0.01  | 0.01  | 0.01 | 0.01  | 0.01  | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01  | 0.01 | 0.01  | 0.01 |           |
|        |       | N <sub>2</sub> 0     | Non-elec   | 0.05 | 0.05 | 0.05  | 0.05  | 0.05 | 0.05  | 0.05  | 0.05 | 0.05  | 0.05  | 0.05 | 0.05 | 0.05 | 0.05 | 0.06 | 0.06  | 0.06 | 0.06  | 0.06 |           |
|        |       |                      | Elec       | 0.2  | 0.2  | 0.2   | 0.2   | 0.2  | 0.3   | 0.2   | 0.3  | 0.3   | 0.3   | 0.3  | 0.3  | 0.3  | 0.3  | 0.3  | 0.3   | 0.3  | 0.3   | 0.3  |           |
|        |       | 8                    | Non-elec   | 14.3 | 14.2 | 13.8  | 13.5  | 14.6 | 14.1  | 13.8  | 14.9 | 14.4  | 14. I | 14.7 | 15.1 | 15.4 | 15.7 | 16.0 | 16.4  | 16.7 | 17.0  | 17.3 |           |
| grams) |       | 5                    | Elec       | 0.0  | 0.0  | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  | 0.0   | 0.0  |           |
| (giga  |       | NMVO                 | Non-elec   | 3.1  | 3.0  | 2.9   | 2.9   | 3.1  | 3.0   | 2.9   | 3.2  | 3.1   | 3.0   | 3.1  | 3.2  | 3.3  | 3.4  | 3.4  | 3.5   | 3.6  | 3.6   | 3.7  |           |
|        |       |                      | Elec       | 0.09 | 0.09 | 0.09  | 0.09  | 0.09 | 0.09  | 0.09  | 0.10 | 0.10  | 0.10  | 0.10 | 0.10 | 0.10 | 0.10 | 0.11 | 0.11  | 0.11 | 0.11  | 0.11 |           |
|        |       | CH <sub>4</sub>      | Non-elec   | 0.15 | 0.15 | 0.14  | 0.14  | 0.15 | 0.15  | 0.14  | 0.15 | 0.15  | 0.15  | 0.15 | 0.16 | 0.16 | 0.16 | 0.17 | 0.17  | 0.17 | 0.18  | 0.18 |           |
|        |       |                      | Elec       | 5.6  | 5.7  | 5.8   | 5.8   | 5.8  | 6.I   | 5.9   | 6.3  | 6.2   | 6.4   | 6.6  | 6.5  | 6.6  | 6.7  | 6.8  | 6.9   | 7.0  | 7.1   | 7.2  |           |
|        |       | NOx                  | Non-elec   | 42.3 | 41.9 | 40.6  | 39.8  | 42.9 | 41.5  | 40.6  | 43.8 | 42.3  | 41.7  | 43.2 | 44.7 | 45.5 | 46.4 | 47.3 | 48.2  | 49.I | 50.1  | 51.1 |           |
|        |       |                      | Elec       | 1472 | 1481 | 1526  | 1517  | 1522 | 1599  | 1552  | 1654 | 1626  | 1675  | 1730 | 1712 | 1733 | 1756 | 1778 | 1801  | 1824 | I 848 | 1872 |           |
|        |       | C02                  | Non-elec   | 1722 | 1708 | 1656  | 1624  | 1751 | 1690  | 1654  | 1787 | 1725  | 1699  | 1763 | 1820 | 1855 | 1891 | 1928 | 1965  | 2003 | 2042  | 2081 |           |
|        |       |                      | Year       | 0661 | 1661 | I 992 | I 993 | 1994 | 1 995 | 966 I | 1997 | 1 998 | 6661  | 2000 | 2001 | 2002 | 2003 | 2004 | 2005  | 2006 | 2007  | 2008 |           |

212

TABLE IV.II RAIL EMISSION PROJECTIONS

|         |          |                      |              |           |               |            |               |          |          |      |                  |      |                     |         | Total       |
|---------|----------|----------------------|--------------|-----------|---------------|------------|---------------|----------|----------|------|------------------|------|---------------------|---------|-------------|
|         | C02      |                      | NOX          |           | CH4           |            | ΟΛΜΝ          | U        | CO       |      | N <sub>2</sub> 0 |      | CO <sub>2</sub> equ | ivalent | <i>C</i> 02 |
| Year    | Non-elec | Elec                 | Non-elec     | Elec      | Non-elec      | Elec       | Non-elec      | Elec     | Non-elec | Elec | Non-elec         | Elec | Non-elec            | Elec    | equivalent  |
| 2009    | 2122     | 1896                 | 52.I         | 7.2       | 0.18          | 0.11       | 3.8           | 0.0      | 17.7     | 0.3  | 0.06             | 0.01 | 2145                | 1903    | 4048        |
| 2010    | 2163     | 1921                 | 53.I         | 7.3       | 0.19          | 0.11       | 3.8           | 0.0      | 18.0     | 0.3  | 0.06             | 0.01 | 2186                | 1928    | 4114        |
| 2011    | 2205     | 1946                 | 54.1         | 7.4       | 0.19          | 0.12       | 3.9           | 0.0      | 18.3     | 0.3  | 0.06             | 0.01 | 2229                | 1953    | 4182        |
| 2012    | 2248     | 1972                 | 55.1         | 7.5       | 0.19          | 0.12       | 4.0           | 0.0      | 18.7     | 0.3  | 0.06             | 0.01 | 2272                | 1979    | 4251        |
| 2013    | 2291     | 1998                 | 56.2         | 7.6       | 0.20          | 0.12       | 4.I           | 0.0      | 19.1     | 0.3  | 0.07             | 0.01 | 2316                | 2005    | 4321        |
| 2014    | 2336     | 2024                 | 57.3         | 7.7       | 0.20          | 0.12       | 4.2           | 0.0      | 19.4     | 0.3  | 0.07             | 0.02 | 2361                | 203 I   | 4392        |
| 2015    | 2382     | 2051                 | 58.4         | 7.8       | 0.21          | 0.12       | 4.2           | 0.0      | 19.8     | 0.3  | 0.07             | 0.02 | 2407                | 2058    | 4465        |
| 2016    | 2428     | 2078                 | 59.6         | 7.9       | 0.21          | 0.12       | 4.3           | 0.0      | 20.2     | 0.3  | 0.07             | 0.02 | 2454                | 2085    | 4539        |
| 2017    | 2475     | 2105                 | 60.7         | 8.0       | 0.21          | 0.12       | 4.4           | 0.0      | 20.6     | 0.3  | 0.07             | 0.02 | 2502                | 2112    | 4614        |
| 2018    | 2524     | 2133                 | 6.1.9        | 8.2       | 0.22          | 0.13       | 4.5           | 0.0      | 21.0     | 0.3  | 0.07             | 0.02 | 2551                | 2140    | 4691        |
| 2019    | 2573     | 2161                 | 63.1         | 8.3       | 0.22          | 0.13       | 4.6           | 0.0      | 21.4     | 0.3  | 0.07             | 0.02 | 2600                | 2169    | 4769        |
| 2020    | 2623     | 2189                 | 64.4         | 8.4       | 0.23          | 0.13       | 4.7           | 0.0      | 21.8     | 0.3  | 0.08             | 0.02 | 2651                | 2197    | 4848        |
| Notes:  | Non-ele  | c' refers            | to (end-use) | emissio   | ns for non-e  | lectrified | railways.     |          |          |      |                  |      |                     |         |             |
| Source: | BTRE est | ers to en<br>imates. |              | i the ger | ieration of e | iectricity | tor trains an | d trams. |          |      |                  |      |                     |         |             |
|         |          |                      |              |           |               |            |               |          |          |      |                  |      |                     |         |             |

TABLE IV.II RAIL EMISSION PROJECTIONS (continued)

Appendix 4

page 213 BTRE Report 107

# appendix

#### SHIPPING PROJECTIONS

#### INTRODUCTION

Shipping has been an important mode of transport throughout Australia's history. In the nineteenth century, sea transport offered the readiest means of transport for passengers and freight between coastal cities. Early patterns of colonial railway development did not reduce the need for sea transport—railways radiated outwards into the hinterland from coastal cities, rather than linking them. Until recent times, when air travel became an affordable mode of transport to many people, the main means of entering or leaving Australia was by sea.

Australia produces and exports large quantities of bulk commodities such as iron ore, alumina, coal and grain. Large tonnages, coupled with large distances to overseas destinations, allow economies of scale that make shipping a costeffective mode of freight transport.

A major issue in modelling greenhouse gas emissions by international shipping is the attribution of bunker fuel use among the various countries. According to Intergovernmental Panel on Climate Change (IPCC) guidelines, the attribution problem is still subject to debate. To ensure that all fuel use is accounted for, the IPCC recommends that *countries should record separately the quantities of fuel uplifted by international ships* (IPCC/OECD 1994: p. 1.11). In accordance with this recommendation, the BTRE has modelled separately fuel uplifted in Australia by international and coastal shipping.

#### **INTERNATIONAL SHIPPING**

Fuel is more expensive in Australia than in other countries, and only a small proportion of the fuel required for the international shipping task (to and from Australia) is therefore uplifted in Australia (about 8 per cent). The approach adopted by the BTRE in modelling the uplift of bunker fuel in Australia for international shipping involves two parts. Firstly, a model of the total international shipping task servicing Australian trade (and consequent total fuel use) comprises the basic model. Secondly, once total fuel use has been modelled, the fraction of this total that is uplifted in Australia is estimated.

Both parts of the modelling procedure are documented below, starting with the relationship that defines the fraction of fuel uplifted in Australia.

Modelling the fraction of total fuel for international shipping uplifted in Australia

The fraction of the total bunker fuel needed for the international shipping task into and out of Australia is dependent on what might be termed the 'mix effect'. Non-bulk ships are more likely to uplift fuel in Australia than are bulk ships. Large bulk ships are generally company ships on regular runs between specified ports. Refuelling is generally arranged at the least expensive port (usually overseas). Liner ships, on the other hand, have more changeable port call schedules and are therefore obliged to refuel in Australia more often (because of port call logistics). If there is an increase in the proportion of non-bulk ships undertaking Australia's international shipping task, it is likely that the proportion of fuel uplifted in Australia will increase.

Although it has been thought that the operation of the mix effect is heavily influenced by changes in Australia's exchange rate, between the years of 1984–85 and 1997–98, Apelbaum's (2001) data on the relative proportion of fuel uplifted in Australia has only varied by at most 2 per cent. For this reason, the amount of fuel uplifted in Australia has been fixed in our model at the 1997–98 figure of 7.4 per cent.

In the fuel consumption relationship outlined in equation V.I, the fraction of fuel uplifted in Australia has been set to the above proportion,

where

AC (Australian consumption) is the amount of fuel uplifted in Australia by international ships (in megalitres); and

TFC (total fuel consumption) is the total fuel required to undertake the international shipping task to and from Australia (in megalitres).

Modelling total fuel used in trade to and from Australia

To estimate the relationship defined in equation V.I, it was necessary to calculate TFC, the amount of fuel required to complete the international shipping task to and from Australia.

Australia's international shipping task can be split into three categories: the inward freight task, *fuel task (in)*; the outward freight task, *fuel task (out)*; and the passenger task, *fuel task (pass)*. The lack of suitable data on passenger numbers (and on fuel intensities of passenger ships), coupled with the relatively small size of the passenger sector, resulted in passenger numbers not being explicitly included in the shipping models. The amount of fuel required to complete each category was calculated as shown in equations V.2 to V.4, where FI refers to the relevant fuel intensity:

| fuel task (in)  | = average distance (in) x [ FI liner x non-bulk imports |                  |  |  |
|-----------------|---------------------------------------------------------|------------------|--|--|
|                 | + FI bulk ship x bulk imports]                          | (V.2)            |  |  |
| fuel task (out) | = average distance (out) x [FI liner x                  | non-bulk exports |  |  |
|                 | + FI bulk ship x bulk exports]                          | (V.3)            |  |  |
| TFC             | = fuel task (in) + fuel task (out)                      | (V.4)            |  |  |

In order to use these identities in forecasting, models had to be derived for bulk exports, non-bulk imports, bulk imports and non-bulk exports.

Projection models for bulk and non-bulk freight entering and leaving Australia were obtained by estimating a series of regression equations (V.5 to V.8). A summary of the regression results for all models is given in Table V.1.

Tonnages of bulk exports were estimated by equation V.5:

Bulk exports (measured in tonnes) are explained by EXP, the sum of six major bulk commodities: iron, coal, alumina, oil/petroleum products, grains and sugar (all measured in tonnes).

