BTE Publication Summary

Quality of Service in Australian Passenger Aviation

Report

Several important aviation reform initiatives have been taken in the past five years. These include the economic deregulation of interstate services, the establishment of the Federal Airports Corporation and the Civil Aviation Authority as statutory authorities, multiple designation of Australiaís international air services, the start of negotiations with New Zealand on a single trans-Tasman aviation market, and the merger and privatisation of Qantas and Australian Airlines.

Subject

Series

Date

A to Z

Search

Results

Print

Exit

GO BACK

REPORT 80

Bureau of Transport and Communications Economics

QUALITY OF SERVICE IN AUSTRALIAN

Australian Government Publishing Service, Canberra

© Commonwealth of Australia 1992 ISSN 1034-4152 ISBN 0 644 27278 3

This work is copyright. Apart from any use as permitted under the *Copyright Act 1968*, no part may be reproduced by any process without written permission from the Australian Government Publishing Service. Requests and inquiries concerning reproduction and rights should be addressed to the Manager, AGPS Press, Australian Government Publishing Service, GPO Box 84, Canberra, ACT 2601.

FOREWORD

A key objective of the Government's transport reform agenda is to make service providers more responsive to consumer needs. It is therefore important in the evaluation of the reform programs that changes in the quality of transport services are measured and analysed. For this reason the Bureau has given increasing emphasis to service quality issues in the past two years.

The first results of the Bureau's work on quality of service in aviation were published in BTCE Report 73, *Deregulation of Domestic Aviation* — *The First Year*. This report updates and extends the work undertaken for the deregulation study.

The data used to construct the indicators of service quality were obtained from the Australian Customs Service, the Department of Transport and Communications, the Bureau of Air Safety Investigation and the Civil Aviation Authority. The assistance given by these organisations is gratefully acknowledged. Useful discussions were also held with staff of Australian Airlines and the Federal Airports Corporation, and valuable comments on a draft report were provided by Ansett Australia, Australian Airlines and Departmental staff.

The report was prepared by Norm Wuest under John Street's supervision. The foundations for the work were laid by Curt Grimm and editorial assistance was provided by Kym Starr. Anne Paal's assistance with data processing is also gratefully acknowledged.

Hugh Milloy Research Manager

Bureau of Transport and Communications Economics Canberra

November 1992

CONTENTS

		Page
FOREWORD		ili
ABSTRACT		xi
SUMMARY		xiii
CHAPTER 1	INTRODUCTION Aviation reforms The role of quality of service measurement Study objectives Outline of the report	1 1 2 3 3
CHAPTER 2	CHARACTERISTICS OF THE REGULAR PUBLIC TRANSPORT PASSENGER AVIATION INDUSTRY Regular public transport operators Federal Airports Corporation Civil Aviation Authority Bureau of Air Safety Investigation	5 5 6 7 8
CHAPTER 3	THE CONCEPT OF SERVICE QUALITY IN AVIATION MARKETS Definition of service quality Aspects of service quality applicable to aviation Selecting key aspects of service quality	9 9 10 10
CHAPTER 4	MEASURING SERVICE QUALITY WITH INDICATORS Criteria for construction of indicators Indicators of safety Indicators of passengers' accessibility to the RPT network Frequency of service indicators Indicators of non-stop service Indicators of on-time performance	15 15 16 18 19 22 23

		Page
	Indicators of airport services and facilities	27
	Indicators of on-board comfort and service	34
CHAPTER 5	CONCLUDING COMMENTS Assessment of quality of service in Australian	37
	passenger aviation	37
	International comparisons of quality of service	38
	Future development of quality of service indicators	38
APPENDIX I	FREQUENCY OF SERVICE PROVIDED BY	
	DOMESTIC AIRLINES	41
APPENDIX II	AIRCRAFT ARRIVAL AND DEPARTURE DELAYS	
	AT MAJOR AIRPORTS	53
REFERENCES		57
ABBREVIATIONS		

provide the state of the state

FIGURES

		Page
4.1	Flight frequency Index, top 50 routes	22
4.2	Percentage of flights arriving and departing within 15 minutes of the scheduled time — Sydney	24
4.3	Percentage of flights arriving and departing within 15 minutes of the scheduled time — Melbourne	25
4.4	Percentage of flights arriving and departing within 15 minutes of the scheduled time — Brisbane	25
4.5	Percentage of flights arriving and departing within 15 minutes of the scheduled time — Adelaide	26
4.6	Percentage of flights arriving and departing within 15 minutes of the scheduled time — Perth	26
4.7	Average air traffic congestion at Kingsford Smith Airport — by quarter for morning and evening peak periods	29
4.8	Percentage of passengers processed through customs in less than 30 minutes	32
4.9	Time required for the first and last bags to be delivered from international flights 1990-92	32
4.10	Domestic airline passenger load factors	35
ll.1	Regular public transport flight delays at Sydney airport	54
11.2	Regular public transport flight delays at Melbourne airport	54
11.3	Regular public transport flight delays at Brisbane airport	55

vii

		Page
11.4	Regular public transport flight delays at Adelaide airport	55
11.5	Regular public transport flight delays at Perth airport	56

TABLES

		Page
2.1	Commuter operators, by State, 1986 to 1991	6
2.2	Regular public transport fleet size, 1985 to 1991	6
3.1	Aspects of service quality applicable to aviation	11
3.2	Aspects of service quality in aviation: overseas studies	13
4.1	Accidents and injuries — domestic airlines in Australia, 1981 to 1991	17
4.2	Accidents and injuries — commuter airlines in Australia, 1981 to 1991	18
4.3	Comparison of regular public transport service frequencies on selected routes between September quarter 1990 and September quarter 1991	21
4.4	Percentage of passengers processed through the Customs entry control point in less than 30 minutes, by quarter, January 1990 to June 1992	31
4.5	Time required for the first and last bags to be delivered from international flights, 1990 to 1992	33
5.1	Assessment of changes in quality of service for RPT passengers in the post-reform period	37
I.1	Service frequency — selected routes served by domestic airlines by quarter, January 1990 to June 1992	43

ix

ABSTRACT

Several important aviation reform initiatives have been taken in the past five years. These include the economic deregulation of interstate services, the establishment of the Federal Airports Corporation and the Civil Aviation Authority as statutory authorities, multiple designation of Australia's international air services, the start of negotiations with New Zealand on a single trans-Tasman aviation market, and the merger and privatisation of Qantas and Australian Airlines.

In evaluating the impact of these reforms it was essential to measure changes in the quality of service provided to passengers. This study describes a methodology for determining which aspects of quality of service should be measured. Where data were available, indicators for the key aspects of service quality were constructed. For other key aspects, an assessment of changes in service quality was made on the basis of qualitative information obtained from various sources.

There was an overall improvement in the quality of service provided to passengers in the post-reform period. Service quality improved in respect of frequency of service, availability of non-stop services, and on-time performance. For other key aspects of service (safety, accessibility, airport services and facilities, and on-board comfort and service) the available evidence indicated that levels of quality remained relatively constant.

The report also discusses the future development of service quality indicators, particularly in relation to passenger processing times in airport terminals. The development of a consumer complaints database is also discussed.

SUMMARY

Over recent years the Government has implemented a number of reform measures in the Australian aviation industry. In order to gauge the success of these initiatives, it is important that all aspects of industry performance are assessed. This report deals with one of the most important aspects of industry performance, namely the quality of service provided to passengers.

The concept of quality of service refers to the degree to which the needs and wants of consumers are satisfied by the service provided. Although the concept is easily understood, it is not easily measured.

CHARACTERISTICS OF THE REGULAR PUBLIC TRANSPORT PASSENGER AVIATION INDUSTRY

The organisations which have the greatest influence on aviation quality of service are the airlines, the providers of airport and airways services, and aviation regulatory agencies.

As at 31 December 1991 there were three domestic airlines or airline groups in Australia (Ansett, Australian and Eastwest)¹ and 45 commuter operators licensed to provide regular public transport air services. The domestic airlines operated 106 aircraft and commuter airlines operated 204 aircraft. Regular public transport air services were provided to some 230 locations as at the end of 1991.

The Federal Airports Corporation is the major provider of airport infrastructure in Australia. It operates 23 airports which account for approximately 90 per cent of annual domestic revenue passenger movements.

The Civil Aviation Authority is responsible for providing safety related infrastructure at airports and for regulating air safety in Australia.

A fourth operator, Compass Airlines, commenced operations in December 1990 and ceased operations in December 1991. Compass Airlines was subsequently purchased by Southern Cross Airlines Holdings Ltd. and re-started operations on 31 August 1992. As at 1 November 1992, Qantas was allowed to use empty seats on existing domestic sectors of its international services such as Perth–Melbourne–Sydney.

The Bureau of Air Safety Investigation provides independent, professional advice on the efficacy of air safety regulation in Australia.

ASPECTS OF SERVICE QUALITY IN AUSTRALIAN PASSENGER AVIATION

An *aspect* of service quality refers to a characteristic or group of characteristics of a service from which consumers derive utility. The Bureau has identified 26 aspects of service quality which are applicable to passenger aviation services. While some of these aspects are crucial to consumer welfare, others are of lesser importance.

The following key aspects of service quality were considered to be the most important to include in a quality of service measurement system:

- safety;
- passengers' accessibility to the regular public transport network;
- frequency of service;
- non-stop service;
- on-time performance;
- airport services and facilities; and
- on-board comfort and service.

MEASURING SERVICE QUALITY

Assessing the impact of reform measures on quality of service required measurement of the key aspects of service quality over time. Availability of data at reasonable cost, and consistency of data over time, were the prime requisites for a measurement system.

The Bureau produced indicators of safety, frequency of service, non-stop service, on-time performance, and airport services and facilities. The data from which the indicators were produced are presently collected by the Bureau of Air Safety Investigation, the Department of Transport and Communications, the Civil Aviation Authority and the Australian Customs Service. Conclusions on changes in quality of service in regard to accessibility and on-board comfort and service were largely based on qualitative data from various sources.