Non-bulk imports were modelled using gross national expenditure and the real trade weighted index as the explanatory variables.

ln (non-bulk imports) = 
$$1.5627 \times \ln \text{SGNE} + 0.1153 \times \ln \text{RTWI}$$
  
-  $0.2562 \times \text{DVI} - 4.9483$  (V.6)

where non-bulk imports is the level of non-bulk imports in tonnes, SGNE is Australian seasonally adjusted gross national expenditure, RTWI is the real trade-weighted index and DVI Is a dummy variable for the years 1989–90 to 1993–94.

The regression equation for bulk imports was constructed in a similar manner to the bulk exports equation. The tonnage of bulk imports is regressed on the sum of two major bulk imports: fuel and chemicals (measured in million dollars). The model is outlined in equation V.7:

where bulk imports is the level of bulk imports in tonnes and IMP is the sum of the values of the tonnages of fuel and chemicals imported (in millions of dollars).

Non-bulk exports are considered to be determined by the income of the Group of Seven (G7) major OECD economies and the real trade weighted index (an index of exchange rates between Australia and its major trading partners). G7GDP was chosen because it is more readily available both historically and for future projections than a trade-weighted measure of overseas income. Although G7GDP is calculated from the gross domestic products of seven countries, it is considered to be a measure of world GDP, because when GDP is high in the G7 countries, it is typically also high in non-G7 countries as a result of flow-on effects. For instance, when GDP is high in

the G7 countries, more goods are demanded from non-G7 countries which then increases the GDP of non-G7 countries. This implies that G7GDP can be an appropriate measure for the income of Australia's trading partners, despite a significant portion of Australia's trade being undertaken with non-G7 countries.

$$ln(non-bulk exports) = 1.1969 \times ln G7GDP - 0.1847 \times ln RTWI + 0.5985 \times DV2 + 3.8441$$
(V.8)

where non-bulk exports is the level of non-bulk exports in tonnes, G7GDP is an index of real gross domestic product in the G7 countries, DV2 is a dummy variable applied from 1994–95 onwards and RTWI is Australia's real tradeweighted index.

The results of the international shipping models are summarised in Table V.I

| MO                     | DELS           |                       |             |                |
|------------------------|----------------|-----------------------|-------------|----------------|
| Dependent variable     | R <sup>2</sup> | Independent variables | Coefficient | Standard error |
| Bulk exports           | 0.994          | constant              | 16070482    | 6109173        |
|                        |                | EXP                   | 1.2238      | 0.0227         |
| In(non-bulk imports)   | 0.981          | constant              | -4.9483     | 1.1778         |
|                        |                | DVI                   | -0.2562     | 0.0240         |
|                        |                | In RTWI               | 0.1153      | 0.1342         |
|                        |                | In SGNE               | 1.5627      | 0.0656         |
| Bulk imports           | 0.905          | constant              | 9712637     | 1720556        |
|                        |                | IMP                   | 2021.8      | 163.23         |
| In(non-bulk exports)   | 0.978          | constant              | 3.8441      | 2.5515         |
|                        |                | DV2                   | 0.5985      | 0.0661         |
|                        |                | In RTWI               | -0.1847     | 0.1929         |
|                        |                | In G7GDP              | 1.1969      | 0.1914         |
| Source: BTRE estimates |                |                       |             |                |

#### TABLE V.I RESULTS OF THE INTERNATIONAL SHIPPING MODELS

Source: BTRE estimates.

The average distance variables used in equations V.2 and V.3 represent the length of a typical voyage in any given year. Historical values for the average distances for inward and outward freight were calculated by weighting a series of representative distances by the freight tonnages to or from eight regions as shown in equations V.9 and V.10. These relations were then used in projecting changes in regional shares in Australia's international sea traffic.

average distance (out) = 
$$\frac{\sum_{\alpha} \text{ tonnes of freight to region } \alpha \times \text{ distance to region } \alpha}{\text{ total tonnes of freight from Australia}}$$
 (V.9)  
average distance (in) =  $\frac{\sum_{\alpha} \text{ tonnes of freight to region } \alpha \times \text{ distance to region } \alpha}{\text{ total tonnes of freight to Australia}}$  (V.10)

Fuel intensity variables have been split into the two categories of bulk ships and liner ships.

BTCE (1995a: p. 104) found that Apelbaum's (1993) fleet average fuel intensity figures coincided closely with Drewry's Bulk Ships (Drewry 1993 and earlier issues) fuel intensities time series (under the assumption the bulk ships experienced 50 per cent backhaul). From this we have taken the fuel intensity for bulk ships to be equivalent to Apelbaum's (2001) 1984–85 to 1997–98 fleet average figures adjusted upwards by 5 per cent (to closer match the Drewry's results for bulk ships with 50 per cent backhaul).

By calculating the proportional difference between the fuel intensities for liner and bulk ships as provided in BTCE (1995a: p. 251), liner ships were found to be on average 1.59 times as fuel intensive as bulk ships. Therefore, this analysis uses the relation that liner ships are 1.59 times as fuel intensive as bulk ships.

BTCE shipping projections (1995a: p. 251) applied a 1.8 per cent improvement per year in fuel intensities for both bulk ships and liner ships. For these revised projections, 1.8 per cent per annum improvement in fuel intensities is again assumed.

The fuel tasks were then calculated by applying the time series for fuel intensities, freight tasks and average distances to equations V.2 and V.3. Subsequent substitution into equation V.4 provided a time series for the total amount of fuel required to complete Australia's international shipping task. By applying the relationship defined in equation V.1 the amount of fuel uplifted in Australia for each year was calculated.

#### Variables

There are a number of variables used in equations V.1 to V.8 whose inclusion, for various reasons, may not be readily apparent.

G7GDP. G7GDP is an index of the gross domestic products of the Group of Seven, major industrialised countries comprising the United States, Canada, the United Kingdom, Germany Italy France and Japan. G7GDP is included in the model for non-bulk exports to capture the effect of overseas economic activity on the level of non-bulk exports. As G7GDP rises, the economies of the G7 countries are assumed to require increased amounts of raw materials. Australian non-bulk commodity exports should increase as a result. The coefficient of G7GDP can be expected to be positive as a result.

RTWI. A real trade-weighted index for Australia (RTWI) is calculated as:

$$RTWI = TWI \times (CPI/G7CPI)$$
(V.11)

where TWI is Australia's trade weighted index, CPI is Australia's consumer price index and G7CPI is the average of the consumer price indexes in the G7 countries.

The RTWI is included to capture the effect of exchange rates on the level of non-bulk exports. When the RTWI falls, Australian exports become cheaper overseas and demand increases. RTWI can therefore be expected to have a negative coefficient in the non-bulk exports model. Similarly, in the non-bulk imports model the RTWI captures the effect of exchange rates on non-bulk imports so that it can be expected that RTWI has a positive coefficient in the non-bulk imports model.

SGNE. Seasonally adjusted gross national expenditure is a measure of the level of spending in Australia. When SGNE rises, Australians are spending more and hence demanding more goods. The demand for imports will rise as a result of the increased demand in the Australian economy. The coefficient on non-bulk imports is therefore expected to be positive.

#### Assumptions

The projection of total fuel uplifted in Australia by international ships was calculated in three stages. First, projections of the explanatory variables in equations V.5 to V.8 were substituted into the equations used to project future tonnages of bulk and non-bulk exports and imports. Second, the projections of bulk and non-bulk exports and imports, along with projections of average distance and fuel intensity, were substituted into equations V.2 to V.4 to obtain a projection for the total fuel task. Third, by rearranging equation V.1 and substituting in projections of the total fuel task, a projection of the total fuel uplifted in Australia by international ships was estimated.

For some variables, projected values could not be obtained through modelling, and assumptions had to made regarding their likely future behaviour. The following is a list of these variables and the relevant assumptions.

EXP. EXP is the sum of the tonnages of six major bulk exports. The EXP projection was calculated from projections of the six major bulk exports. The bulk exports projections are continuations of the projections outlined in the BTCE Report 88 (1995a: pp. 107-108), originating from ABARE trend projections.

| In detail:                                                                     |                                                        |
|--------------------------------------------------------------------------------|--------------------------------------------------------|
| Iron ore:                                                                      | 2000–2020, an increase of 2.2 milion tonnes per year   |
| Coal:                                                                          | 2000–2020, an increase of 5.56 million tonnes per year |
| Alumina:                                                                       | 2000–2020, an increase of 154 000 tonnes per year      |
| Oil/petroleum (includes<br>crude oil, LPG, petroleum<br>products and liquefied | 2000-2020 a decrease of 2160 toppes per year           |
| Coorea anoin (in du doo                                                        |                                                        |
| oats, wheat and barley):                                                       | 2000–2020, an increase of 372 630 tonnes per year      |
| Sugar:                                                                         | 2000–2020, an increase of 122 400 tonnes per year      |

SGNE. As in the BTCE Report 88 (1995a: p. 108), seasonally adjusted gross national expenditure was assumed to grow by 3.05 per cent per year from 2000–2020.

*IMP*. IMP is the sum of the two major bulk imports: fuel and chemicals. The projections for the two bulk imports were continued from the BTCE (1995a: p. 108) upward trend projections for fuel imports to grow by \$196 million per year and chemical imports to grow by \$378 million per year.

G7GDP. G7GDP was assumed to grow by 2.5 per cent per year for the years 2000–2020 (BTCE 1995a: p. 108).

*RTWI.* The real trade-weighted index was assumed to decrease by 0.8 per cent per year from 2000–2003, and decrease by 0.4 per cent per year for 2004–2008. From 2008 onwards it is assumed to remain unchanged (BTCE 1995a: p. 108).

Average distance. The average distance in and out of Australia also changes over time as markets change and, thus, a projection of average distances was also required. Average distance projections were formulated by considering the different growth rate trends to each of the main Australian trade regions, and their relevant distances. Weighted sums (by the relevant freight tonnages, as in equations V.9 and V.10) of these trends then allowed the calculation of scale factors (for future average distances relative to current ones). These factors were applied to the actual values for the average distances to obtain projected average distance estimates. The rates at which the tonnages to and from Australia are expected to grow are listed in table V.2, together with the average distances to each region.

| TABLE V.2 | PROJECTED IMPORT AND EXPORT GROWTH |
|-----------|------------------------------------|
|           | RATES BY REGION, 2000–2020         |

(per cent per year)

|               | Distance        | Bulk              | Bulk             | Non-Bulk        | Non-Bulk |
|---------------|-----------------|-------------------|------------------|-----------------|----------|
| Region        | (km)            | Exports           | Imports          | Exports         | Imports  |
| Africa        | 11000           | 0.62              | 4.29             | 3.87            | 3.87     |
| Asia          | 7180            | 1.08              | 2.62             | 2.90            | 3.66     |
| Europe        | 20440           | 0.27              | -6.3 I           | 0.89            | 2.39     |
| India         | 12900           | 0.78              | 0.72             | 2.78            | 3.83     |
| North America | 17950           | 0.31              | -9.16            | 1.07            | -3.82    |
| Pacific       | 3750            | 1.38              | 1.60             | 1.79            | 2.65     |
| South America | 11430           | 1.55              | -8.37            | 3.05            | 0.36     |
| Unknown or    |                 |                   |                  |                 |          |
| not specified | 12093           | 0.19              | 4.06             | 2.51            | 4.19     |
| Note: Some gr | owth rates proc | luced unrealistic | results for 2020 | ) export/import | evels to |

certain regions. In these cases the growth rates were adjusted, or left at a constant level.

Source: BTRE estimates.

The growth rates suggest a trend towards our growing import/export trade relation with Asia, and a slowing towards the more traditional markets of Europe and the United States. This is reflected in the results as a shrinking average distance, suggesting greater tonnages being traded with closer regions.

#### Fuel consumption and emission projections

To convert fuel consumption to greenhouse gas emissions, the total fuel consumption has to be divided into the different types of fuel. Three types of fuel are used in international shipping: industrial diesel fuel (IDF), automotive diesel oil (ADO) and fuel oil (FO). The proportions of each fuel type have remained relatively constant over recent times. The projections for the amount of fuel uplifted in Australia by international ships is therefore divided into the three fuel types based on shares of 6.2 per cent IDF, 13.5 per cent ADO and 80.3 per cent FO (BTCE 1995: p. 110). The fuel consumption figures were converted to greenhouse gas emissions by multiplying by the conversion factors in Table V.3.

223

| TABLE V.3        | V.3 EMISSION FACTORS FOR INTERNATIONAL<br>SHIPPING |        |       |       |  |  |
|------------------|----------------------------------------------------|--------|-------|-------|--|--|
|                  |                                                    | (g/MJ) |       |       |  |  |
|                  |                                                    |        | Fuel  |       |  |  |
| Gas              |                                                    | ADO    | IDF   | FO    |  |  |
| CH <sub>4</sub>  |                                                    | 0.005  | 0.005 | 0.003 |  |  |
| N <sub>2</sub> O |                                                    | 0.002  | 0.002 | 0.002 |  |  |
| NO <sub>x</sub>  |                                                    | 1.52   | 1.52  | 2.00  |  |  |
| со               |                                                    | 0.475  | 0.475 | 0.044 |  |  |
| NMVOCs           |                                                    | 0.105  | 0.150 | 0.063 |  |  |
| co <sub>2</sub>  |                                                    | 69.7   | 70.2  | 73.3  |  |  |
| Source: BTCE (I  | 995: pp.180-181).                                  |        |       |       |  |  |

With the proportions of ADO, IDF and FO given above, greenhouse gas emissions are projected to increase slightly between 2000 and 2020. The increase in carbon dioxide emissions over the period 1992–2020 is illustrated below in figure V.1. Projections of fuel use and greenhouse gas emissions are included in tables V.6 and V.7.



#### **COASTAL SHIPPING**

#### **Modelling fuel consumption**

The proportion of Australian transport fuel consumed by coastal shipping is relatively small in comparison to other modes (in particular road transport). Consequently, few attempts have been made to develop models of fuel consumption for coastal shipping. The Bureau (see BTCE 1995a) has developed a model to provide long-term projections of greenhouse emissions from coastal shipping. This model is applied in the current analysis.

The amount of fuel consumed in coastal shipping is calculated in BTCE (1995a: p. 112) model by:

$$FU = coastal task x average distance x fuel intensity$$
 (V.12)

where FU is the quantity of fuel uplifted as coastal bunkers in MJ, coastal task is tonnes of coastal freight shipped and the fuel intensity (in MJ/tkm) refers to the Australian coastal fleet. By obtaining projections for the coastal task, average distance and fuel intensity, it is possible to estimate future fuel consumption.

For this analysis, the coastal task is taken to consist solely of the freight task. The passenger task has been found in the past to account for a very small percentage of the coastal shipping fuel use (BTCE 1995a: p. 113) and is therefore not taken into account here.

The freight task was divided into two components: bulk and non-bulk. Each component was modelled separately.

Bulk freight was modelled with the sum of seven major bulk commodities (bauxite/alumina, petroleum products, petroleum oil, sugar, iron ore, coal/coke and fertilisers/minerals) as the explanatory variable—outlined in equation V.13 (having a regression fit of R2 = 0.945).

$$\ln \text{CBLK} = -0.1689 + 1.0149 \times \ln \text{CCOM}$$
(1.0579) (0.607) (V.13)

Note: numbers in the parentheses are standard errors.

Here CBLK is the tonnage of coastal bulk freight and CCOM is the sum of the tonnages of seven major bulk commodities. The positive coefficient on CCOM indicates that, as the tonnages of the seven major bulk exports increase, so does the total bulk tonnage.

Non-bulk freight is a relatively small proportion of the total freight carried by coastal ships. In 1993, it comprised 8.3 per cent of total coastal freight. This figure remained relatively stable during the period 1983–1993. Since 1983, non- bulk freight has been growing on average by 14 280 tonnes year (BTCE 1995a: p. 112). Given that non-bulk freight is only a small section of the market, is growing slowly and there is a lack of suitable data for modelling purposes, a model for non-bulk freight was not constructed. Projections for non-bulk

freight were obtained by assuming the task will continue to grow by 14 280 tonnes per year.

In contrast to international shipping, it is unlikely that ships performing the coastal task would refuel in another country. Therefore it can be assumed that the total fuel uplifted in Australia by coastal ships is equal to the amount of fuel consumed.

BTCE (1995: pp. 113-114) calculated the fuel intensity from aggregate fuel consumption data and found the 'Calculated Fleet Average' to be an accurate representation of the fuel intensity of Australia's coastal fleet and also to be roughly the same as Apelbaum's (1993) fleet average. Therefore, the fuel intensities of the coastal fleet for this analysis have been taken as Apelbaum's (2001) 'Fleet Average' for the years of 1994–95 to 1997–98. A 1.7 per cent decrease in fuel intensity was assumed thereafter.

#### Assumptions

To project the level of bulk coastal freight activity, a series of projections for the tonnages of the seven major bulk exports are required. With the exception of the tonnage of fertilisers/minerals, the projections for tonnages shipped were calculated from equation V.14.

Tonnage shipped = proportion shipped x tonnage produced (V.14)

where tonnage shipped is the tonnage of each commodity carried on coastal ships, tonnage produced is the tonnage of each commodity produced, and proportion shipped is the proportion of total production, which is carried on coastal ships. The proportion shipped is calculated from historical data on tonnages shipped and tonnages produced. Because there have been distinct trends in the proportions of commodities transported by coastal ships between 1983 and 1993, it is reasonable to assume that these trends will continue. The projections of the proportion shipped are given in table V.4.

#### TABLE V.4 ASSUMED CHANGE IN PROPORTION OF PRODUCTION SHIPPED BY COASTAL SHIPPING

| Commodity                     | Assumption                         |
|-------------------------------|------------------------------------|
| Bauxite/alumina               | Increase by 1.29 per cent per year |
| Petroleum products            | Decrease by 1.31 per cent per year |
| Petroleum oil                 | Decrease by 5.75 per cent per year |
| Sugar                         | Decrease by 3.13 per cent per year |
| Iron ore                      | Decrease by 3.39 per cent per year |
| Coal/coke                     | Decrease by 4 per cent per year    |
| Source: BTCF (1995a: p. 115). |                                    |

The projections for the production of the individual commodities are listed below, and are continuations from BTCE (1995a: pp. 115–116) projections.

| Bauxite/alumina    | 2000–2020: increase of 2.4 per cent per year |
|--------------------|----------------------------------------------|
| Petroleum products | 2000–2020: increase of 1.5 per cent per year |
| Petroleum oil      | 2000–2020: increase of 0.7 per cent per year |
| Sugar              | 2000–2020: increase of 3.4 per cent per year |
| Iron ore           | 2000–2020: increase of 1.8 per cent per year |
| Coal/coke          | 2000–2020: increase of 3.6 per cent per year |

The projections for the tonnages of each commodity produced and the proportion of production that is transported by ship were substituted into equation V.14 to calculate the projections of the tonnages of each commodity transported by ship.

The category of fertilisers/minerals covers a wide variety of materials. As data are not available for the production of many different types of fertilisers and minerals, a projection for the amount shipped was made based on the tonnages shipped between 1983 and 1993 (DTC 1993c). As a result, the amount of fertilisers/minerals shipped was assumed to increase at the rate of 3.6 per cent per year.

The projections for the tonnages of each of the seven commodities were summed and substituted into equation V.13 to project the tonnage of bulk freight transported by coastal ships from 2000 to 2020.

Coastal shipping task is expressed in both tonne-kilometres and tonnes. Tonne-kilometres have been calculated by multiplying port-to-port tonnages by port-to-port distances. The average distance used for projections by BTCE (1995a: p. 117) was 2168 kilometres, which was assumed to remain constant. For this analysis we also assume a constant average distance of 2168 kilometres.

#### FUEL CONSUMPTION AND EMISSIONS

By substituting the projections for the freight task, fuel intensity and average distance into equation V.12, a projection for the amount of fuel consumed in coastal shipping is calculated. The results are given in table V.8.

Coastal shipping uses five main types of fuel: automotive diesel oil (ADO), industrial diesel fuel (IDF), fuel oil (FO), black coal (BC) and natural gas (NG). The proportions used are assumed to remain at constant levels (BTCE 1995a: p. 117) and the proportions used are based on Apelbaum's (2001) 1994–95 shares.

Assuming that the proportions of fuel do not change over time, fuel consumption by coastal shipping is converted in greenhouse gas emissions by using the conversion factors listed in table V.5.

| TABLE V.5        |          | EMISSION FAC | CTORS FOR C | OASTAL SH | IIPPING |
|------------------|----------|--------------|-------------|-----------|---------|
|                  |          |              | (g/MJ)      |           |         |
|                  |          |              | Fuel        |           |         |
| Gas              | ADO      | IDF          | FO          | ВС        | NG      |
| CH <sub>4</sub>  | 0.005    | 0.005        | 0.003       | 0.002     | 0.243   |
| N <sub>2</sub> O | 0.002    | 0.002        | 0.002       | 0.001     | 0.001   |
| NO <sub>x</sub>  | 1.52     | 1.52         | 2.00        | 0.31      | 0.243   |
| со               | 0.475    | 0.475        | 0.044       | 0.088     | 0.095   |
| NMVOCs           | 0.105    | 0.150        | 0.063       | 0.0       | 0.029   |
| co <sub>2</sub>  | 69.7     | 70.2         | 73.3        | 90.0      | 51.3    |
| Source: B        | TCE (199 | 5a).         |             |           |         |

Greenhouse gas emissions are expected to decrease slightly over the projection period. Carbon dioxide levels are illustrated below in figure V.2. Projections for all greenhouse gases from coastal shipping are given in table V.9.



BTRE Report 107

## TABLE V.6 FUEL UPLIFTED IN AUSTRALIA FORINTERNATIONAL SHIPPING

#### (PJ end-use)

| Year    | ADO             | IDF  | FO    | Total |
|---------|-----------------|------|-------|-------|
| 1992    | 3.75            | 1.72 | 22.33 | 27.81 |
| 1993    | 3.72            | 1.71 | 22.14 | 27.57 |
| 1994    | 3.86            | 1.77 | 22.94 | 28.57 |
| 1995    | 4.59            | 2.11 | 27.31 | 34.01 |
| 1996    | 4.52            | 2.07 | 26.86 | 33.45 |
| 1997    | 4.83            | 2.22 | 28.73 | 35.78 |
| 1998    | 4.15            | 1.91 | 24.68 | 30.74 |
| 1999    | 4.16            | 1.91 | 24.76 | 30.83 |
| 2000    | 4.29            | 1.97 | 25.52 | 31.78 |
| 2001    | 4.36            | 2.00 | 25.94 | 32.30 |
| 2002    | 4.38            | 2.01 | 26.03 | 32.42 |
| 2003    | 4.39            | 2.02 | 26.12 | 32.53 |
| 2004    | 4.41            | 2.02 | 26.20 | 32.63 |
| 2005    | 4.42            | 2.03 | 26.28 | 32.72 |
| 2006    | 4.43            | 2.03 | 26.34 | 32.81 |
| 2007    | 4.44            | 2.04 | 26.40 | 32.88 |
| 2008    | 4.45            | 2.04 | 26.46 | 32.95 |
| 2009    | 4.46            | 2.05 | 26.50 | 33.01 |
| 2010    | 4.46            | 2.05 | 26.55 | 33.06 |
| 2011    | 4.47            | 2.05 | 26.58 | 33.10 |
| 2012    | 4.47            | 2.05 | 26.61 | 33.14 |
| 2013    | 4.48            | 2.06 | 26.64 | 33.18 |
| 2014    | 4.48            | 2.06 | 26.66 | 33.20 |
| 2015    | 4.49            | 2.06 | 26.68 | 33.23 |
| 2016    | 4.49            | 2.06 | 26.70 | 33.25 |
| 2017    | 4.49            | 2.06 | 26.71 | 33.26 |
| 2018    | 4.49            | 2.06 | 26.72 | 33.27 |
| 2019    | 4.49            | 2.06 | 26.72 | 33.28 |
| 2020    | 4.49            | 2.06 | 26.72 | 33.28 |
| Source: | BTRE estimates. |      |       |       |