ASSESSMENT OF SERVICE QUALITY

The key aspects of service quality either improved or remained constant over the time period examined. A comparison of flight frequencies for all regular public transport operators on 40 major routes showed that the number of trips increased by 20 per cent from the September quarter 1990 (the last full quarter before deregulation) to the September quarter 1991. Flight frequency on the 50 busiest routes serviced by the domestic airlines increased by a weighted average of

22 per cent between the December 1990 and 1991 quarters, and by 13 per cent between the March 1991 and 1992 quarters.

Consumers also benefited from improvements in the on-time performance of regular public transport operators in the year to August 1992. An overall improvement in on-time performance was evident at each of the mainland State capital airports.

The level of non-stop service provided by the domestic airlines also improved. Over the year to June 1992 both the number of non-stop routes and the frequency of non-stop flights increased.

The available evidence for the service quality aspects of safety, passengers' accessibility to the regular public transport network, airport services and facilities, and on-board comfort and service supported the conclusion that the quality of service had remained relatively constant in these areas.

The only negative impact on quality of service was the increase in load factors which occurred in the second half of 1991 and the first half of 1992. Work undertaken in 1992 indicates that there was a net welfare loss to consumers during the second half of 1991 as a result of the high load factors during that period. However, the loss was offset by a net welfare gain during the first half of the year.

FUTURE DEVELOPMENT OF QUALITY OF SERVICE INDICATORS

The most significant deficiency in the data required to measure changes in the key aspects of service quality was in regard to passenger processing delays in airport terminals.

Development of a consumer complaints database was mooted as a possible method to obtain direct consumer input on quality of service issues. It was considered that a consumer complaints database could provide an indicator of changes in quality of service and point to specific problems in particular market segments. However, further investigation of the potential benefits and the costs of a centralised consumer complaints database is required.

CHAPTER 1 INTRODUCTION

AVIATION REFORMS

Several important aviation reform initiatives have been taken in the past five years. The first of these was the Government's announcement in October 1987 to deregulate the interstate aviation market and allow it to operate under the competition policy controls which apply to industry generally. The decision took effect from 31 October 1990, when the Government withdrew from economic regulation of fares, market entry, capacity determination and aircraft importation.

A Bureau of Transport and Communications Economics report (BTCE 1991) indicated that the first year of domestic deregulation was successful in achieving the reform objectives, particularly from the consumers' perspective. Patronage on the domestic network increased to record levels, fares decreased by 29 per cent on average in real terms and there was an overall improvement in the quality of service provided by the carriers. From the carriers' perspective, production efficiency improved, with cost reductions in a number of areas. Also, the level of competition between the airlines increased dramatically in the first year of deregulation. Although the original Compass Airlines collapsed in December 1991, the level of competition between Ansett Australia and Australian Airlines has been more intense under deregulation. Overall, the Bureau estimates that there was a net welfare gain from domestic deregulation of about \$105 million in 1991 (Smith & Street 1992).

Another important element of the reform agenda was the establishment in 1988 of the Federal Airports Corporation (FAC) to operate airports, their terminals, runways and associated facilities on a commercial basis. In the same year the Civil Aviation Authority (CAA) was set up to provide airways and safety regulatory services. By establishing these statutory authorities, the Government sought to ensure that airport infrastructure, airways and safety services were provided more efficiently than they had been under a departmental administration and that the organisations could respond more quickly and flexibly to the changing needs of the aviation industry.

The liberalisation of Australia's international aviation policy has been achieved through a two-step process. The first step, announced by Minister Willis in 1989, was to broaden our approach to bilateral negotiations by placing greater weight on the national benefits from trade in aviation services, as well as the benefits

for Qantas (Willis 1989). The second reform step was announced in February 1992 as part of the Prime Minister's 'One Nation' statement (Keating 1992). Included in the statement was the announcement of multiple designation of Australia's international air services, that Australia's domestic carriers would be given the opportunity to fly internationally¹, that Qantas would be given access to domestic sectors and that a single trans-Tasman market would be negotiated with New Zealand.

The privatisation of Australian Airlines and Qantas has also been an integral part of the reform process. In September 1990 the Government announced that it would sell 49 per cent of Qantas and 100 per cent of Australian Airlines. More recently, it was announced that the next stage of the privatisation process would be to merge Australian Airlines and Qantas and sell 100 per cent of the combined airline. In September 1992, Australian Airlines was sold to Qantas, and the sale of the merged airlines was proceeding at the time of writing.

THE ROLE OF QUALITY OF SERVICE MEASUREMENT

An improvement in the quality of services provided may well be one of the more significant gains from the Government's micro-economic reform program. It could be more important to some consumers than a reduction in price, and of significance to Australia's economic competitiveness.

In aviation, operators are adopting an attitude towards service quality which is more customer and market oriented. The industry is becoming more aware of and responsive to what the customer is willing and able to pay for. Also, since deregulation, the airlines have been able to offer consumers a much greater range of fare – quality of service combinations from which to choose.

Reform measures which have been implemented over recent years will continue to affect the operations of the Australian aviation industry. Measurement of the quality of service provided by the industry in general and by individual operators will become increasingly important in evaluating the impact of the reform programs.

Measures of service quality complement other measures of industry performance, such as passenger numbers, price levels, and operators' financial performance. Indeed, it could provide a misleading impression of the progress of reform if, for example, it were publicised that prices had been reduced, if at the same time service quality was declining and this latter fact was not also brought to attention.

In the interim at least, it is important that quality of service be monitored, partly to ascertain whether the expected outcomes from reform are being achieved and partly to assist the process of reform itself, through providing information which

^{1.} As at 1 November 1992, Ansett Australia was allowed to operate trans-Tasman services but did not commence these services at that time.

facilitates the efficient functioning of the reformed markets. For instance, quality of service indicators could provide a basis for consumers to make informed choices between operators and thereby encourage the provision of standards of quality appropriate to consumer needs.

STUDY OBJECTIVES

The main objectives of this study were:

- to identify and measure the key aspects of service quality in the regular public transport (RPT) passenger aviation industry; and
- to analyse recent trends in the quality of service provided by the industry.

OUTLINE OF THE REPORT

Chapter 2 provides a brief description of the RPT passenger aviation sector, to provide a context for the subsequent discussion of quality of service measurement.

Chapter 3 discusses conceptual issues in aviation quality of service and recommends a number of aspects of service quality which should be measured.

Chapter 4 outlines a system of measurement of the recommended aspects and provides indicators of quality of service where possible. Where data were available, an analysis of recent changes in quality of service was undertaken. For some quality measures, only the direction of change could be assessed, while for others it was possible to quantify the change.

Chapter 5 presents a summary of recent changes in quality of service in the Australian passenger aviation industry. Future development of quality of service indicators, including a consumer complaints database, is also discussed.

CHAPTER 2 CHARACTERISTICS OF THE RPT PASSENGER AVIATION INDUSTRY

For the purposes of this study, the RPT passenger aviation industry comprises the domestic and commuter airlines, the organisations which provide airport and airways services, and regulatory agencies. This chapter presents some basic facts and figures on the industry as a context for the ensuing discussion of the quality of the services it provides to passengers.

REGULAR PUBLIC TRANSPORT OPERATORS

The RPT operators are responsible for many of the aspects of the quality of service provided to passengers. However, for some aspects of service quality, such as safety and airport facilities, other agencies play a major role. The RPT operators are the primary source of much of the data required to measure quality of service.

Airlines operating scheduled RPT services are licensed by the CAA. Operators whose fleets include aircraft with more than 38 seats or with a payload of more than 4200 kilograms are designated as *domestic* airlines. All other RPT operators are designated as *commuter* airlines.

As at 31 December 1991 there were three domestic airlines or airline groups operating RPT services under separate Air Operators Certificates. These were Ansett Australia (including Ansett Express and Ansett WA), Australian Airlines (including Airlink), and Eastwest Airlines. A fourth domestic carrier, Compass Airlines, commenced operations in December 1990 and ceased operations in December 1991. Compass Airlines was subsequently purchased by Southern Cross Airlines Holdings Ltd., and restarted operations on 31 August 1992.

There were 45 commuter operators licensed to provide RPT air services in Australia at 31 December 1991. The number of commuter operators has varied slightly over recent years as indicated in table 2.1.

Fleet characteristics

As at 31 December 1991, there were 310 licensed RPT aircraft in Australia, of which 106 were operated by the domestic airlines and 204 were operated by

State	1986	1987	1988	1989	1990	1991
New South Wales	11	10	10	10	10	14
Victoria	7	6	5	5	5	6
Queensland	9	11	12	10	9	6
South Australia	7	7	10	9	8	8
Western Australia	7	5	4	6	6	6
Tasmania	1	1	1	2	1	1
Northern Territory	4	4	5	3	3	4
Total	46	44	47	45	42	45

TABLE 2.1 COMMUTER OPERATORS, BY STATE, 1986 TO 1991 (number of airlines)

Source Department of Transport and Communications aviation statistics section.

TABLE 2.2 REGULAR PUBLIC TRANSPORT FLEET SIZE, 1985 TO 1991 (number of aircraft)

	1985	1986	1987	1988	1989	1990	1991
Domestic airlines	104	112	106	113	105	104	106
Commuter airlines	228	199	220	245	236	236	204
Total	332	311	326	358	341	340	310

Sources Department of Transport and Communications aviation statistics section; Australian Aviation (December 1991 and earlier issues).

commuter airlines. Table 2.2 shows the changes that have occured in the RPT fleet over the past six years.

Network size

As at 31 December 1991 there were approximately 230 ports in Australia with RPT air services. The exact number was unavailable due to non-reporting by some commuter operators. The domestic airlines provided services to 43 ports and commuter airlines flew to all but 5 of the ports for which data were available.

FEDERAL AIRPORTS CORPORATION

Through the provision of basic airport facilities, planning of airport layouts and leasing of facilities to airlines, the FAC has an effect on the quality of services provided to passengers.

The functions of the FAC which were most relevant to this study were (*Federal Airports Corporation Act 1986*):

- to operate Federal government-owned airports in Australia and participate in the operation of jointly used areas within these airports;
- 6

- to review the use and capacity of existing Federal airports, determine the necessity or desirability of extending or otherwise altering Federal airports, and to carry out necessary or desirable extensions to, or alterations of, Federal airports; and
- to provide, or arrange for the provision of, facilities and services at, or in relation to, Federal airports.