Appendix 5

| TABLE V.7 INTERNATIONAL SHIPPING EMISSION |                 |       |        |      |        |                 |
|-------------------------------------------|-----------------|-------|--------|------|--------|-----------------|
|                                           | TROJE           | .enor | 15     |      |        |                 |
|                                           |                 |       | (Gg)   |      |        |                 |
| Year                                      | CH4             | N20   | NOX    | со   | NMVOCs | co <sub>2</sub> |
| 1992                                      | 0.09            | 0.06  | 52.98  | 3.58 | 2.06   | 2019.30         |
| 1993                                      | 0.09            | 0.06  | 52.54  | 3.55 | 2.04   | 2002.43         |
| 1994                                      | 0.10            | 0.06  | 54.44  | 3.68 | 2.12   | 2074.94         |
| 1995                                      | 0.12            | 0.07  | 64.81  | 4.38 | 2.52   | 2470.16         |
| 1996                                      | 0.11            | 0.07  | 63.75  | 4.31 | 2.48   | 2429.56         |
| 1997                                      | 0.12            | 0.07  | 68.18  | 4.61 | 2.65   | 2598.50         |
| 1998                                      | 0.10            | 0.06  | 58.57  | 3.96 | 2.28   | 2232.26         |
| 1999                                      | 0.10            | 0.06  | 58.75  | 3.97 | 2.28   | 2239.03         |
| 2000                                      | 0.11            | 0.06  | 60.55  | 4.10 | 2.35   | 2307.81         |
| 2001                                      | 0.11            | 0.06  | 61.55  | 4.16 | 2.39   | 2345.72         |
| 2002                                      | 0.11            | 0.06  | 61.78  | 4.18 | 2.40   | 2354.47         |
| 2003                                      | 0.11            | 0.07  | 61.99  | 4.19 | 2.41   | 2362.49         |
| 2004                                      | 0.11            | 0.07  | 62.18  | 4.21 | 2.42   | 2369.77         |
| 2005                                      | 0.11            | 0.07  | 62.35  | 4.22 | 2.42   | 2376.40         |
| 2006                                      | 0.11            | 0.07  | 62.5 I | 4.23 | 2.43   | 2382.41         |
| 2007                                      | 0.11            | 0.07  | 62.65  | 4.24 | 2.44   | 2387.84         |
| 2008                                      | 0.11            | 0.07  | 62.78  | 4.25 | 2.44   | 2392.71         |
| 2009                                      | 0.11            | 0.07  | 62.89  | 4.25 | 2.44   | 2396.98         |
| 2010                                      | 0.11            | 0.07  | 62.99  | 4.26 | 2.45   | 2400.75         |
| 2011                                      | 0.11            | 0.07  | 63.08  | 4.27 | 2.45   | 2404.05         |
| 2012                                      | 0.11            | 0.07  | 63.15  | 4.27 | 2.45   | 2406.90         |
| 2013                                      | 0.11            | 0.07  | 63.22  | 4.28 | 2.46   | 2409.33         |
| 2014                                      | 0.11            | 0.07  | 63.27  | 4.28 | 2.46   | 2411.37         |
| 2015                                      | 0.11            | 0.07  | 63.31  | 4.28 | 2.46   | 2413.03         |
| 2016                                      | 0.11            | 0.07  | 63.35  | 4.29 | 2.46   | 2414.36         |
| 2017                                      | 0.11            | 0.07  | 63.37  | 4.29 | 2.46   | 2415.36         |
| 2018                                      | 0.11            | 0.07  | 63.39  | 4.29 | 2.46   | 2416.07         |
| 2019                                      | 0.11            | 0.07  | 63.40  | 4.29 | 2.46   | 2416.51         |
| 2020                                      | 0.11            | 0.07  | 63.41  | 4.29 | 2.46   | 2416.71         |
| Source:                                   | BTRE estimates. |       |        |      |        |                 |

#### TABLE V.8 FUEL CONSUMPTION IN COASTAL SHIPPING

|         |             |       | (PJ end-use) |      |      |          |
|---------|-------------|-------|--------------|------|------|----------|
|         |             |       |              |      |      | Fuel     |
| Year    | ADO         | IDF   | FO           | Coal | NG   | consumed |
| 1994    | 5.29        | 0.45  | 12.58        | 3.57 | 0.04 | 21.93    |
| 1995    | 5.93        | 0.51  | 14.11        | 4.00 | 0.05 | 24.60    |
| 1996    | 5.62        | 0.48  | 13.38        | 3.79 | 0.05 | 23.33    |
| 1997    | 5.76        | 0.49  | 13.69        | 3.88 | 0.05 | 23.88    |
| 1998    | 5.13        | 0.44  | 12.20        | 3.46 | 0.04 | 21.27    |
| 1999    | 4.69        | 0.40  | 11.15        | 3.16 | 0.04 | 19.45    |
| 2000    | 4.78        | 0.41  | 11.38        | 3.23 | 0.04 | 19.83    |
| 2001    | 4.58        | 0.39  | 10.90        | 3.09 | 0.04 | 19.01    |
| 2002    | 4.54        | 0.39  | 10.80        | 3.06 | 0.04 | 18.84    |
| 2003    | 4.50        | 0.39  | 10.71        | 3.04 | 0.04 | 18.68    |
| 2004    | 4.47        | 0.38  | 10.63        | 3.01 | 0.04 | 18.53    |
| 2005    | 4.44        | 0.38  | 10.56        | 2.99 | 0.04 | 18.41    |
| 2006    | 4.41        | 0.38  | 10.49        | 2.97 | 0.04 | 18.29    |
| 2007    | 4.38        | 0.38  | 10.43        | 2.96 | 0.04 | 18.19    |
| 2008    | 4.36        | 0.38  | 10.38        | 2.94 | 0.04 | 18.10    |
| 2009    | 4.34        | 0.37  | 10.34        | 2.93 | 0.04 | 18.02    |
| 2010    | 4.33        | 0.37  | 10.30        | 2.92 | 0.04 | 17.96    |
| 2011    | 4.32        | 0.37  | 10.27        | 2.91 | 0.04 | 17.91    |
| 2012    | 4.31        | 0.37  | 10.25        | 2.91 | 0.04 | 17.87    |
| 2013    | 4.30        | 0.37  | 10.23        | 2.90 | 0.04 | 17.84    |
| 2014    | 4.30        | 0.37  | 10.22        | 2.90 | 0.04 | 17.82    |
| 2015    | 4.29        | 0.37  | 10.22        | 2.90 | 0.04 | 17.81    |
| 2016    | 4.29        | 0.37  | 10.22        | 2.90 | 0.04 | 17.81    |
| 2017    | 4.30        | 0.37  | 10.22        | 2.90 | 0.04 | 17.82    |
| 2018    | 4.30        | 0.37  | 10.24        | 2.90 | 0.04 | 17.85    |
| 2019    | 4.31        | 0.37  | 10.25        | 2.91 | 0.04 | 17.88    |
| 2020    | 4.32        | 0.37  | 10.28        | 2.91 | 0.04 | 17.92    |
| Source: | BTRE estima | ites. |              |      |      |          |

Appendix 5

| TABLE V.9 COASTAL SHIPPING EMISSION PROJECTIONS |             |                  |       |      |        |                 |  |
|-------------------------------------------------|-------------|------------------|-------|------|--------|-----------------|--|
|                                                 |             |                  | (Gg)  |      |        |                 |  |
| Year                                            | CH4         | N <sub>2</sub> 0 | NOX   | со   | NMVOCs | с0 <sub>2</sub> |  |
| 1994                                            | 0.08        | 0.05             | 35.00 | 3.60 | 1.42   | 1645.65         |  |
| 1995                                            | 0.09        | 0.06             | 39.26 | 4.04 | 1.59   | 1845.95         |  |
| 1996                                            | 0.09        | 0.06             | 37.24 | 3.83 | 1.51   | 1750.95         |  |
| 1997                                            | 0.09        | 0.06             | 38.11 | 3.92 | 1.54   | 1791.61         |  |
| 1998                                            | 0.08        | 0.05             | 33.95 | 3.49 | 1.37   | 1596.07         |  |
| 1999                                            | 0.07        | 0.05             | 31.04 | 3.19 | 1.26   | 1459.22         |  |
| 2000                                            | 0.08        | 0.05             | 31.65 | 3.25 | 1.28   | 1488.33         |  |
| 2001                                            | 0.07        | 0.05             | 30.34 | 3.12 | 1.23   | 1426.44         |  |
| 2002                                            | 0.07        | 0.05             | 30.06 | 3.09 | 1.22   | 1413.39         |  |
| 2003                                            | 0.07        | 0.04             | 29.81 | 3.06 | 1.21   | 1401.52         |  |
| 2004                                            | 0.07        | 0.04             | 29.58 | 3.04 | 1.20   | 1390.77         |  |
| 2005                                            | 0.07        | 0.04             | 29.37 | 3.02 | 1.19   | 1381.10         |  |
| 2006                                            | 0.07        | 0.04             | 29.19 | 3.00 | 1.18   | 1372.47         |  |
| 2007                                            | 0.07        | 0.04             | 29.03 | 2.98 | 1.18   | 1364.85         |  |
| 2008                                            | 0.07        | 0.04             | 28.89 | 2.97 | 1.17   | 1358.20         |  |
| 2009                                            | 0.07        | 0.04             | 28.77 | 2.96 | 1.16   | 1352.49         |  |
| 2010                                            | 0.07        | 0.04             | 28.66 | 2.95 | 1.16   | 1347.69         |  |
| 2011                                            | 0.07        | 0.04             | 28.58 | 2.94 | 1.16   | 1343.78         |  |
| 2012                                            | 0.07        | 0.04             | 28.52 | 2.93 | 1.15   | 1340.72         |  |
| 2013                                            | 0.07        | 0.04             | 28.47 | 2.93 | 1.15   | 1338.49         |  |
| 2014                                            | 0.07        | 0.04             | 28.44 | 2.92 | 1.15   | 1337.07         |  |
| 2015                                            | 0.07        | 0.04             | 28.42 | 2.92 | 1.15   | 1336.45         |  |
| 2016                                            | 0.07        | 0.04             | 28.43 | 2.92 | 1.15   | 1336.60         |  |
| 2017                                            | 0.07        | 0.04             | 28.45 | 2.92 | 1.15   | 1337.50         |  |
| 2018                                            | 0.07        | 0.04             | 28.48 | 2.93 | 1.15   | 1339.14         |  |
| 2019                                            | 0.07        | 0.04             | 28.53 | 2.93 | 1.16   | 1341.50         |  |
| 2020                                            | 0.07        | 0.04             | 28.60 | 2.94 | 1.16   | 1344.58         |  |
| Source:                                         | BTRE estima | ites.            |       |      |        |                 |  |

#### BTRE Report 107

|      |         |              |              | Non-    | Bulk    | Non-     | Bulk      |
|------|---------|--------------|--------------|---------|---------|----------|-----------|
|      | EXP     |              |              | Bulk In | In      | Bulk Out | Out       |
|      | ('000   | IMP          | SGNE         | ('000   | ('000   | ('000    | ('000     |
| Year | tonnes) | (\$ million) | (\$ million) | tonnes) | tonnes) | tonnes)  | tonnes)   |
| 1992 | 267716  | 8307         | 445184       | 6365    | 28030   | 9459     | 307250    |
| 1993 | 276798  | 10482        | 461320       | 6183    | 32542   | 9695     | 317235    |
| 1994 | 290891  | 10487        | 476451       | 6011    | 35818   | 8757     | 333637    |
| 1995 | 294886  | 11677        | 507131       | 9545    | 36377   | 11424    | 350976    |
| 1996 | 285195  | 13213        | 523836       | 9325    | 37731   | 13071    | 359835    |
| 1997 | 329326  | 14192        | 542302       | 10232   | 39599   | 15890    | 388107    |
| 1998 | 350614  | 14715        | 574925       | 87      | 41106   | 18179    | 409681    |
| 1999 | 347300  | 16057        | 609932       | 12510   | 43777   | 20278    | 411821    |
| 2000 | 372393  | 20153        | 637704       | 13936   | 42628   | 20732    | 441496    |
| 2001 | 380800  | 20727        | 658748       | 14169   | 51619   | 22338    | 449885    |
| 2002 | 389206  | 21301        | 680487       | 14893   | 52779   | 23177    | 460173    |
| 2003 | 397613  | 21875        | 702943       | 15653   | 53940   | 24047    | 470462    |
| 2004 | 406020  | 22449        | 726140       | 16461   | 55100   | 24932    | 48075 I   |
| 2005 | 414427  | 23023        | 750103       | 17309   | 56261   | 25849    | 491040    |
| 2006 | 422834  | 23597        | 774856       | 18202   | 57422   | 26799    | 501328    |
| 2007 | 431241  | 24171        | 800426       | 19140   | 58582   | 27785    | 511617    |
| 2008 | 439648  | 24745        | 826840       | 20127   | 59743   | 28807    | 521906    |
| 2009 | 448055  | 25319        | 854126       | 21175   | 60903   | 29845    | 532195    |
| 2010 | 456461  | 25893        | 882312       | 22277   | 62064   | 30919    | 542483    |
| 2011 | 464868  | 26467        | 911429       | 23437   | 63224   | 32033    | 552772    |
| 2012 | 473275  | 27041        | 941506       | 24656   | 64385   | 33187    | 56306 I   |
| 2013 | 481682  | 27615        | 972575       | 25940   | 65545   | 34382    | 573349    |
| 2014 | 490089  | 28189        | 1004670      | 27290   | 66706   | 35620    | 583638    |
| 2015 | 498496  | 28763        | 1037825      | 28710   | 67866   | 36903    | 593927    |
| 2016 | 506903  | 29337        | 1072073      | 30205   | 69027   | 38232    | 604216    |
| 2017 | 515310  | 29911        | 1107451      | 31777   | 70187   | 39609    | 614504    |
| 2018 | 523716  | 30485        | 1143997      | 33431   | 71348   | 41035    | 624793    |
| 2019 | 532123  | 31059        | 1181749      | 35171   | 72509   | 42513    | 635082    |
| 2020 | 540530  | 31633        | 1220747      | 37001   | 73669   | 44044    | 645371    |
|      |         |              |              |         |         |          | Continued |

### TABLE V.10 SHIPPING TASK PROJECTIONS

Appendix 5

| TABL | E V.10   | SHIPPIN     | G TASK   | PROJEC   | TIONS ( | Continued) |         |
|------|----------|-------------|----------|----------|---------|------------|---------|
|      | Average  | e Average   |          | FI Dry   | CBLK    | CNBLK      | ссом    |
|      | Dist. Iı | n Dist. Out | FI Liner | Bulk     | ('000   | ('000      | ('000   |
| Year | (km      | ) (km)      | (MJ/tkm) | (MJ/tkm) | tonnes) | tonnes)    | tonnes) |
| 1992 | 10900    | 0 10128     | 0.16     | 0.10     | n.a.    | n.a.       | n.a.    |
| 1993 | 10815    | 5 9794      | 0.16     | 0.10     | n.a.    | n.a.       | n.a.    |
| 1994 | 10617    | 7 9897      | 0.16     | 0.10     | 39587   | 2828       | 37189   |
| 1995 | 10813    | 9925        | 0.17     | 0.11     | 45040   | 4150       | 39397   |
| 1996 | 10533    | 9654        | 0.17     | 0.11     | 43458   | 4339       | 39421   |
| 1997 | 10409    | 9 9733      | 0.17     | 0.10     | 44725   | 4417       | 41119   |
| 1998 | 1039     | I 9714      | 0.14     | 0.08     | 47638   | 4883       | 43692   |
| 1999 | 9702     | 2 9842      | 0.13     | 0.08     | 43322   | 5065       | 38164   |
| 2000 | 9932     | 2 9679      | 0.13     | 0.08     | 44637   | 5692       | 40786   |
| 2001 | 9820     | 9665        | 0.13     | 0.08     | 45085   | 5706       | 41100   |
| 2002 | 9717     | 7 9650      | 0.13     | 0.08     | 45477   | 5720       | 41452   |
| 2003 | 962      | 9636        | 0.12     | 0.08     | 45910   | 5734       | 41841   |
| 2004 | 9532     | 2 9622      | 0.12     | 0.08     | 46386   | 5749       | 42269   |
| 2005 | 9449     | 9 9607      | 0.12     | 0.07     | 46905   | 5763       | 42734   |
| 2006 | 9373     | 3 9593      | 0.12     | 0.07     | 47466   | 5777       | 43239   |
| 2007 | 9302     | 2 9579      | 0.11     | 0.07     | 48072   | 5791       | 43782   |
| 2008 | 9237     | 7 9565      | 0.11     | 0.07     | 48723   | 5806       | 44366   |
| 2009 | 9177     | 7 9551      | 0.11     | 0.07     | 49418   | 5820       | 44990   |
| 2010 | 912      | I 9537      | 0.11     | 0.07     | 50160   | 5834       | 45655   |
| 2011 | 9070     | 9523        | 0.11     | 0.07     | 50948   | 5849       | 46362   |
| 2012 | 9022     | 2 9509      | 0.10     | 0.07     | 51785   | 5863       | 47112   |
| 2013 | 8978     | 3 9495      | 0.10     | 0.06     | 52670   | 5877       | 47905   |
| 2014 | 8938     | 9482        | 0.10     | 0.06     | 53605   | 5891       | 48743   |
| 2015 | 8900     | 9468        | 0.10     | 0.06     | 54592   | 5906       | 49627   |
| 2016 | 8865     | 5 9454      | 0.10     | 0.06     | 55630   | 5920       | 50557   |
| 2017 | 8833     | 3 9441      | 0.10     | 0.06     | 56723   | 5934       | 51535   |
| 2018 | 8803     | 9427        | 0.09     | 0.06     | 57870   | 5949       | 52562   |
| 2019 | 8775     | 5 9414      | 0.09     | 0.06     | 59075   | 5963       | 53640   |
| 2020 | 8749     | 9 9401      | 0.09     | 0.06     | 60337   | 5977       | 54769   |

n.a. not available Sources: BTCE(1995a), Apelbaum (2001, pers comm), ABS–AUSTATS (2001), BTRE estimates.
# a p e n d i x

## AGGREGATE PROJECTION DATA AND PARAMETER ASSUMPTIONS

### TABLE VI.1STATE AND TERRITORY POPULATION<br/>PROJECTIONS

|          |          |           |           | (thousand | d persons) |          |           |           |       |
|----------|----------|-----------|-----------|-----------|------------|----------|-----------|-----------|-------|
| Year     | NSW      | Vic       | Qld       | SA        | WA         | Tas      | NT        | ACT       | Total |
| 1990     | 5832.I   | 4378.I    | 2904.8    | 1431.2    | 1615.0     | 462.I    | 163.9     | 282.8     | 17070 |
| 1991     | 5896.4   | 4414.5    | 2966.9    | 1444.1    | 1636.7     | 466.0    | 166.0     | 289.4     | 17280 |
| 1992     | 5955.2   | 4444.7    | 3038.6    | 1452.2    | 1658.1     | 468.6    | 167.9     | 294.8     | 17480 |
| 1993     | 6004.7   | 4463.6    | 3122.8    | 1458.7    | 1679.2     | 470.9    | 171.3     | 298.8     | 17670 |
| 1994     | 6056.4   | 4477.9    | 3194.1    | 1461.4    | 1705.1     | 471.5    | 173.2     | 301.2     | 17841 |
| 1995     | 6120.4   | 4507.3    | 3270.2    | 1463.6    | 1734.6     | 471.9    | 177.7     | 304.4     | 18050 |
| 1996     | 6241.7   | 4585.2    | 3365.I    | 1479.4    | 1779.1     | 475.9    | 184.0     | 309.5     | 18420 |
| 1997     | 6280.4   | 4611.5    | 3408.5    | 1479.3    | 1803.0     | 472.4    | 187.6     | 307.2     | 18550 |
| 1998     | 6358.I   | 4672.4    | 3469.8    | 1488.7    | 1839.9     | 472.0    | 190.8     | 308.3     | 18800 |
| 1999     | 6412.8   | 4713.0    | 3513.0    | 1493.4    | 1861.3     | 470.4    | 192.9     | 310.3     | 18967 |
| 2000     | 6474.0   | 4764.3    | 3560.9    | 1496.7    | 1887.2     | 468.3    | 195.5     | 312.0     | 19159 |
| 2001     | 6528.4   | 4810.0    | 3607.2    | 1500.5    | 1910.5     | 466.3    | 197.7     | 313.4     | 19334 |
| 2002     | 6579.9   | 4853.I    | 3654.4    | 1505.4    | 1932.3     | 464.5    | 199.7     | 314.6     | 19504 |
| 2003     | 6632.I   | 4895.0    | 3702. I   | 1510.9    | 1954.4     | 462.7    | 201.5     | 315.3     | 19674 |
| 2004     | 6684.8   | 4935.5    | 3749.8    | 1517.1    | 1976.7     | 460.5    | 203.0     | 315.6     | 19843 |
| 2005     | 6737.5   | 4976.0    | 3797.9    | 1523.0    | 1999.1     | 458.2    | 204.5     | 315.9     | 20012 |
| 2006     | 6788.2   | 5014.9    | 3845.0    | 1528.3    | 2020.9     | 455.8    | 206.0     | 315.9     | 20175 |
| 2007     | 6838.5   | 5053.7    | 3892.3    | 1533.4    | 2042.7     | 453.3    | 207.4     | 315.9     | 20337 |
| 2008     | 6888.3   | 5092.I    | 3939.5    | 1538.3    | 2064.4     | 450.7    | 208.9     | 315.9     | 20498 |
| 2009     | 6938.0   | 5130.7    | 3986.9    | 1543.2    | 2086. I    | 448.0    | 210.4     | 315.8     | 20659 |
| 2010     | 6988.0   | 5169.4    | 4034.5    | 1548.1    | 2108.1     | 445.3    | 211.9     | 315.7     | 20821 |
| 2011     | 7030.7   | 5202.6    | 4078. I   | 1551.4    | 2127.9     | 442.2    | 213.1     | 315.1     | 20961 |
| 2012     | 7073.6   | 5235.9    | 4122.0    | 1554.7    | 2147.8     | 438.9    | 214.4     | 314.6     | 21102 |
| 2013     | 7116.2   | 5268.9    | 4165.9    | 1558.0    | 2167.8     | 435.5    | 215.7     | 314.0     | 21242 |
| 2014     | 7159.0   | 5302.0    | 4210.1    | 1561.3    | 2187.9     | 432.2    | 217.1     | 313.4     | 21383 |
| 2015     | 7201.5   | 5335.0    | 4254.2    | 1564.5    | 2207.9     | 428.8    | 218.4     | 312.8     | 21523 |
| 2016     | 7241.6   | 5365.9    | 4297.0    | 1567.3    | 2227.2     | 425.2    | 219.7     | 312.1     | 21656 |
| 2017     | 7281.6   | 5396.9    | 4339.9    | 1570.1    | 2246.6     | 421.6    | 221.1     | 311.4     | 21789 |
| 2018     | 7321.8   | 5427.8    | 4383.I    | 1572.7    | 2265.9     | 417.7    | 222.3     | 310.6     | 21922 |
| 2019     | 7361.5   | 5458.4    | 4426.0    | 1575.4    | 2285.3     | 414.0    | 223.7     | 309.7     | 22054 |
| 2020     | 7401.3   | 5489. I   | 4469. I   | 1578.0    | 2304.5     | 410.0    | 225.I     | 308.9     | 22186 |
| Sources: | BTRE est | imates ba | sed on AG | GO-suppli | ed data as | sumption | s and ABS | (2001b) I | ong-  |

235

term projections (Series III).