The FAC has responsibility for 23 airports, which accounted for approximately 90 per cent of domestic revenue passenger movements in the 12 months to 31 March 1991. Aircraft movements (including international and general aviation aircraft) at FAC airports during that period were 3 036 083 (FAC 1991a).¹ The FAC thus has responsibility for providing much of the airport infrastructure in Australia.

The range of facilities which must be provided in a large airport is vast, resembling a small city in complexity. For instance, in its Draft Planning Strategy for Sydney Airport (FAC 1990), the FAC makes plans not only for runways, terminals, cargo facilities, airport administration, ground support facilities and aircraft maintenance facilities, but also for catering, ground access (including roads, car parks, terminal driveways and public transport facilities) and utility services including electricity, fire and domestic water supply, gas, telecommunications, fuel, sewerage, other waste disposal and drainage.

The FAC is also responsible for airport security, including the counter-terrorist first response function at its security-designated airports, and for commercial developments such as airport shopping and recreation facilities. All of these aspects impinge upon the overall quality of service provided by the aviation industry as a whole.

Responsibility for quality of service provided at airports which are not operated by the FAC lies with the local owners and operators of the airports. These include local councils and, in Cairns, the Cairns Port Authority.

CIVIL AVIATION AUTHORITY

The CAA has responsibility for providing safety-related infrastructure at airports and for regulating air safety in Australia. As a spin-off from its regulatory function the CAA also compiles an extensive database from which the BTCE has constructed on-time performance indicators.

The CAA was established under the provisions of the *Civil Aviation Act 1988*. Functions of the Authority which are relevant to this study include:

- conducting safety regulation of civil air operations in Australian territory;
- providing air route and airway facilities;

^{1.} Comparable data on total aircraft movements at all Australian airports were not available.

- providing air traffic control services, and flight service services, for surface traffic of aircraft and vehicles on the manoeuvring area of aerodromes; and
- providing services to the Bureau of Air Safety Investigation (BASI) in relation to the investigation of aircraft accidents and incidents.

BUREAU OF AIR SAFETY INVESTIGATION

The Bureau of Air Safety Investigation is a source of independent, professional advice on the efficacy of air safety regulation in Australia. BASI promotes safer aviation by disseminating information and safety recommendations based on the investigation of selected accidents and incidents, and on the results of research.

Air safety regulations require all accidents and safety-related incidents to be reported to BASI. BASI compiles and publishes comprehensive data on aviation accidents, which have been used in this study as a quality of service indicator of safety.

CHAPTER 3 THE CONCEPT OF SERVICE QUALITY IN AVIATION MARKETS

Consumers' perceptions of the importance of the different aspects of service quality depend on their priorities. For example, many business travellers place a high value on the quality of airport departure lounge facilities and on-time performance. Leisure travellers may be more ready to accept a trade-off in which they receive lower service quality but also a lower price.

To some extent consumers' perceptions of service quality are determined by external factors. For instance, travellers to and from remote locations may consider a daily service is adequate while travellers on inter-capital routes may expect a much higher service frequency.

This chapter establishes a set of criteria for determining which aspects of service quality should be monitored, and recommends a number of aspects for which indicators are subsequently developed.

DEFINITION OF SERVICE QUALITY

The Bureau's work on the measurement of quality of service (BTCE 1992) builds on the framework developed by Lancaster (1966) for analysing service quality.

Under Lancaster's approach, a product or service is viewed as a bundle of characteristics. Consumers derive utility from the characteristics embodied in the product or service rather than from the product or service per se.

Characteristics are defined as 'those objective properties of things that are relevant to choice by people' (Lancaster 1971, p. 6). Several characteristics may be aggregated into an aspect of service quality.

The concept of service quality refers to the quantities of the characteristics that are embodied in a service and which directly interact with the utility functions of the consumers of that service.

ASPECTS OF SERVICE QUALITY APPLICABLE TO AVIATION

As indicated above, measurement of changes in service quality may be facilitated by grouping characteristics into broad categories or aspects of service quality. Aspects of service quality which are applicable to aviation and which were initially identified in the Bureau's conceptual study (BTCE 1992, pp. 18–20) are shown (slightly modified) in table 3.1.

SELECTING KEY ASPECTS OF SERVICE QUALITY

Any system which attempted to measure all of the aspects of service quality in table 3.1 would require considerable resources. While some of the aspects are crucial to consumer welfare, others are of lesser importance.

Key aspects of service quality were chosen on the criteria that:

- they have a direct impact on the welfare of a broad range of consumers; and
- they reflect the objectives of the aviation reform program.

The Bureau has examined a number of possible methods for identifying the key aspects of service quality (BTCE 1992, pp. 21–28). These include the hedonic method, consumer surveys, choice models, observation of comparable industries or situations, and the judgment of the analyst.

The hedonic method is a statistical technique for evaluating the contribution of various product characteristics to prices. It employs a regression equation, in which prices from an array of different varieties of a product or service are the dependent variable, and the characteristics of that product or service are the explanatory variables. Thus, for example, the first class, business class, economy and discount fares would be dependent variables and the characteristics of the service such as time and distance of the flight and aspects of service quality would be explanatory variables. If the market is competitive and the variables are properly chosen, the implicit prices for the characteristics which are derived from the hedonic function would be proportional to the marginal valuations which consumers placed on those characteristics (Triplett 1986).

The hedonic approach does not appear to have been used to date to derive consumer valuations for characteristics of air travel. This is possibly due to unavailability of data on actual fares paid for particular services. Consumer valuations will also vary over time and over different market segments. As mentioned earlier, the priorities of business travellers will differ from those of holiday travellers. Within these groups short-haul passengers may well have different priorities than long distance passengers. Use of the hedonic method would therefore require extensive data collection and would be very costly.

A consumer survey could provide information obtained directly from consumers on the relative importance of various aspects of service quality in RPT aviation. However, comprehensive coverage of all segments of the market would also require an extensive and costly data collection effort. Passenger surveys are

TABLE 3.1	ASPECTS OF	SERVICE QUALITY	APPLICABLE TO AVIATION
-----------	------------	-----------------	------------------------

Aspect	Example
Network coverage	Number of airports in an airline's network
Passengers' accessibility to network	Presence of an airport with regular public transport services
Service frequency	Number of flights per day
Convenience of service times	Departure times for flights relative to desired departure times
Non-stop service	Non-stop service between origin and destination airports
On-time performance	Difference between aircraft arrival and departure times and scheduled times
Ticket conditions	Advance purchase and minimum stay conditions for airline bookings
Clarity of service conditions	Understandability of options for discount and other air fares
Service continuity	Frequency of disruption of air services by mechanical problems or labour disputes
Restoration of interrupted services	Time to restore air services after disruption
Terminal services and facilities	Services and facilities available at airport terminals
Location of airport	Distance between a city's airport(s) and business and residential districts
Carrier or vehicle transfers	Number of changes of aircraft en route
Efficiency of booking arrangements	Speed and flexibility of airline booking system
Reliability of confirmed bookings	Likelihood of a seat being unavailable due to over-booking of a flight
Safety	Likelihood of arriving without an accident
Passenger security	Likelihood of being involved in a security-related incident
Baggage security	Likelihood of baggage being stolen
Loss or damage of articles	Likelihood of baggage being lost or damaged
Procedures for handling customer complaints	Friendliness and accessibility of complaints department
Assistance to disadvantaged consumers	Facilities for persons under a disability, such as wheelchair ramps, and multilingual signs
Service information	Flight arrivals and departures bulletin boards and screens
Liability for carrier underperformance	Ease of access to compensation for service failure
Staff courtesy and efficiency	Courtesy of airline personnel
On-board comfort	Distance between seats, width of seats
On-board services and facilities	Meals, drinks, in-flight entertainment, newspapers, magazines, cleanliness of aircraft

Source BTCE.

regularly carried out by airlines. Although results are not publicly available, they are reflected in airline behaviour, as discussed later in this chapter.

Models of consumer choice use statistical techniques to estimate the values which consumers implicitly place on aspects of a service when they choose between alternative price-quality combinations. For example, a consumer who chooses to fly first class is valuing those characteristics of the first class service which are judged to be superior at the difference between the first class fare and alternative lower fares. Choice models were not employed in this study, partly because they require detailed fare data which were not publicly available.

Observation of the activities of the Australian RPT aviation industry and of comparable industries or situations overseas has been used in this study to obtain qualitative information on consumer valuations of some aspects of service quality. Information on which aspects the Australian industry considers to be of importance can be gleaned from observation of the activities of the industry and from advertisements by the airlines and other industry organisations. Examples of industry activities over recent years which have had an impact on the quality of service provided include:

- increasing the frequency of flights on many routes;
- the airlines' choices of aircraft type;
- the upgrading of the airlines' facilities at airports;
- changes in airline routes (for example, the introduction of non-stop flights on some routes) and types of aircraft operated on particular routes; and
- improvements in quality and availability of services and facilities both on-the-ground and on-board.

The quality of service aspects which are most frequently advertised by the airlines include terminal facilities, safety, service, on-board comfort, network size and convenience of schedules and routes.

Studies of quality of service and the effects of deregulation in overseas aviation markets also provide guidance on which aspects of service quality to assess when evaluating the impact of Australian domestic deregulation. The most frequently discussed aspects of service quality include safety, flight frequency, on-time performance, non-stop services, airport services, on-board comfort and service, and load factors (see table 3.2).

One of the main consumer benefits from deregulation in the United States, Canada and New Zealand has been an overall increase in frequency of flights. Improvements in the quality of on-board service were reported in Canada and New Zealand, while consumers in New Zealand also benefited from improved terminal facilities. Consumer disadvantages which arose shortly after deregulation in the United States and Canada included serious congestion problems at some airports and, in the United States, some small communities lost all RPT service.

Reference	Safety	Flight frequency	On-time performance	Non-stop service	Airport services	On-board comfort	Load factors	Other ^a
Carlzon 1987	*	*	*	*	*	*		*
Craun 1990		•						*
Cunningham & Brand 1989	*		*		٠			*
Dempsey 1990	*		., *	*		*		*
Ippolito 1981		*					*	
McGowan & Seabright 1989	*							*
Morrison & Winston 1986		•						*
National Consumer Council 1986	*				*			*
Ourn, Stanbury & Tretheway 1990	*	*	*	*				*
Russon & Hollingshead 1989				*		*		
Shaw 1990	*	*	*	*		*	*	
US DOT 1988		*		•			*	*
Total occurrences	7	7	5	6	4	4	4	9

TABLE 3.2 ASPECTS OF SERVICE QUALITY IN AVIATION: OVERSEAS STUDIES

* The aspect of service was included in the referenced study

a. Includes aspects such as accessibility, consumer compensation for underperformance, availability of a choice of carriers, services and routes, convenience of schedules, reservation systems, staff courtesy, and luggage handling.

τ3

From the foregoing discussion it is evident that a considerable element of judgment on the part of the analyst is involved in selecting the key aspects of service quality.

On the basis of the criteria established, and the evidence from overseas studies, the following aspects¹ were considered to be highest priority for inclusion in a quality of service measurement system for the Australian RPT aviation industry:

- safety;
- passengers' accessibility to the RPT network;
- frequency of service;
- non-stop service;
- on-time performance;
- airport services and facilities; and
- on-board comfort and service.

Measurement of these aspects of service quality is discussed in chapter 4.

^{1.} Aspects are listed in random order as consumer valuations of the various aspects were unknown.

CHAPTER 4 MEASURING SERVICE QUALITY WITH INDICATORS

For the purposes of this study, an indicator was defined as a statistical measure of an aspect of service quality. Indicators could be subjective measures of consumers' perceptions of service quality or objective measures of the quantities of various characteristics relevant to particular aspects of service quality.

Time series of indicators which show changes in quality are essential to the objective of assessing the impact of micro-economic reforms. Although both subjective and objective indicators have some advantages (BTCE 1992, pp. 29–33), the use of objective indicators is more suited to the purpose of measuring changes in quality levels over time. Subjective measures which require surveys of consumers do not meet the criteria of availability at reasonable cost and/or consistency of data over time.

This chapter discusses appropriate indicators or proxy indicators which could be used to measure changes in the key aspects of service quality. Where data were available, tables and figures are presented to demonstrate the use of indicators and to show recent changes in quality levels.

CRITERIA FOR CONSTRUCTION OF INDICATORS

Criteria for construction of indicators are discussed in detail in the Bureau's conceptual study (BTCE 1992, pp. 33–37). The criteria which were applicable to this study were:

- coverage of the key aspects of service quality;
- availability of adequate data at reasonable cost;
- consistency of data over time;
- appropriate protection of commercial confidentiality;
- the possibility of significant change in performance; and
- promotion of appropriate incentives.

Coverage of the key aspects of service quality

All key aspects of service quality should be measured to ensure that an accurate analysis of trends in service quality can be made. This is particularly critical in situations where the trends for the key aspects may be moving in different directions.

Adequate data at reasonable cost

The data from which indicators are produced must be reasonably up-to-date and of acceptable accuracy. The data collection and compilation process should not absorb large amounts of resources relative to industry costs. However, there may be some special cases where a key indicator is prepared even though significant expense is involved.

Consistency of data over time

The identification of trends in service quality requires that indicators are produced over a period of time. It is particularly important that the data are collected on a consistent basis over time so that data from different time periods are directly comparable.

Appropriate protection of commercial confidentiality

There is an appropriate balance between a firm's desire to withhold commercially sensitive information from a competitor or potential competitors and the benefits to consumers from the release of information on service quality.

The possibility of significant change in performance

Where the monitoring process is solely intended to measure changes in service quality over time, a particular aspect should only be monitored if performance can change significantly. As indicated in chapter 3, one of the main criteria for selecting the key aspects of service quality was the possibility that a particular aspect would be significantly affected by the Government's aviation reform program.

Promotion of appropriate incentives

For some aspects of service quality, publicly available indicators can provide an incentive for service providers to maintain or improve service quality, particularly when consumers have a choice between alternative service providers.

Some of these criteria applied to all of the indicators discussed in the remainder of this chapter, while others were specific to individual service quality indicators.

INDICATORS OF SAFETY

For the purposes of this study, safety in the aviation sector was defined in terms of the probability that an accident resulting in injury or death of passengers would

occur during any individual flight. Although many determinants of aviation safety have been documented, no system has been able to accurately predict aircraft accident rates based on changes in safety related factors. Safety levels are therefore measured after-the-fact through records of accidents, injuries, and fatalities. In this study the number of accidents per 100 000 hours flown by RPT aircraft and the total number of injuries suffered by RPT passengers were used as proxy indicators of safety.

Accidents were defined as occurrences which take place between the time any person boards an aircraft with the intention of flight until such time as all such persons have disembarked, in which:

- a person is fatally or seriously injured (except when the injuries are from natural causes, self inflicted or inflicted by other persons); or
- the aircraft incurs substantial damage, is destroyed or is missing or completely inaccessible.

Tables 4.1 and 4.2 show the number of accidents and injuries incurred by the domestic airlines and commuter operators respectively over the 1981 to 1991 period.

As indicated in tables 4.1 and 4.2, there were very few accidents in the RPT aviation industry. At the time of writing, the major domestic airlines in Australia had had no fatal accidents since 1968 and there had never been a fatal accident involving jet aircraft in the RPT sector.

Year	A	ccidents		Injuries		
	Total number	Number per 100 000 hours flown	Minor	Serious	Total	
1981	1	0.37	0	1	1	
1982	1	0.37	0	0	0	
1983	1	0.43	0	0	0	
1984	0	0	0	0	Ō	
1985	0	0	0	0	0	
1986	1	0.37	0	Ō	Ō	
1987	1	0.35	59	2	61	
1988	0	0	0	0	0	
1989	2	0.91	0	1	1	
1990	2	0.79	1	2	3	
1991	1	0.32	Ó	ō	Õ	
Total	10	0.34	60	6	66	

TABLE 4.1	ACCIDENTS AND INJURIES - DOMESTIC AIRLINES IN AUSTRALIA,
	1981 TO 1991

Source Bureau of Air Safety Investigation.

Year	Accidents		Injuries				
	Total number	Number per 100 000 hours flown	Minor	Serious	Fatal	Total	
1981	5	3.40	0	0	0	0	
1982	3	2.33	2	Ō	Ō	2	
1983	3	2.38	1	Ō	0	1	
1984	0	0	0	0	0	0	
1985	5	3.41	1	6	1	8	
1986	0	0	0	0	0	0	
1987	1	0.65	0	0	Ō	Ō	
1988	8	4.41	7	3	3	13	
1989	0	0	0	0	0	0	
1990	7	3.47	0	0	0	0	
1991	3	na	0	0	0	Ō	
Total	35	na	11	9	4	24	

TABLE 4.2 ACCIDENTS AND INJURIES — COMMUTER AIRLINES IN AUSTRALIA, 1981 TO 1991

na Not available

Source Bureau of Air Safety Investigation.

Accidents and injuries in RPT aviation occurred randomly over the 1981 to 1991 period. The large number of injuries incurred by domestic airline passengers in 1987 resulted from the use of escape slides in a single accident.

During the period September 1991 through March 1992 a comprehensive review of the capability of the Australian Air Traffic Services System to maintain safe separation between aircraft was undertaken (Ratner Associates Inc. 1992). The review team found Australia's existing system to be safe and endorsed the capability of the system changes under way to further improve safety. However, it was concluded that there is 'substantial room for improvement' and the review team made 24 recommendations for improving air safety. The CAA and BASI are planning to have all the recommendations in place before the end of 1992.

After several years of the aviation reform program, including the first full year of deregulated interstate operations, there was no evidence of an increase in accident rates in the domestic RPT aviation sector.

INDICATORS OF PASSENGERS' ACCESSIBILITY TO THE RPT NETWORK

In the context of this study, accessibility refers to the availability of RPT aviation services within a particular community. In the United States a number of non-hub communities lost all RPT air service following deregulation (Morrison & Winston 1986). Loss of RPT services by communities in remote areas of Australia could be particularly disruptive to residents due to the long distance to the next airport.

The indicator of changes in passengers' accessibility to the network used in this study was incidents of withdrawal of all RPT services from an airport. In chapter 2 the number of airports serviced by RPT operators was given as approximately 230 as at 31 December 1991. However, the Department of Transport and Communications aviation statistics database cannot provide a consistently reliable figure for the number of airports serviced, due to non-reporting by some commuter operators. Monitoring of industry sources and press reports was therefore used to obtain information on changes in accessibility.

As at the end of August 1992, passengers' accessibility to the RPT network had not been adversely affected. There had been many changes in route networks, operators and types of aircraft used on particular routes, but no communities had lost all RPT services as a result of interstate deregulation or other aviation reform measures.

The same conclusions could be drawn from an analysis of intrastate services. The experience to the time of writing suggested that if there were disruptions to services, other operators, often using aircraft that they claimed were more suited to the particular routes, quickly recommenced services. For example, when Hazelton Airlines withdrew services to 14 New South Wales communities in September 1991, all of the routes were soon taken up by other operators.

FREQUENCY OF SERVICE INDICATORS

Other things being equal, quality of service improves with increasing frequency of service because consumers have a greater choice of departure times and a greater probability of being able to book a flight at short notice.¹ Studies of the effects of deregulation in the United States have concluded that an increase in the frequency of flights between many locations has been one of the main benefits to consumers (US DOT 1990).

The Aviation Statistics Section of Department of Transport and Communications publishes frequency data for all city pairs for domestic airlines and commuter airlines on an annual basis (DTC 1991a, pp. 41–51, DTC 1991b, pp. 16–23). These tables are produced on a monthly basis and are publicly available on request. Frequency data are also published weekly for the top 20 routes served by domestic airlines (DTC 1992).