| TABLE VI.2 |          | CAP       | ITAL C    | ITY PO    | OPULA      | TION      | PROJE   | CTION   | 15    |
|------------|----------|-----------|-----------|-----------|------------|-----------|---------|---------|-------|
|            |          |           |           | (thousand | persons)   |           |         |         |       |
| Year       | Syd      | Mel       | Bne       | Adl       | Per        | Hob       | Dar     | Cbr     | Total |
| 1990       | 3632.1   | 3127.2    | 1330.6    | 1046.9    | 1173.7     | 188.8     | 75.2    | 282.8   | 10857 |
| 1991       | 3672.2   | 3153.3    | 1359.0    | 1056.3    | 1189.5     | 190.4     | 76.2    | 289.4   | 10986 |
| 1992       | 3711.9   | 3179.8    | 1389.5    | 1062.6    | 1207.4     | 191.8     | 76.6    | 294.8   | 11115 |
| 1993       | 3746.0   | 3198.6    | 1425.6    | 1067.7    | 1225.2     | 193.2     | 77.8    | 298.8   | 11233 |
| 1994       | 3781.5   | 3214.1    | 1455.9    | 1069.9    | 1246.4     | 193.8     | 78.2    | 301.2   | 34    |
| 1995       | 3824.7   | 3240.7    | 1488.6    | 1071.8    | 1270.2     | 194.3     | 79.9    | 304.4   | 11475 |
| 1996       | 3903.8   | 3302.5    | 1530.4    | 1083.7    | 1305.3     | 196.3     | 82.5    | 309.5   | 11714 |
| 1997       | 3940.I   | 3327.2    | 1550.3    | 1083.1    | 1323.6     | 195.2     | 84.5    | 307.2   | 8     |
| 1998       | 3996.5   | 3379.5    | 1580.7    | 1090.7    | 1347.9     | 195.0     | 86.6    | 308.3   | 11985 |
| 1999       | 4042.I   | 3417.8    | 1601.7    | 1093.1    | 1364.4     | 194.2     | 88.I    | 310.3   | 12112 |
| 2000       | 4094.I   | 3463.5    | 1624.7    | 1097.6    | 1385.2     | 193.3     | 89.6    | 312.0   | 12260 |
| 2001       | 4140.1   | 3504.3    | 1646.6    | 1102.5    | 1403.4     | 192.4     | 90.9    | 313.4   | 12393 |
| 2002       | 4182.4   | 3542.I    | 1668.6    | 1108.3    | 1419.9     | 191.5     | 91.8    | 314.6   | 12519 |
| 2003       | 4225.9   | 3579.0    | 1690.9    | 1114.7    | 1436.5     | 190.6     | 92.7    | 315.3   | 12646 |
| 2004       | 4270.4   | 3614.8    | 1713.1    | 1121.7    | 1453.4     | 189.7     | 93.4    | 315.6   | 12772 |
| 2005       | 4315.0   | 3650.6    | 1735.6    | 1128.6    | 1470.3     | 188.8     | 94.0    | 315.9   | 12899 |
| 2006       | 4358.5   | 3685.4    | 1757.6    | 1135.0    | 1486.9     | 187.8     | 94.7    | 315.9   | 13022 |
| 2007       | 4401.8   | 3720.I    | 1779.7    | 1141.3    | 1503.3     | 186.8     | 95.4    | 315.9   | 13144 |
| 2008       | 4445.0   | 3754.7    | 1801.8    | 1147.4    | 1519.7     | 185.7     | 96.0    | 315.9   | 13266 |
| 2009       | 4488.4   | 3789.4    | 1823.9    | 1153.7    | 1536.1     | 184.7     | 96.7    | 315.8   | 13389 |
| 2010       | 4532.I   | 3824.3    | 1846.2    | 1159.9    | 1552.7     | 183.6     | 97.3    | 315.7   | 13512 |
| 2011       | 4571.3   | 3855.I    | 1866.7    | 1165.1    | 1567.7     | 182.3     | 98.0    | 315.1   | 13621 |
| 2012       | 4610.6   | 3886.0    | 1887.3    | 1170.2    | 1582.9     | 180.9     | 98.5    | 314.6   | 373   |
| 2013       | 4650.0   | 3916.8    | 1908.0    | 1175.3    | 1597.9     | 179.7     | 99.1    | 314.0   | 13841 |
| 2014       | 4689.7   | 3947.8    | 1928.8    | 1180.5    | 1613.1     | 178.4     | 99.7    | 313.4   | 395   |
| 2015       | 4729.3   | 3978.6    | 1949.7    | 1185.8    | 1628.2     | 177.0     | 100.3   | 312.8   | 14062 |
| 2016       | 4767.6   | 4008.I    | 1969.9    | 1190.6    | 1642.9     | 175.6     | 100.9   | 312.1   | 14168 |
| 2017       | 4805.9   | 4037.5    | 1990.2    | 1195.4    | 1657.6     | 174.1     | 101.5   | 311.4   | 14274 |
| 2018       | 4844.5   | 4067.I    | 2010.7    | 1200.3    | 1672.3     | 172.6     | 102.1   | 310.6   | 14380 |
| 2019       | 4883.0   | 4096.4    | 2031.1    | 1205.1    | 1686.9     | 171.1     | 102.7   | 309.7   | 14486 |
| 2020       | 4921.6   | 4125.9    | 2051.6    | 1209.9    | 1701.5     | 169.7     | 103.3   | 308.9   | 14592 |
| Sources:   | BTRE est | imates ba | sed on AC | GO-suppli | ed data as | sumptions | and ABS | (2001b) |       |

long-term projections (Series III).

Appendix 6

| (þer cei                        | nt change þer annum)       |
|---------------------------------|----------------------------|
| Financial year                  | Australian real GDP growth |
| 2001                            | 3.75                       |
| 2002                            | 3.50                       |
| 2003                            | 3.50                       |
| 2004                            | 3.50                       |
| 2005                            | 3.16                       |
| 2006                            | 3.21                       |
| 2007                            | 3.14                       |
| 2008                            | 3.10                       |
| 2009                            | 3.05                       |
| 2010                            | 3.01                       |
| 2011                            | 3.04                       |
| 2012                            | 3.01                       |
| 2013                            | 2.97                       |
| 2014                            | 2.93                       |
| 2015                            | 2.88                       |
| 2016                            | 2.81                       |
| 2017                            | 2.72                       |
| 2018                            | 2.61                       |
| 2019                            | 2.48                       |
| 2020                            | 2.35                       |
| Source: AGO (2001, pers. comm.) |                            |

 TABLE VI.3
 BASE CASE GDP GROWTH ASSUMPTIONS

| TABLE VI.4 | ENERGY CONSUMPTION (END-USE) BY |
|------------|---------------------------------|
|            | DOMESTIC CIVIL TRANSPORT        |

#### (Petajoules)

| Rail       | Rail (non- | Other Motor |        |      |      |      |
|------------|------------|-------------|--------|------|------|------|
| (electric) | electric)  | Vehicles    | Trucks | LCVs | Cars | Year |
| 2.8        | 22.3       | 9.5         | 75     | 40   | 268  | 1971 |
| 2.7        | 23.4       | 9.8         | 78     | 42   | 279  | 1972 |
| 2.7        | 24.7       | 10.2        | 81     | 45   | 289  | 1973 |
| 2.6        | 26.0       | 10.6        | 85     | 50   | 309  | 1974 |
| 2.6        | 27.4       | 11.0        | 89     | 55   | 327  | 1975 |
| 2.5        | 26.0       | 11.5        | 94     | 60   | 340  | 1976 |
| 2.6        | 27.4       | 11.8        | 100    | 67   | 356  | 1977 |
| 2.6        | 27.7       | 12.0        | 104    | 73   | 369  | 1978 |
| 2.7        | 28.3       | 12.3        | 114    | 79   | 381  | 1979 |
| 2.7        | 28.1       | 12.9        | 123    | 77   | 383  | 1980 |
| 2.8        | 28.1       | 13.6        | 128    | 77   | 387  | 1981 |
| 2.8        | 27.6       | 14.5        | 140    | 81   | 405  | 1982 |
| 3.0        | 25.1       | 15.7        | 131    | 79   | 403  | 1983 |
| 3.3        | 27.1       | 17.0        | 136    | 85   | 418  | 1984 |
| 3.5        | 28.6       | 18.3        | 147    | 93   | 432  | 1985 |
| 3.8        | 27.4       | 18.9        | 146    | 93   | 444  | 1986 |
| 3.9        | 28.4       | 19.7        | 149    | 95   | 453  | 1987 |
| 4.5        | 27.8       | 20.4        | 157    | 102  | 472  | 1988 |
| 5.2        | 25.4       | 21.5        | 158    | 104  | 496  | 1989 |
| 5.5        | 24.7       | 21.6        | 155    | 103  | 510  | 1990 |
| 5.5        | 24.5       | 21.4        | 139    | 107  | 511  | 1991 |
| 5.7        | 23.8       | 21.4        | 136    | 109  | 518  | 1992 |
| 5.6        | 23.3       | 21.4        | 144    | 111  | 529  | 1993 |
| 5.7        | 25.1       | 21.6        | 147    | 110  | 536  | 1994 |
| 5.9        | 24.2       | 21.7        | 152    | 115  | 555  | 1995 |
| 5.8        | 23.7       | 21.9        | 157    | 119  | 567  | 1996 |
| 6. I       | 25.6       | 22.0        | 159    | 120  | 571  | 1997 |
| 6.0        | 24.7       | 22.2        | 168    | 126  | 578  | 1998 |
| 6.2        | 24.4       | 22.3        | 170    | 128  | 590  | 1999 |
| 6.4        | 25.3       | 22.2        | 171    | 130  | 600  | 2000 |

*lote:* 'Other motor vehicles' includes buses, motorcycles and off-road recreational vehicles.

Appendix 6

| TABLE VI.4 | ENERGY CONSUMPTIC<br>DOMESTIC CIVIL TRAN | ON (END-USE) E<br>ISPORT (Continu | BY<br>ied) |
|------------|------------------------------------------|-----------------------------------|------------|
|            | (Petajoules)                             |                                   |            |
| Year       | Maritime                                 | Air                               | Total      |
| 1971       | 50                                       | 26                                | 493.5      |
| 1972       | 50                                       | 27                                | 512.4      |
| 1973       | 50                                       | 29                                | 531.5      |
| 1974       | 51                                       | 30                                | 564.4      |
| 1975       | 45                                       | 33                                | 590.7      |
| 1976       | 41                                       | 33                                | 609.2      |
| 1977       | 48                                       | 34                                | 647.2      |
| 1978       | 57                                       | 37                                | 681.8      |
| 1979       | 49                                       | 36                                | 702.2      |
| 1980       | 54                                       | 38                                | 717.9      |
| 1981       | 53                                       | 37                                | 726.6      |
| 1982       | 44                                       | 40                                | 754.6      |
| 1983       | 43                                       | 39                                | 739.7      |
| 1984       | 43                                       | 39                                | 768.1      |
| 1985       | 40                                       | 39                                | 801.3      |
| 1986       | 40                                       | 42                                | 815.2      |
| 1987       | 41                                       | 44                                | 834.2      |
| 1988       | 40                                       | 47                                | 870.I      |
| 1989       | 37                                       | 46                                | 893.9      |
| 1990       | 33                                       | 37                                | 890.I      |
| 1991       | 31                                       | 46                                | 886.4      |
| 1992       | 29                                       | 50                                | 892.2      |
| 1993       | 28                                       | 52                                | 914.9      |
| 1994       | 28                                       | 54                                | 927.8      |
| 1995       | 31                                       | 62                                | 966.8      |
| 1996       | 30                                       | 68                                | 992.6      |
| 1997       | 30                                       | 71                                | 1004.3     |
| 1998       | 28                                       | 71                                | 1024.0     |
| 1999       | 26                                       | 70                                | 1037.2     |
| 2000       | 26                                       | 73                                | 1053.7     |

Notes: 'Air' is total domestic aviation (i.e. including general aviation). 'Maritime' includes small pleasure craft and ferries. Sources: BTRE estimates, Apelbaum Consulting Group (2001), ABARE (1999), ABS (2001a).

#### TABLE VI.5 BASE CASE PROJECTIONS OF ENERGY CONSUMPTION (END-USE) BY DOMESTIC **CIVIL TRANSPORT**

|       |                          |                    | (Petajoule    | es)              |                   |                  |
|-------|--------------------------|--------------------|---------------|------------------|-------------------|------------------|
|       |                          |                    |               | Other            | Rail              | Rail             |
| Year  | Cars                     | LCVs               | Trucks        | motor vehicles   | (non-electric)    | (electric)       |
| 2001  | 610.9                    | 134.3              | 175.5         | 21.8             | 26.1              | 6.4              |
| 2002  | 635.4                    | 138.1              | 178.5         | 22.6             | 26.6              | 6.4              |
| 2003  | 648.I                    | 142.6              | 182.6         | 22.8             | 27.1              | 6.5              |
| 2004  | 657.8                    | 147.2              | 186.7         | 23.0             | 27.7              | 6.6              |
| 2005  | 667.6                    | 150.6              | 189.3         | 23.2             | 28.2              | 6.7              |
| 2006  | 674.5                    | 154.1              | 193.1         | 23.4             | 28.7              | 6.8              |
| 2007  | 682.3                    | 158.4              | 196.7         | 23.6             | 29.3              | 6.9              |
| 2008  | 689.4                    | 162.8              | 200.5         | 23.8             | 29.9              | 6.9              |
| 2009  | 695.7                    | 167.3              | 204.3         | 23.9             | 30.4              | 7.0              |
| 2010  | 701.2                    | 171.7              | 208.2         | 24.1             | 31.0              | 7.1              |
| 2011  | 707.2                    | 176.6              | 212.2         | 24.3             | 31.6              | 7.2              |
| 2012  | 712.5                    | 181.3              | 216.4         | 24.5             | 32.2              | 7.3              |
| 2013  | 717.2                    | 185.9              | 220.7         | 24.6             | 32.9              | 7.4              |
| 2014  | 721.4                    | 190.6              | 225.0         | 24.8             | 33.5              | 7.5              |
| 2015  | 724.9                    | 195.3              | 229.1         | 24.9             | 34.2              | 7.6              |
| 2016  | 728.0                    | 199.8              | 233.4         | 25.1             | 34.8              | 7.7              |
| 2017  | 730.9                    | 204.1              | 237.5         | 25.3             | 35.5              | 7.8              |
| 2018  | 733.3                    | 208.2              | 241.7         | 25.4             | 36.2              | 7.9              |
| 2019  | 735.2                    | 211.9              | 245.3         | 25.6             | 36.9              | 8.0              |
| 2020  | 736.5                    | 214.8              | 248.6         | 25.7             | 37.6              | 8.1              |
| Note: | 'Other moto<br>vehicles. | or vehicles' inclu | des buses, mo | otorcycles and o | ff-road recreatio | Continued<br>nal |