Service frequency data on 40 selected routes for both the domestic airlines and commuter operators were compiled for the June quarters in 1990 and 1991 (BTCE 1991). The routes chosen comprised the top 40 city pair routes in terms

The probability of being able to book a flight at short notice will only increase if the increase in flight frequency results in at least the same availability of seats. If an increase in flight frequency merely reflects increasing demand, or if there is a substitution of smaller aircraft on a particular route, an increase in the frequency of flights may not maintain or increase the availability of seats.

of the numbers of passengers carried (traffic on-board) by the domestic airlines during January 1990. Table 4.3 presents an updated comparison of service frequency on these routes for the September quarters of 1990 and 1991.

Table 4.3 shows that the number of trips² and passengers ³on the selected routes increased by 20 per cent and 36 per cent respectively from the September quarter 1990 to the September quarter 1991. All of the major intercapital routes experienced large increases in flight frequency as did major tourist destinations such as Coolangatta, Cairns and Hamilton Island. Only eight of the 40 routes incurred a decrease in flight frequency.

A quarterly time series showing flight frequency by the domestic airlines (excluding commuter operators) on the selected routes from the March quarter 1990 to the June quarter 1992 is presented in appendix I. A comparison of the June quarters in 1990 and 1992 shows that the number of trips on these routes had increased by 28 per cent. A comparison of frequency for the June quarters in 1991 and 1992 shows an increase of 10 per cent. This increase occurred in spite of the fact that Compass Airlines was operating only in 1991, and two of the routes were no longer serviced by a 'domestic airline' during the June quarter 1992.

A quarterly index of flight frequency for the top 50 domestic airline routes⁴ over the June 1990 to March 1992 period was also constructed (figure 4.1).

Figure 4.1 illustrates that flight frequency on the top 50 routes increased by about 22 per cent between the 1990 and 1991 December quarters and by 13 per cent between the 1991 and 1992 March quarters. The larger increase shown by the index, as compared to appendix table I.1, was due to the weightings given to the busier routes, which also had the largest percentage increases in flight frequencies.

The data in table 4.3, appendix table 1.1 and figure 4.1 indicate that consumers benefited from an overall increase in flight frequency following deregulation. However, as shown in appendix table 1.1, load factors increased substantially in the second half of 1991. High load factors may mean that some passengers were denied boarding on the flight of their choice, forcing them into a less convenient time for departure. It was concluded by Smith and Street (1992) that

Σqnipoi

Σαριροί

where q_{ni} = number of flights in period *n* on route *i*, and p_{0i} = number of passengers in period 0 on route *i* weighted by the number of passengers on each route in the June quarter 1990).

^{2.} A trip is a one-way flight between the designated centres.

^{3.} The passenger data are traffic on-board passengers travelling non-stop between the designated centres. The origin and destination of passengers was not considered. Thus, they were counted more than once if their journey involved intermediate stops.

^{4.} The routes included in the index were those which were in the top 50 routes on the basis of passenger numbers during the June 1990 quarter, and which continued to be served in every subsequent period. The index was constructed according to Laspeyres formula (that is,

TABLE 4.3COMPARISON OF REGULAR PUBLIC TRANSPORT SERVICE FREQUENCIES
ON SELECTED ROUTES BETWEEN SEPTEMBER QUARTER 1990 AND
SEPTEMBER QUARTER 1991

	Septen	nber quarter 1990	Septem 1	ber quarter 1991	Percentag from Se quarter 199	e change ptember 30 to 1991
Route	Trips	Passengers	Trips	Passengers	Trips Pa	assengers
Melbourne-Sydney	5 405	618 576	7 364	923 425	36	49
Brisbane-Sydney	3 925	444 995	4 749	658 341	21	48
Adelaide-Melbourne	2 169	218 737	2 808	295 016	29	35
Coolangatta-Sydney	1 982	166 273	2 569	236 819	30	42
Brisbane-Melbourne	1 604	161 416	2 023	223 880	26	39
Hobart-Melbourne	1 221	104 428	1 488	127 469	22	22
Adelaide-Sydney	1 356	129 509	1 636	175 491	21	36
Melbourne-Perth	878	99 363	1 734	208 850	97	110
Launceston-Melbourne	1 757	74 551	1 693	88 359	-4	19
Brisbane-Cairns	987	95 425	1 722	197 466	74	107
Perth-Sydney	571	64 527	1 1 1 2	132 084	95	105
Canberra-Sydney	3 261	161 725	3 827	196 066	17	21
Canberra-Melbourne	1 929	109 578	1 920	130 446	0	19
Brisbane-Townsville	1 096	99 612	1 101	97 134	0	-2
Melbourne-Coolangatta	570	64 020	918	96 624	61	51
Adelaide-Perth	685	66 198	725	73 428	6	11
Adelaide-Alice Springs	374	51 463	382	35 683	2	31
Alice Springs-Darwin	404	51 547	459	41 167	14	-20
Brisbane-Rockhampton	895	51 742	757	41 771	-15	19
Karratha-Perth	499	28 366	531	30 135	6	06
Hobart-Sydney	180	10 595	193	12 160	7	15
Devonport-Melbourne	736	25 375	828	29 943	13	18
Hamilton Island-Sydney	227	17 256	349	31 835	54	84
Coffs Harbour-Sydney	638	25 892	561	26 315	-12	2
Cairns-Townsville	1 243	44 485	1 168	26 707	-6	_40
Brisbane-Hamilton Island	287	18 633	235	14 774	-18	-21
Brisbane-Darwin	282	26 576	305	28 673	8	2
Kalgoordie-Perth	601	21 942	705	22 710	17	4
Brisbane-Mackay	458	24 568	467	24 538	2	- -
Alice Springs-Cairps	336	20 042	341	20 701	1	3
Alice Springs-Sydney	365	31 071	202	39 229	8	26
Darwin-Kununurra	244	13 100	208	11 472	_15	_12
Perth-Port Hedland	207	11 817	246	11 510	10	_3
Caims-Sydney	312	32 488	469	67 782	50	109
Devopport-Sydney	222	13 856	18/	12 360	_17	_11
Alice Springs-Avers Bock	464	17 028	460	28 916	_1/ _1	70
Geraldton_Perth	532	13 666	547	13 100	3	_1
Sydney_Wagaa	511	18 405	519	18 032	0	
Mackay_Rockhampton	754	17 174	884	16 811	17	
Broome-Perth	18/	11 500	219	12 810	16	<u>-</u> 2
Total	37 264	3 234 885	44 756	4 413 161	20	36

Source BTCE (from Department of Transport and Communications aviation statistics database).

Sources BTCE, (from Department of Transport and Communications aviation statistics database).

Figure 4.1 Flight frequency index, top 50 routes

the net impact on consumer welfare of greater frequency and higher load factors was a welfare gain in the first half of 1991 and a smaller welfare loss in the second half of the year.

INDICATORS OF NON-STOP SERVICE

Consumer benefits from non-stop services include shorter transit times, reduced anxiety for passengers because of fewer landings and take-offs, greater security for luggage, and avoidance of the inconvenience of changing aircraft.

Consumers would generally prefer to fly non-stop between their origin and destination airports. However, there is often a trade-off between the service quality aspects of frequency and non-stop service. Thus, for example, following deregulation in the United States, there was a decrease in non-stop services between many locations due in large measure to the establishment of hub-and-spoke networks. The hub-and-spoke system enabled the airlines to offer increased frequency of service between hub-and-spoke locations at the expense of a decrease in non-stop services between many non-hub locations.

An analysis of non-stop passenger services provided by the domestic airlines indicated that the number of non-stop city pair routes had increased from 151 in the June quarter 1991 to 171 in the June quarter of 1992.

The available evidence on number of non-stop routes and frequency of non-stop services indicated that there was a small net benefit to consumers due to an increased availability of non-stop services to the end of June 1992.

INDICATORS OF ON-TIME PERFORMANCE

On-time performance indicators will assist in evaluating the performance of the incumbent airlines and any new entrants, as well as in determining if aviation infrastructure is coping with changing demand patterns.⁵

By international convention, aircraft arrivals at and departures from the terminal within 15 minutes of the scheduled times are considered to be on-time. Delays of this magnitude can frequently be 'made up' or accommodated in the traveller's schedule with little or no inconvenience. However, consumer inconvenience may increase significantly with delays of longer duration.

From the consumer's point of view, the relevant aircraft departure and arrival times against which to measure on-time performance are the times which are listed in the airline's computer reservation system at the time the booking is made. Any change in arrival or departure times after the booking is made is likely to inconvenience the passenger. The degree of inconvenience can be assumed to increase as the remaining time before the scheduled departure decreases (see box 4.1).

On-time performance indicators for the five mainland State capital airports were derived from raw data available from the flow management system of the CAA. The data were collected for internal CAA administrative purposes and were not compiled in a format which could easily be used to measure on-time performance. Considerable processing of the data was required to match records of arrivals and departures from the CAA's charging system with scheduled arrival and departure data provided by the airlines from their computer reservation systems. This process provided a large sample of matched aircraft arrivals and departures from which percentages of on-time and delayed arrivals and departures were calculated.

Figures 4.2 to 4.6 show the on-time performance of RPT flights at Sydney, Melbourne, Brisbane, Adelaide and Perth airports in July, August and September of 1991 and 1992.

The figures show that there was an improvement in on-time performance at each of the airports in July, August, and September of 1992 in comparison to the same months in 1991, with the exceptions of arrivals during August in Sydney, and

^{5.} A deterioration in on-time performance has been another major negative effect of deregulation in the United States. The increase in United States flight delays appears to have occurred primarily because infrastructure capacity has not kept pace with the increase in demand following deregulation (BTCE 1991, p. 54). On-time performance indicators for the ten largest US carriers are published in the monthly *Air Travel Consumer Report* of the US Department of Transportation (US DOT 1992).

BOX 4.1 ON-TIME PERFORMANCE

For the purposes of this study an aircraft arrival was considered to be on-time if the time of arrival at the terminal was within 15 minutes of the originally scheduled time. As the available arrival times were aircraft touchdown times, they were adjusted by 5 minutes to approximate arrival at the terminal. A departure was on-time if the aircraft pushed back from the gate or was given permission to taxi within 15 minutes of the originally scheduled departure time. The originally scheduled times were considered to be appropriate for measuring on-time performance as, according to industry sources, about 90 per cent of passengers book their flights more than 24 hours in advance of departure and the vast majority of schedule changes occur within 24 hours of departure. These schedule changes therefore represent an inconvenience to most passengers who must adjust their affairs at short notice.

September in Melbourne. The on-time performance of departures was better than that of arrivals in all cases except Sydney in August 1991. Sydney had the best record for arrival performance in 1992 (84 per cent on-time), followed by Brisbane with 82 per cent of arrivals on-time. Approximately 95 per cent of aircraft departed on-time from Adelaide in the September quarter 1992, followed by Brisbane and Melbourne with 94 per cent of departures on-time. For the five airports 80 per cent of arrivals and 93 per cent of departures were on-time during the September quarter 1992 compared to 76 per cent of arrivals and 85 per cent of departures on-time in 1991.

Source BTCE (from CAA flow management database).

24

Figure 4.3 Percentage of flights arriving and departing within 15

minutes of the scheduled time — Melbourne

Source BTCE (from CAA flow management database).

Figure 4.4 Percentage of flights arriving and departing within 15 minutes of the scheduled time --- Brisbane

Figure 4.5 Percentage of flights arriving and departing within 15 minutes of the scheduled time — Adelaide

Figure 4.6 Percentage of flights arriving and departing within 15 minutes of the scheduled time — Perth

Appendix figures II.1 to II.5 depict regular public transport flight delays at the five major airports. It must be remembered that, by definition, arrivals and departures are considered to be on-time if they are within 15 minutes of the originally scheduled times. The delay time categories presented therefore start at 15 minutes after the scheduled times.

For all airports the data showed that, for those aircraft which were delayed, the majority of both arrival and departure delays were between 15 and 29 minutes. Delays of 45 minutes or more occurred with about the same frequency as delays between 30 and 44 minutes. Additional information would have been required to determine to which of several possible causes, such as airline procedures, industrial practices, infrastructure shortcomings, or the weather, delays were attributable.

Measurement of congestion delays at airports is discussed in the following section.

INDICATORS OF AIRPORT SERVICES AND FACILITIES

A number of recent events in Australia attest to the importance of airport services and facilities as an aspect of quality of service. In the lead-up to deregulation an extensive program of investment in airport ground facilities and terminal buildings was undertaken by the FAC and by Ansett and Australian Airlines. In the debate over the third runway at Kingsford Smith Airport and the second Sydney airport the advantages to the consumer and to the economy of having adequate airport facilities were stressed. The importance of terminal facilities and services such as airline club lounges and priority check-in procedures featured prominently in the debate over the Compass collapse (Nyathi, Hooper & Hensher 1992).

Quality of service of airports encompasses every aspect of their operations, including the infrastructure and facilities for handling aircraft in the air and on the ground and all facilities provided for passengers and other users. There is an extensive body of literature on the subject of airport planning and design and measurement of the quality of service at airports. A review of recent research in this field is provided in *Transportation Research* (1992).

Studies of quality of service in airport terminals have used consumer surveys to determine which aspects of service quality most affect consumers' perceptions of the level of quality provided. Martel and Seneviratne (1990) established an extensive framework for measuring the quality of service at airports, including parking and curbside facilities, check-in facilities, internal circulation areas, public waiting areas, concessions and amenities, security checking procedures, departure lounges, aircraft boarding procedures, and information systems.

Mumayiz and Ashford (1986) used a less complex framework for measuring the level of service at airports, comprising airline check-in, security screening, passport control, immigration, baggage claim, and customs control. This framework was based on the premise that delays in service are the most relevant

Domestic air travel Ticketing Check-in Security clearance Baggage delivery International air travel Ticketing Check-in Security clearance Immigration Customs clearance Quarantine clearance Baggage delivery

Indicators which measured delay due to these operations would show whether airport infrastructure and operating systems were coping with demand.

Availability of data

Passenger movements through airports can be separated into four streams:

- arriving international passengers;
- departing international passengers;
- arriving domestic passengers; and
- departing domestic passengers.

At the time of publication, indicators could not be compiled for delays experienced by outbound international passengers, or by arriving and departing domestic passengers. The only data which were publicly available related to arriving international passengers. Indicators of delays experienced by these passengers and data requirements for the other passenger streams are discussed below.

The Australian Customs Service (ACS) has responsibility for primary processing of all international passengers (including immigration and quarantine clearance for most passengers). Inwards passengers generally join only one queue for customs, immigration, and quarantine processing. Only a small percentage of passengers, usually those whose circumstances are not straightforward, are required to undergo additional clearance procedures.

Having only one agency clearing the vast majority of inbound passengers facilitates the collection and compilation of data on passenger processing delays. ACS have established a target rate of 95 per cent of passengers cleared within 30 minutes. Processing rates are monitored by the ACS and sufficient resources are allocated to meet the target rate under normal circumstances.

Table 4.4 and figure 4.8 show the percentage of passengers processed through the entry control point in under 30 minutes at Australia's international airports. The table and the figure show an overall improvement in the percentage of passengers cleared through the entry control point in less than 30 minutes in

	1990			1991				1992		
Airport	March	June	Sept.	Dec.	March	June	Sept.	Dec.	March	June
Sydney	91.7	95.6	93.5	95.0	95.1	97.1	94.7	96.4	97.7	95.9
Melbourne	91.3	93.3	97.2	95.9	95.6	97.7	95.5	95.9	97.8	96.3
Brisbane	92.3	93.6	93.2	93.5	94.0	96.8	93.8	94.4	95.1	93.9
Cairns	89.8	93.0	94.6	9 5.7	97.4	97.1	94.1	95.9	97.5	97.3
Townsville	96.4	94.7	90.2	98.5	86.1	99.9				
Perth	85.4	96.6	95.7	92.0	96.5	94.2	93.1	94.2	97.1	97.2
Adelaide	92.9	93.4	96.1	95.4	94.3	95.3	94.0	94.4	99.1	96.6
Hobart	97.9	97.5	93.7	92.7	87.7	97.4	94.8	97.9	97.7	93.5
Darwin	88.3	87.9	94.3	93.9	95.2	95.6	95.5	95.5	95.0	94.5
Average	90.8	94.5	94.6	94.7	95.2	96.8	94.5	95.7	97.2	9 <i>5.9</i>

TABLE 4.4 PERCENTAGE OF PASSENGERS PROCESSED THROUGH THE CUSTOMS ENTRY CONTROL POINT IN LESS THAN 30 MINUTES, BY QUARTER, JANUARY 1990 TO JUNE 1992 (per cent)

.. Figures are no longer kept for Townsville

Source Australian Customs Service.

1

Source Australian Customs Service.

Figure 4.9 Time required for the first and last bags to be delivered from international flights 1990–92

	(
	1990		19	91	1992			
Airport	First bag	Last bag	First bag	Last bag	First bag	Last bag		
Sydney	15 (14)	38 (35)	13 (15)	30 (33)	15	32		
Melbourne	14 (12)	31 (26)	12 (12)	25 (30)	13	26		
Brisbane	9 (10)	20 (20)	7 (9)	9 (18)	10	19		
Perth	9 (8)	21 (23)	8 (10)	21 (24)	6	20		
Adelaide	11 (11)	20 (25)	10 (11)	20 (22)	11	20		
Cairns	14 (11)	21 (19)	10 (8)	15 (11)	9	16		
Hobart	7 (10)	20 (25)	7 (10)	19 (22)	8	18		
Average	11 (11)	24 (24)	10 (11)	19 (22)	11	21		

TABLE 4.5 TIME REQUIRED FOR THE FIRST AND LAST BAGS TO BE DELIVERED FROM INTERNATIONAL FLIGHTS, 1990 TO 1992^a (minutes)

a. Surveys are undertaken in May and November each year. Figures in brackets are for November.

Source Australian Customs Service.

1991 and the first half of 1992, when compared to 1990. It was concluded that the level of service and infrastructure available for clearing inwards passengers adequately coped with the increase in demand over the study period.

ACS also conduct a survey of baggage processing rates in May and November each year. The standards set for baggage delivery are first bag to be delivered within 15 minutes and last bag to be delivered within 35 minutes.

Data for 1990, 1991 and the May 1992 survey are presented in table 4.5 and figure 4.9. The data show that the standards set by ACS were being met and baggage delivery times did not deteriorate over the May 1990 to May 1992 period.

The passenger processing operations for which there were no publicly available data were ticketing, check-in, and security clearance for both international and domestic passengers, baggage delivery for domestic air travel, and customs clearance of outward international passengers. With the exception of baggage delivery, measures of the average delay from the time the passenger arrives at the processing point, or joins a queue, until the procedure is complete were considered to be the most appropriate indicators for these operations. For domestic baggage delivery operations baggage processing rates as in table 4.5 would be the appropriate indicators.

Alternatives for obtaining the required data include requesting the voluntary reporting of data by service providers, extending data reporting requirements under existing legislation, or data collection by a single, external agency using sampling procedures. Ideally, the data obtained should allow indicators to be compiled which would show:

 individual airline performance, where applicable, as an incentive for airlines to provide appropriate levels of service;

- service levels available at all major airports, and at other airports on an ad hoc basis, to enable comparisons between airports;
- peak period delays as well as average times required to complete the various procedures during non-peak periods; and
- delays at comparable time periods each year so that changes in service quality over time can be monitored.

INDICATORS OF ON-BOARD COMFORT AND SERVICE

The aspect of on-board comfort and service comprises numerous characteristics. Passenger comfort and service is a major consideration in any airline's choice of aircraft type. The airlines' marketing strategies and the overall economics of the aircraft are both important in decisions on aircraft type and fit-out options such as galleys, carry-on baggage storage areas, and the pitch and width of seats.

An important determinant of on-board comfort is the space available for individual passengers. The width and pitch of seats is determined by airline management, although larger aircraft provide increased scope to maximise passenger comfort. Other characteristics of on-board comfort, such as the quality of air conditioning and the stability of the aircraft, are determined by the aircraft design.

Passengers perceptions of on-board service are frequently based on the quality of the catering services provided. Other characteristics of service include the provision of newspapers and magazines, the friendliness of cabin attendants and more recently the availability of on-board movies.