Appendix 6

# TABLE VI.5 BASE CASE PROJECTIONS OF ENERGY CONSUMPTION (END-USE) BY DOMESTIC CIVIL TRANSPORT (Continued)

(Petajoules)

| Year   | Maritime                                             | Air              | Total  |
|--------|------------------------------------------------------|------------------|--------|
| 2001   | 25.6                                                 | 77.1             | 1077.6 |
| 2002   | 25.5                                                 | 80.9             | 1114.0 |
| 2003   | 25.4                                                 | 84.5             | 1139.6 |
| 2004   | 25.3                                                 | 88.3             | 1162.6 |
| 2005   | 25.2                                                 | 92.2             | 1183.0 |
| 2006   | 25.2                                                 | 96.1             | 1201.8 |
| 2007   | 25.1                                                 | 100.3            | 1222.5 |
| 2008   | 25.1                                                 | 104.6            | 1242.9 |
| 2009   | 25.1                                                 | 109.1            | 1262.9 |
| 2010   | 25.0                                                 | 113.8            | 1282.2 |
| 2011   | 25.0                                                 | 118.7            | 1303.0 |
| 2012   | 25.1                                                 | 123.9            | 1323.3 |
| 2013   | 25.1                                                 | 129.3            | 343.   |
| 2014   | 25.1                                                 | 135.0            | 1362.9 |
| 2015   | 25.1                                                 | 140.9            | 382.   |
| 2016   | 25.2                                                 | 147.1            | 1401.1 |
| 2017   | 25.2                                                 | 153.5            | 1419.9 |
| 2018   | 25.3                                                 | 160.1            | 1438.2 |
| 2019   | 25.4                                                 | 167.0            | 1455.2 |
| 2020   | 25.5                                                 | 174.1            | 1470.9 |
| Notes: | 'Air' is total domestic aviation (i.e. including ger | neral aviation). |        |

'Maritime' includes small pleasure craft and ferries.

Source: BTRE estimates.



#### REFERENCES

ABARE (1999), Australian Energy: Market developments and projections to 2014–15, Research Report 99.4, ABARE, Canberra.

ABARE (2001), Australian Commodities, vol. 8, no. 1, March, ABARE, Canberra.

ABS (1986), Rail Transport Australia, 1983–84, Cat. no. 9213.0, ABS, Canberra, <www.abs.gov.au>.

ABS (1993), Motor Vehicle Registrations, Australia, Cat. no. 9304.0, ABS, Canberra.

ABS (2000a), Survey of Motor Vehicle Use, Australia, 12 months ended 31 July 1998, Cat. no. 9208.0, ABS, Canberra.

ABS (2000b), *Motor Vehicle Census, Australia*, Cat. no. 9309.0, ABS, Canberra.

ABS (2000c), Survey of Motor Vehicle Use, Australia, 12 months ended 31 July 1999, Cat. no. 9208.0, ABS, Canberra.

ABS (2001a), Survey of Motor Vehicle Use, Australia, 12 months ended 31 October 2000, Cat. no. 9208.0, ABS, Canberra.

ABS (2001b), Australian Demographic Statistics, Cat. no. 3101.0, ABS, Canberra.

ABS (2001c), Overseas Arrivals and Departures, Cat. no. 3401.0, ABS, Canberra.

ABS (2001d), Australian National Accounts: National Income, Expenditure and Product, Cat. no. 5206.0, ABS, Canberra.

ABS (2001e), Producer Price Indexes for Selected Service Industries, Australia, Cat. no. 6423.0, ABS, Canberra.

AGO (2002), Australia's Third National Communication on Climate Change — A report under the United Nations Framework on Climate Change – 2002, AGO, Canberra

AGO (2001a), National Greenhouse Gas Inventory 1999, AGO, Canberra.

AGO (2001b), 'Diesel and alternative fuels grant scheme', <www.greenhouse.gov.au/transport/dafgs.html>.

AGO (2000), Guidelines – Alternative Fuels Conversion Program, AGO, Canberra, <http://www.greenhouse.gov.au/transport/afcp/guidelines.pdf>.

AIP (1997), Oil and Australia, Statistical Review 1995, supplement to Petroleum Gazette, April 1997, AIP, Canberra.

AIP (2001), 'Pricing', <www.aip.com.au/pricing/orima.htm>.

Alamdari, F. E. and Brewer D. (1994) 'Taxation policy for aircraft emissions', Transport Policy, vol. 1, no. 3, Elsevier, pp. 149–159.

Anderson, J. (1999), Diesel and Alternative Fuels Grants Scheme Bill 1999: Second Reading Speech, House of Representatives, Hansard, 22 June 1999.

Andrew, F. (2001), 'Prime Mover Gas Re-engineering Case Study', Presentation to Asia Pacific Natural Gas Vehicle Summit, April 2001, Brisbane.

ANGVC (2001), 'Engine types', <www.angvc.org/enginetypes.htm>, viewed 20 October 2001.

Apelbaum Consulting Group (1993), The Australian Transport Task and the Primary Energy Consumed—1990/91 Compendium, Vol. B (study commissioned by DPIE, BTCE, AAA, AIP Ltd., ESAA Ltd.), DPIE, Canberra.

Apelbaum Consulting Group (1997), The Australian Transport Task, Energy Consumed and Greenhouse Gas Emissions—1994/95 Compendium, Vol. B (study commissioned by DPIE, BTCE, AAA, AIP Ltd., ESAA Ltd.), DPIE, Canberra.

Apelbaum Consulting Group (2001), Australian Transport Facts 1998, Report prepared for DISR, Apelbaum Consulting Group, Eastern Press Pty Ltd, Melbourne.

Armour, L. & Jordan, D. (1992), Greenhouse Gas Emissions and the Public Transport Corporation, report prepared for the Public Transport Corporation, Melbourne.

AVSTATS (2001), Aviations Statistics, Department of Transport and Regional Services, Canberra, <www.dotrs.gov.au/aviation/avstats>.

Beer, T., Grant, T., Brown, R., Edwards, J., Nelson, P., Watson, H. & Williams. D. (2000), Life-cycle Emissions Analysis of Alternative Fuels for Heavy Vehicles, report to AGO, CSIRO Atmospheric Research Report C/0411/1.1/F2, CSIRO, Melbourne,

<www.greenhouse.gov.au/transport/pdfs/lifecycle.pdf>.

Beer, T., Grant, T., Morgan, G., Lapszewicz, J., Anyon, P., Edwards, J., Nelson, P., Watson, H. & Williams, D. (2001), *Comparison of Transport Fuels: Final Report*, report to AGO on the Stage 2 Study of Life-cycle Emissions Analysis of Alternative Fuels for Heavy Vehicles, CSIRO Atmospheric Research Report EV45A/F3C, CSIRO, Melbourne, <www.dar.csiro.au>.

Booz-Allen & Hamilton (2001), *Interstate Rail Network Audit*, Appendices, report to Australian Rail Track Corporation Ltd, April 2001.

BP (2001), 'Victorian terminal gate pricing', <www.bp.com.au/TGP/>.

Bray, D. & Tisato, P. (1998) 'Broadening the debate on road pricing', *Road & Transport Research*, Vol. 7, No. 4, December 1998, ARRB, Melbourne.

Brown, S., Kadayifci, M., Bryett, C. & Pengilley, M. (1999), *Diesel emissions reduction project*, Report: MV-A-38, NSW Environment Protection Authority, Lidcombe.

BTCE (1991), Short-term Forecasting of Transport and Communications Activity, Working Paper 2, BTCE, Canberra.

BTCE (1992), Fuel Efficiency of Ships and Aircraft, Working Paper 4, BTCE, Canberra.

BTCE (1994), Alternative Fuels in Australian Transport, Information Paper 39, AGPS, Canberra.

BTCE (1995a), Greenhouse Gas Emissions from Australian Transport: Long-term projections, Report 88, AGPS, Canberra.

BTCE (1995b), Costs of Reducing Greenhouse Gas Emissions from Australian Road Freight Vehicles: An application of the BTCE TRUCKMOD model, Working Paper 22, BTCE, Canberra.

BTCE (1995c), Costs of Reducing Greenhouse Gas Emissions from Australian Cars: An application of the CARMOD model, Working Paper 24, BTCE, Canberra.

BTCE (1995d), Adequacy of Transport Infrastructure: Rail, Working Paper 14.2, BTCE, Canberra.

BTCE (1996a), Traffic Congestion and Road User Charges in Australian Capital Cities, Report 92, AGPS, Canberra.

BTCE (1996b), Transport and Greenhouse: Costs and options for reducing emissions, Report 94, AGPS, Canberra.

BTCE (1997), Roads 2020, Working Paper 35, BTCE, Canberra.

BTE (1998), Forecasting Light Vehicle Traffic, Working Paper 38, BTE, Canberra.

BTE (1999a), Analysis of the Impact of the Proposed Taxation Changes on Transport Fuel Use and the Alternative Fuel Market, report for Environment Australia, April 1999, BTE, Canberra.

246

BTE (1999b), Urban Transport – Looking Ahead, Information Sheet 14, BTE, Canberra.

BTE (1999c), *Trends in Trucks and Traffic*, Information Sheet 15, BTE, Canberra.

BTE (1999d), *Competitive Neutrality between Road and Rail*, Working Paper 40, BTE, Canberra.

BTRE (2002a), Transport Indicators Database, <www.dotars.gov.au/btre/indic\_home.htm>.

BTRE (2002b), Transport Elasticities Database Online, <dynamic.dotars.gov.au/btre/tedb/index.cfm>.

BTRE (2002c), Coastal Shipping Database, BTRE, Canberra.

BTR (1992), Australian Tourism Forecasts— International Visitor Arrivals 1999–2001, BTR, Canberra.

BTS (1999), National Transportation Statistics 1998, BTS01-01, BTS, Washington, DC, <www.bts.gov/programs/btsprod/nts/>.

Bush, S., Leonard, M., Bowen, B., Jones, B., Donaldson, K., & Ho Trieu, L. (1993), Energy Demand and Supply Projection Australia 1992–93 to 2004–05, ABARE Research Report 93.2, ABARE, Canberra.

Cope, M.E. & Katzfey, J.J. (1998), Air quality impact of the Perth bus fleet, (revised), report prepared for the Western Australia Department of Environment Protection and Western Australia Department of Transport, Division of Atmospheric Research, SB/1/376, Aspendale, Victoria.

> Cosgrove, D. & Mitchell, D. (2001), 'Standardised Time-series for the Australian Road Transport Task', *Proceedings of the 24th Australasian Transport Research Forum*, Hobart 17 April 2001, Tasmanian Department of Infrastructure, Energy and Resources, <www.transport.tas.gov.au/atrf/papers/mitchell\_cosgrove.pdf>.

> Cosgrove, D.C. & Gargett, D. (1992), 'The Australian Domestic Transport Task', *Papers of the Australasian Transport Research Forum*, vol. 17, part 1, pp. 231–249, BTCE, Canberra.

Costello, P. (1998), 'Tax Reform: Not a New Tax, a New Tax System', The Howard Government's plan for a new tax system, circulated by the Honourable Peter Costello MP, Treasurer of the Commonwealth of Australia, August 1998, Commonwealth of Australia, <www.treasury.gov.au/publications/TaxationPublications/TaxReform/history .html>.

Cox, J.B. (2000), Diesel Fleet Characteristics: Emissions project update, Project 1.1, report to National Road Transport Commission, Melbourne.

| DOTARS, Canberra.                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DISR (2001a), Australian Petroleum Statistics, DISR, Canberra.                                                                                                                  |
| DISR (2001b), Key Automotive Statistics 2001, DISR, Canberra,<br><www.disr.gov.au 2001="" auto="" industry="" kas="" kas2001.html="">.</www.disr.gov.au>                        |
| DOE (2001), 'Alternative Fuels Transit Bus Evaluation Program Extended', <www.trucks.doe.gov buses-2.html="" fuel="" research="">, viewed 20 October 2001.</www.trucks.doe.gov> |
| DTLR (2002), <www.local-transport.dft.gov.uk pjourney="" travelplans="">.</www.local-transport.dft.gov.uk>                                                                      |
|                                                                                                                                                                                 |

Environmental Standards', presentation on alternative fuel technologies to

Daimler-Chrysler (2001), 'New Propulsion Systems for Highest

Drewry (1993), Drewry's Bulk Ships, Drewry Shipping Consultants, UK.