Load factors

In BTCE (1991) the Bureau considered the impact of load factors on quality of on-board and on-the-ground service. High load factors result in more crowding in airport terminals (for example, during check-in and baggage retrieval) and on-board the aircraft, and in increased ratios of passengers to flight attendants.⁷

The Department of Transport and Communications publishes load factors on the top 20 routes in its *Domestic Airline Activity Weekly Status Report* (DTC 1992). Load factors on all routes serviced by both the domestic airlines and commuter airlines are also reported in the monthly traffic on-board tabulations produced by the Department.

Analysis of the load factor data presented in appendix table I.1 showed significant increases in the average load factors in the last two quarters of 1991 and the first two quarters of 1992, when compared to the same periods in the previous year. The increase was most pronounced on the routes between the five mainland

^{7.} It can be argued that high load factors do not degrade on-board comfort and service, on the grounds that airline operations are geared to and staffed for full aircraft.

Sources BTCE, (from Department of Transport and Communications aviation statistics database).

Figure 4.10 Domestic airline passenger load factors

State capital cities, with the average load factor increasing from 69.4 per cent in the June quarter of 1991 to 77.7 per cent in the June quarter of 1992.

A long-term graph of load factors for the domestic airlines is presented in figure 4.10. With the exception of the third quarter of 1988 and the fourth quarter of 1989, more recent load factors were at historically high levels. The 1988 peak was attributable to demand generated by the Bicentennial celebrations. The 1989 peak was due to the restricted aircraft availability resulting from the airline pilots' strike. Lower load factors during the first half of 1991 reflected the increased airline capacity introduced by Compass. In the second half of 1991 load factors rose dramatically as a result of the increased demand generated by the extensive fare discount wars during that period. With the halt to Compass operations in December 1991, capacity was again reduced and load factors continued to rise in the first quarter of 1992.

A drop-off in demand during the June quarter 1992 resulted in a decrease in load factors to 74.6 per cent from 79.8 per cent in the March quarter. Beginning in mid July, weekly load factors dropped below their corresponding 1991 levels. This trend continued through August and September.

Conclusions

With the exception of load factors, there were no systematic measures of on-board comfort and service which were publicly available. Airline advertisements and media reports were monitored for information such as changes in the quality of seating and catering. These sources were the basis of

Although some improvements in the quality of service provided by the domestic airlines were implemented prior to deregulation, the increased competition which resulted from deregulation was undoubtedly the major causal factor in the airlines' improved quality of service. It could also be argued that other reform measures such as the commercialisation of the FAC and the CAA enabled quality of service to be maintained in spite of increased demands on airport and safety infrastructure. The Australian Customs Service also increased its level of service to arriving passengers.

INTERNATIONAL COMPARISONS OF QUALITY OF SERVICE

International comparisons of service quality as a basis for determining appropriate levels of quality are discussed in BTCE (1992). A number of difficulties in undertaking international comparisons of quality of service are mentioned. These include a lack of comparability of statistical measures, differences in the 'service' being compared, and differing consumer weightings on particular aspects of service.

Price-quality trade-offs present a particular problem with international comparisons in the case of domestic passenger aviation. Higher levels of quality are generally available in higher priced fare categories. Quality levels in all fare categories are, however, at least partially determined by the cost-price structure of the industry. The cost-price structure is determined by factors such as market size and the extent of regulation and competition in the industry. International comparisons of quality of service without reference to price may therefore present a misleading picture. It must also be kept in mind that the price to quality ratio will reflect consumers' preferences in competitive markets. Quality levels in any particular market may therefore not be useful as a guide to appropriate levels of quality in other markets.

Notwithstanding the above, on the basis of largely anecdotal evidence obtained from industry sources and media reports, the quality of service provided by the Australian domestic passenger aviation industry compared favourably in many respects with that available in other domestic markets. Safety, on-board comfort and service provided for discount and economy passengers, and facilities and services provided to airline club members, were most frequently reported as being generally superior to overseas. In addition, the latest International Air Transport Association figures showed that 20 per cent of all flights in Europe were delayed by an average of 20 minutes because of airport and air traffic congestion (*Australian Financial Review* 1992). This compared to the figure of approximately 13 per cent of flights at the five mainland State capital airports in Australia which arrived or departed more than 15 minutes late during the September quarter 1992.

FUTURE DEVELOPMENT OF QUALITY OF SERVICE INDICATORS

A significant deficiency in the data required for a comprehensive aviation quality of service measurement system is in regard to the quality of service provided in

airport terminals. With the merger of Qantas and Australian Airlines in September 1992 and the progressive dismantling of the barriers between international and domestic aviation beginning in the second half of 1992, terminal facilities and operations at a number of Australia's airports may require major changes. Restructuring options might include changing existing terminals to common-user domestic terminals, converting existing international terminals to both international and domestic use, and the construction of new terminal buildings. There is a need for service quality indicators which would show the effect of the reforms and the restructuring options chosen.

Passenger processing delays are considered to be the best measure of quality of service levels in airport terminals. However, there were no publicly available data from which to construct indicators of delays for domestic passengers or for outbound international passengers. The passenger processing operations which are most subject to delay as demand increases are ticketing and check-in, security clearance, and baggage delivery.

It was also considered that an extension of the data available from the Australian Customs Service on baggage delivery times for international flights, to include indicators for individual airlines, would provide an incentive for airlines to improve their performance.

Publication of on-time performance data for individual airlines at selected airports, and reporting and publication of data on cancelled flights for individual airlines, would also encourage the provision of high standards of service quality.

Classification and reporting of the reasons for delays would highlight areas where improved performance could be achieved.

Development of a consumer complaints database

One means of obtaining consumers' direct views on various aspects of service quality is through compilation and analysis of consumer complaints. At time of publication there was no central complaints database for the aviation industry. Consumers lodge complaints with one or more of several State and Federal government agencies as well as with the operators. The Prices Surveillance Authority and the Trade Practices Commission respond to consumer complaints within their jurisdiction by querying the airline concerned.

Consumer complaints could be a very valuable indicator of changes in quality of service and could indicate specific problems developing in particular market segments. For some aspects of quality, such as loss of or damage to baggage, complaints are the only possible data source.

The US Department of Transportation publishes a monthly summary of aviation consumer complaints which have been filed with it (US DOT 1992). Airlines are listed individually if the Department receives five or more complaints against them during the reporting period. In addition, the Department requires the 12 largest

US airlines to report incidences of mishandled baggage. These data are also published on an individual airline basis.

It was considered that a central consumer complaints database in Australia could be a valuable tool in monitoring quality of service and in encouraging the provision of standards of quality appropriate to consumer needs. However, further investigation of the options for establishing a centralised consumer complaints database (including the costs involved) would be required before a conclusion on its feasibility could be reached.

APPENDIX I FREQUENCY OF SERVICE PROVIDED BY DOMESTIC AIRLINES

This appendix presents data on flight frequencies, passenger numbers, route capacity and average load factors on 40 selected routes served by the domestic airlines in Australia during 1990, 1991 and the first half of 1992. It demonstrates the use of data provided by the airlines to the Department of Transport and Communications to produce time series of quality of service indicators for a particular set of routes.

The data in table I.1 were obtained from the Department of Transport and Communications traffic on-board tabulations for the domestic airlines. The passenger data represent passengers travelling non-stop between the designated centres regardless of origin and destination. Thus, passengers were counted more than once if their total journey involved intermediate stops (for example, Sydney–Melbourne–Perth).

Seating capacity on any individual route was derived by factoring up the passenger numbers by the average load factor. Passenger numbers and seat availability were included in table 1.1 to enable the analyst to more accurately interpret the trends in frequency of service over time. For example, an increase in frequency may have been due to the substitution of smaller aircraft on a particular route. There may then have been an offsetting decrease in the quality of service in regard to aspects such as on-board comfort and service.

A comparison of the June quarters in 1990 and 1992 showed that the number of trips on the selected routes increased by 28 per cent. There was a 22 per cent increase in seat numbers, with seating capacity on the Melbourne–Sydney route exceeding 1 million in the last three quarters of 1991 and the second quarter of 1992. Passenger numbers rose by 31 per cent in the June quarter of 1992 when compared to the June quarter 1990.

Comparing the June quarter figures for 1991 and 1992 showed an increase of 10 per cent in the number of trips on the selected routes. This increase occurred in spite of the demise of the original Compass Airlines in December 1991 and the discontinuing of services to Devonport by Eastwest Airlines in 1992. Although Devonport was no longer serviced by a domestic carrier, two commuter operators continued to provide regular public transport services. The number of

passengers increased by 12 per cent from the June quarter 1991 to the June quarter 1992. The demise of the original Compass Airlines was reflected in a much smaller increase of 3 per cent in seat availability and an increase in the average load factor from 67.3 per cent to 71.1 per cent.