Duggal, V.K. (2001), 'Heavy Duty Natural Gas Engine Emissions', presentation to ANGVC 2001 Conference, 10 April 2001, Brisbane, <www.angvc.org/>.

ERG (1998), Euro2 & Beyond: Fuel for Transperth's bus fleet, report on the findings of the Expert Reference Group, Perth, </br><www.transport.wa.gov.au/euro2>.

Fitzpatrick, M.D. & Taplin, J.H.E. (1972), 'A Model to Estimate the Price Elasticity of Demand for Transport of Goods by Road', *Proceedings of the Sixth Conference of ARRB*, vol. 6, part 2, pp. 252–265.

Gaines, L., Stodolsky, F., Cuenca, R. & Eberhardt, J. (1998), 'Life-cycle Analysis For Heavy Vehicles', paper prepared for Air and Waste Management Association Annual Meeting.

Higgins, T. (1995), 'Congestion Management Systems: Evaluation Issues and Methods', *Transportation Quarterly*, vol. 49, no. 4, pp. 23–42.

Hill, R. (2001), '\$37 Mllion for Greenhouse Gas Abatement Projects', Press Release by Senator Robert Hill, Minister for Environment and Heritage. 11 October 2001, Canberra.

IC (1997), The Automotive Industry, Volume 1, The Report, Report no. 58, IC, Melbourne, <www.pc.gov.au/ic/inquiry/58automot/finalreport/index.html>.

IEA (1993), Cars and Climate Change, Energy and the Environment, OECD/IEA, Paris.

IEA/AFIS (1999), Automotive Fuels For The Future: The search for alternatives, IEA, Paris.

IPCC (1990), Climate Change: The IPCC Scienctific Assessment, Cambridge University Press, Cambridge.

IPCC (1996), Climate Change 1995: The Science of Climate Change, contribution of Working Group I to the Second Assessment Report of the IPCC, Cambridge University Press, Cambridge.

IPCC (1997), Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, IPCC/OECD/IEA, Paris.

Ker, I. & James, B. (1999), Evaluating Behaviour Change in Transport: Benefit cost analysis of individualised marketing for the city of South Perth, WA Department of Transport, Perth.

Khoury, J. (1999), 'Why CNG for forklifts?', paper presented at Natural Gas Vehicles Conference, Sydney Convention & Exhibition Centre, 12–14 April 1999, Sydney, Australia, <www.angvc.org/>.

Litman, T. (2001a), 'TDM Marketing', <www.vtpi.org/tdm/tdm23.htm>.

Litman, T. (2001b), <www.vtpi.org/>.

Luk, J. & Thoresen, T. (1996), 'Review of Transport Cost Analysis', ARRB Transport Research, Melbourne.

Mobil (2001), 'Terminal gate prices', <www.mobil.com.au/index.html>.

Motta, R., Norton, P., Kelly, K., Chandler, K., Schumacher, L. and Clark, N. (1996), Alternative Fuel Transit Buses: Final results from the National Renewable Energy Laboratory Vehicle Evaluation Program, report produced for the United States DOE, NREL, Golden, Colorado.

NELA (2000), Modelling the Impact of Transport Measures on Greenhouse, report prepared for AuGO, Nelson English, Loxton & Andrews, Pty Ltd, Lorne, Vic.

NEPC (2000), Proposed Diesel Vehicle Emissions National Environment Protection Measure Preparatory Work: In-service emissions performance phase 2: vehicle testing, report prepared for the NEPC by Parsons Australia Pty Ltd, November 2000, Adelaide.

NGGIC (1994), Workbook for Fuel Combustion Activities (excluding transport), Department of Environment, Sport and Territories, Canberra.

NGGIC (1996a), Energy: Workbook for transport (mobile sources): Australian methodology for the estimation of greenhouse gas emissions and sinks, Workbook 3.1, NGGIC, Canberra.

NGGIC (1996b), National Greenhouse Gas Inventory 1996, NGGIC, Canberra.

NGGIC (1998a), Workbook for Transport (Mobile Sources), Workbook 3.1 (reprinted revision 1 with supplements), AGO, Canberra.

NGGIC (1998b), Workbook for Fuel Combustion Activities (Stationary Sources), 1998 Supplement, Supplement to NGGIC Workbook 1.1, AGO, Canberra, <www.greenhouse.gov.au/inventory/inventory/pdfs/methodstat98.pdf>.

Norton, P. & Kelly, K. (1996), Running Refuse Haulers On Compressed Natural Gas, alternative fuel trucks case studies, Center for Transportation Technologies and Systems, Golden, Colorado.

NREL (2001), 'Heavy Vehicles Emissions Testing', United States DOE, NREL, Golden, Colorado,

<www.ctts.nrel.gov/heavy\_vehicle/emissions.html>.

Pickrell, D. (1995), Description of the VMT Forecasting Procedure for "Car Talk" Baseline Forecasts, US Department of Transportation Volpe Centre, Massachusetts.

RTSA (2001), *National Newsletter*, no. 12, July 2001, The Railway Technical Society of Australasia, <www.rtsa.com.au/newsletters/Jul01nltr.pdf>.

Shell (2001), 'Petrol Pricing', <www.shell.com.au>.

TransEco (2001), *TransEco Road Freight Cost Indices*, TransEco Pty Ltd, Melbourne.

USGS (2000), Are We Running Out of Oil?, compiled by L.B. Magoon, USGS, <geopubs.wr.usgs.gov/open-file/of00-320/>.

USEPA (2001a), Inventory of US Greenhouse Gas Emissions and Sinks: 1990–1999, Report EPA 236-R-01-001, USEPA, Washington, DC.

USEPA (2001b), 'Annex D—Methodology for Estimating Emissions of CH<sub>4</sub>, N<sub>2</sub>O, and Criteria Pollutants from Mobile Combustion', <http://yosemite.epa.gov/OAR/globalwarming.nsf/uniquekeylookup/shsu5bngl k/\$file/annex-d.pdf>.

Whiting, A. (2001a), 'Pressure Pushes The Gas Option', *Truck and Bus*, vol. 65, no. 1, January 2001, pp. 24–27.

Whiting, A. (2001b), 'Gas Injected', *Truck and Bus*, vol. 65, no. 9, September 2001, pp. 42–45.

Zingarelli, J.A. (1997), The Development of LNG as a Heavy-Duty Vehicle Fuel: Main report, ERDC 288/2, Energy Research and Development Corporation, Canberra.

abbreviations

#### **ABBREVIATIONS**

| AAA             | Australian Automobile Association                                  |     |
|-----------------|--------------------------------------------------------------------|-----|
| ABARE           | Australian Bureau of Agricultural and Resource Economics           |     |
| ABS             | Australian Bureau of Statistics                                    |     |
| Adl             | Adelaide                                                           |     |
| ADR             | Australian Design Rule                                             |     |
| ADO             | Automotive diesel oil                                              |     |
| AFCP            | Alternative fuels conversion program                               |     |
| AFIS            | Automotive Fuels Information Service                               | 251 |
| AGO             | Australian Greenhouse Office                                       |     |
| AGPS            | Australian Government Publishing Service                           |     |
| AIP             | Australian Institute of Petroleum                                  |     |
| ANGVC           | Australasian Natural Gas Vehicles Council                          |     |
| ARRB            | Australian Road Research Board                                     |     |
| Artic           | Articulated Truck                                                  |     |
| Avgas           | Aviation gasoline                                                  |     |
| Avtur           | Aviation turbine fuel                                              |     |
| BAU             | Business-as-usual                                                  |     |
| Bne             | Brisbane                                                           |     |
| BTCE            | Bureau of Transport and Communications Economics                   |     |
| BTE             | Bureau of Transport Economics                                      |     |
| BTR             | Bureau of Tourism Research                                         |     |
| BTRE            | Bureau of Transport and Regional Economics                         |     |
| BTS             | Bureau of Transport Statistics, US Department of<br>Transportation |     |
| CBD             | Central business district                                          |     |
| Cbr             | Canberra                                                           |     |
| CH <sub>4</sub> | Methane                                                            |     |
| CI              | Compression-ignition                                               |     |
|                 |                                                                    |     |

| CNG                | Compressed natural gas                                                                                             |
|--------------------|--------------------------------------------------------------------------------------------------------------------|
| CNGIP              | CNG infrastructure program                                                                                         |
| CO                 | Carbon monoxide                                                                                                    |
| co <sub>2</sub>    | Carbon dioxide                                                                                                     |
| CO <sub>2</sub> -e | CO <sub>2</sub> -equivalent emissions (includes effects of emissions of carbon dioxide, methane and nitrous oxide) |
| CSIRO              | Commonwealth Scientific and Industrial Research<br>Organisation                                                    |
| DAFGS              | Diesel and Alternative Fuels Grants Scheme                                                                         |
| Dar                | Darwin                                                                                                             |
| DISR               | Department of Industry, Science and Resources                                                                      |
| DOE                | United States Department of Energy                                                                                 |
| DPIE               | Department of Primary Industries and Energy                                                                        |
| DTLR               | Department of Transport and Local Government and the Regions                                                       |
| EPAV               | Environment Protection Authority of Victoria                                                                       |
| ERG                | Expert Reference Group                                                                                             |
| ESMVI              | Environmental Strategy for the Motor Vehicle Industry                                                              |
| FC                 | Fuel consumption                                                                                                   |
| FFC                | Full fuel cycle                                                                                                    |
| FORS               | Federal Office of Road Safety                                                                                      |
| GCM                | Gross combination mass                                                                                             |
| g/pkm              | grams per passenger–kilometre                                                                                      |
| g/tkm              | grams per tonne–kilometre                                                                                          |
| Gg                 | Gigagrams (10 <sup>9</sup> grams, equals 1000 tonnes)                                                              |
| GTEM               | Global trade (general) equilibrium model                                                                           |
| GVM                | Gross vehicle mass                                                                                                 |
| GWP                | Global Warming Potential                                                                                           |
| HC                 | Hydrocarbon                                                                                                        |
| Hob                | Hobart                                                                                                             |
| IC                 | Industry Commission                                                                                                |
| IDF                | Industrial diesel fuel                                                                                             |
| IEA                | International Energy Agency                                                                                        |
| IPCC               | Intergovernmental Panel on Climate Change                                                                          |
| ITS                | Intelligent Transport Systems                                                                                      |
| km                 | Kilometres                                                                                                         |
| kt                 | Kilotonnes                                                                                                         |
| L                  | Litres                                                                                                             |
| LCV                | Light commercial vehicle                                                                                           |
| LNG                | Liquiefied (or liquid) natural gas                                                                                 |
| LPG                | Liquiefied (or liquid) petroleum gas                                                                               |
| LSD                | Low sulphur diesel                                                                                                 |
| m                  | Metres                                                                                                             |

Abbreviations

| Mel             | Melbourne                                     |
|-----------------|-----------------------------------------------|
| MJ              | Megajoules (million joules)                   |
| MMRF–Green      | Monash Multi-Regional Forecasting–Green model |
| Mt              | Megatonnes (million tonnes)                   |
| N2O             | Nitrous oxide                                 |
| NAFC            | National Average Fuel Consumption             |
| NELA            | Nelson English, Loxton & Andrews Pty Ltd      |
| NEPC            | National Environment Protection Council       |
| NG              | Natural gas                                   |
| NGGIC           | National Greenhouse Gas Inventory Committee   |
| NGV             | Natural gas vehicle                           |
| NMHC            | Non-methane hydrocarbons                      |
| NMVOC           | Non-methane volatile organic compound         |
| NO <sub>x</sub> | Nitrogen oxides                               |
| NREL            | National Energy Renewable Laboratory          |
| OEM             | Original Equipment Manufacturers              |
| ORP             | Optimal road pricing                          |
| Per             | Perth                                         |
| pkm             | passenger-kilometres                          |
| PJ              | Petajoules (10 <sup>15</sup> joules)          |
| PM              | Particulate matter                            |
| PMV             | passenger motor vehicle                       |
| RTSA            | Railway Technical Society of Australasia      |
| SI              | Spark-ignition                                |
| skm             | seat-kilometres                               |
| SMVU            | Survey of Motor Vehicle Use                   |
| so <sub>2</sub> | Sulphur dioxide                               |
| Syd             | Sydney                                        |
| t               | Tonnes                                        |
| tkm             | tonne–kilometres                              |
| TDM             | Transport demand management                   |
| THC             | Total hydrocarbons                            |
| ULSD            | Ultra low sulphur diesel                      |
| UK              | United Kingdom                                |
| US              | United States of America                      |
| USEPA           | United States Environmental Protection Agency |
| USGS            | United States Geological Survey               |

Chapter

Chapter

Chapter