TABLE I.1	SERVICE FREQUENCY
	AIRLINES BY QUARTER, JANUARY 1990 TO JUNE 1992

			Average	·
Route	Trips	Passengers	factor	Seats
January–March 1990				
Melbourne-Sydney	5 216	602 224	67.1	897 948
Brisbane-Sydney	3 258	383 059	74.3	515 557
Adelaide-Melbourne	1 816	186 027	74.1	250 936
Coolangatta-Sydney	1 556	138 617	81.0	171 203
Brisbane-Melbourne	1 200	132 026	73.1	180 693
HobartMelbourne	1 207	113 486	71.5	158 648
Adelaide-Sydney	1 203	122 871	78.9	155 796
Melbourne-Perth	804	100 686	77.8	129 361
Launceston-Melbourne	1 319	86 475	75.3	114 790
Brisbane-Cairns	766	71 361	70.5	101 269
Perth–Sydney	598	69 549	68.8	101 040
CanberraSydney	1 069	94 659	77.1	122 774
Canberra-Melbourne	1 119	93 085	69.3	134 322
Brisbane-Townsville	619	70 296	73.1	96 120
Melbourne-Coolangatta	471	48 465	76.8	63 078
Adelaide-Perth	482	45 564	75.3	60 510
Adelaide-Alice Springs	330	34 349	76.3	45 038
Alice Springs-Darwin	347	30 195	62.4	48 389
Brisbane-Rockhampton	340	25 245	68.2	37 034
Karratha–Perth	408	22 750	75.4	30 172
Hobart-Sydney	260	17 740	75.2	23 590
Devonport-Melbourne	361	21 164	83.4	25 366
Hamilton Island-Sydney	191	18 705	78.9	23 707
Coffs Harbour–Sydney	472	19 318	72.9	26 511
Cairns-Townsville	321	24 619	43.2	57 032
Brisbane-Hamilton Island	174	13 420	73.6	18 234
Brisbane-Darwin	186	12 327	53.0	23 273
KalgoorliePerth	368	16 896	61.2	27 608
Brisbane-Mackay	174	15 596	65.6	23 774
Alice Springs-Cairns	263	16 719	65.3	25 603
Alice Springs–Sydney	171	12 912	64.8	19 926
Darwin-Kununurra	180	9 877	71.8	13 756
Perth-Port Hedland	196	10 573	73.7	14 340
Cairns-Sydney	93	7 661	65.5	11 690
Devonport-Sydney	187	11 836	89.5	13 225
Alice SpringsAyers Rock	304	14 194	71.2	19 926
Geraldton-Perth	206	8 829	63.3	13 9 41
Sydney–Wagga	352	12 712	71.0	17 896
Mackay–Rockhampton	173	7 366	55.6	13 248
BroomePerth	114	6 015	72.3	8 320
Total	28 874	2 749 468	70.9	3 835 645

Routes	Trips	Passengers	Average load factor	Seats
April-June 1990				
Malbourna Sydnov	5 604	600 705	65 4	000 764
Briebono, Sydney	0 024 0 755	003 /95	00.4 69.0	922 / 64
Adelaida Malhauma	3 7 3 3	397 700	77.0	203 223
	1 901	203 / 00	77.0	202 001
Rishana Malbauma	1 400	149 034	72.7	205 918
Brisbarie Melbourne	1 402	132 304	72.0	183 924
Hobart-Melbourne	1 284	101 463	68.0	149 283
	1 206	121 547	77.6	156 565
Melbourne-Perth	858	89 262	73.0	122 2/7
Launceston-Melbourne	1 429	70 741	65.2	108 443
Brisbane-Cairns	856	70 729	73.3	96 536
Perth-Sydney	554	61 039	63.8	95672
Canberra-Sydney	2 043	133 184	69.2	192 370
Canberra-Melbourne	1 631	111 842	62.7	178 282
Brisbane-Townsville	1 027	92 126	71.0	129 75
Melbourne-Coolangatta	497	48 534	70.8	68 55
Adelaide-Perth	632	53 714	65.3	82 299
Adelaide-Alice Springs	368	41 041	83.1	49 368
Alice Springs–Darwin	399	42 280	7 9 .0	53 542
BrisbaneRockhampton	523	33 635	63.6	52 85
Karratha-Perth	477	26 754	77.2	34 670
Hobart-Sydney	195	11 055	69.6	15 876
Devonport-Melbourne	415	20 300	69 .1	29 364
Hamilton Island–Sydney	239	15 190	59.9	25 345
Coffs Harbour–Sydney	578	21 788	64.9	33 554
Cairns-Townsville	462	31 368	47.8	65 669
Brisbane-Hamilton Island	247	14 566	60.1	24 236
Brisbane-Darwin	234	21 109	74.9	28 170
Kalgoorlie-Perth	413	18 918	63.1	29 981
Brisbane-Mackay	359	21 714	68.1	31 870
Alice Springs-Cairns	357	16 114	50.6	31 825
Alice Springs-Sydney	354	24 764	61.9	40 028
Darwin-Kununurra	190	10 514	73.7	14 266
Perth-Port Hedland	215	12 276	79,3	15 474
Cairns-Svdnev	249	21 330	76.2	28 004
Devonport-Sydney	244	13 631	79.6	17 132
Alice Springs-Avers Rock	429	13 833	52.2	26 517
Geraldton–Perth	281	10 041	49.9	20 109
Sydney-Wagga	514	17 983	70.0	25 690
Mackay-Bockhamoton	223	8.068	40.6	19 888
Broome-Perth	124	6 932	77.6	8 929
Total	34 823	2 916 734	67.7	4 260 578

TABLE 1.1SERVICE FREQUENCY --- SELECTED ROUTES SERVED BY DOMESTIC
AIRLINES BY QUARTER, JANUARY 1990 TO JUNE 1992 (CONT.)

TADLETA	REDVICE EDECUENCY - RELECTED ROUTER REDVED BY DOMESTIC
	SERVICE FREQUENCY — SELECTED ROUTES SERVED BY DOMESTIC
	AIRLINES BY OLIARTER LANUARY 1000 TO JUNE 1000 (CONT.)
	AIRLINES BY QUARTER, JANUARY 1990 TO JUNE 1992 (CONT.)

Poutos	Trinc	Passangara	Average load	Soota
July–September 1990				
Melbourne-Sydney	5 404	618 548	71.9	859 891
Brisbane-Sydney	3 912	444 744	74.7	595 108
Adelaide-Melbourne	2 165	218 701	73.3	298 229
Coolangatta-Sydney	1 976	166 156	81.9	202 794
Brisbane-Melbourne	1 604	161 416	79.4	203 209
Hobart-Melbourne	1 221	104 428	72.9	143 183
Adelaide-Sydney	1 356	129 509	75.0	172 679
Melbourne-Perth	878	99 363	80.1	124 049
Launceston-Melbourne	1 571	70 657	62.0	113 902
Brisbane-Cairns	987	95 425	79.9	119 431
Perth-Sydney	571	64 527	79.4	81 268
Canberra-Sydney	2 597	151 305	61.3	246 827
Canberra-Melbourne	1 855	108 905	56.7	191 959
Brisbane-Townsville	1 096	99 612	77.2	128 975
Melbourne-Coolangatta	570	64 020	83.9	76 335
Adelaide-Perth	685	66 198	76.3	86 722
Adelaide-Alice Springs	374	51 463	78.7	65 364
Alice Springs-Darwin	404	51 547	74.3	69 377
Brisbane-Rockhampton	730	48 916	61.4	79 625
Karratha–Perth	499	28 366	75.9	37 389
Hobart-Svdnev	180	10 595	77.9	13 607
Devonport-Melbourne	393	20 677	75.3	27 472
Hamilton Island–Sydney	227	17 256	69.5	24 817
Coffs Harbour-Sydney	633	25 831	68.8	37 527
Cairns-Townsville	448	33 164	58.9	56 274
Brisbane-Hamilton Island	287	18 633	64.4	28 933
Brisbane-Darwin	282	26 576	78.2	33 985
Kalgoorlie–Perth	405	19 920	66.4	30 000
Brisbane-Mackay	457	24 567	62.3	39 433
Alice Springs-Cairns	336	20 042	58.1	34 476
Alice Springs-Sydney	365	31 071	72.4	42 896
Darwin–Kununurra	244	13 100	75.3	17 405
Perth-Port Hediand	207	11 817	80.2	14 741
Cairns-Sydney	312	32 488	88.0	36 904
Devonport-Sydney	223	13 856	87.1	15 908
Alice Springs-Avers Bock	464	17 028	61.3	27 763
Geraldton_Perth	312	11 910	55.0	21 655
Sydney_Wagaa	511	18 405	72 1	25 539
Mackav-Bockhampton	2.20	12 634	34 3	36 708
Broome-Perth	184	11 509	84.3	13 652
Total	37 264	3 234 885	71.7	4 476 099

Routes	Trips	Passengers	Average load factor	Seats
October-December 1990				
Melbourne_Sydney	5 099	600 202	71 1	071 274
Brisbane-Sydney	3 001	454 251	71.1	971 374
Adelaide-Melbourpe	2 308	222 526	70.4	222.090
Coolangatta-Sydney	2 330	106 127	20.1	242 621
Brisbane-Melbourne	1 665	159 020	78.6	242 031
Hobart-Melbourne	1 390	120.061	75.5	159 051
Adelaide-Sydney	1 477	141 240	73.7	101 555
Melbourne-Perth	1 1 50	138 370	79.6	176 042
Launceston-Melbourne	1 684	81 045	70.0 69.0	117 400
Brisbane_Cairns	1 110	01 040	72.2	125.062
Perth-Sydney	775	90 233 81 976	74.2	110 490
Canberra-Sydney	2 521	141 000	74.2 57.4	047.010
Capberra-Melbourno	1 007	141 902	57.4	247 210
Brisbane-Townsville	1 907	02 400	57.5	190 009
Melbourne_Coolangatta	670	67 400	80.0	121 176
Adelaide_Porth	079 727	07 407 70 200	60.3 76.0	84 009
Adelaide-Alice Springs	101	10 300	76.0	92 000
Alice Springs-Danuin	392	40 272	72.9	71 000
Risbana Rockhampton	400	40 207	30.7	71 000
Karratha-Borth	037	07 077	04.0 70 E	79 246
Hohart Sydnoy	490	2/9//	76.5	35 655
Devennet Melbourne	007 077	20 514	74.9	27 389
	377	22 908	77.1	29 / 12
Coffe Herbour, Sydney	211	20 1/3	/1.1	35 405
	002	26 007	69.8	40 125
Brishana Hamilton Island	24/	15 092	54.2	27 845
Brisbane Danuin	322	10 504	71.9	30 900
Kalagorija Barth	200	19 594	60.9	32 1/4
Risbano Maakay	300	19310	0.60	28 147
Alice Springe Cairpo	404	20 074	02.2	41 138
Alice Springs-Califis	313	19 606	65.6	29 902
Ance Springs-Sydney	345	24 091	64.4	38 651
Darwin-Kunununa Bosh Dost Lodiord	200	9 887	55.9	15 011
Ceirpe Sudney	254	12 958	71.0	18 242
Caims-Syoney	314	29 251	78.6	37 215
Alice Opringe Avera Deals	199	11 825	73.4	16 118
Alice Springs-Ayers Rock	004	21 698	58.9	36 839
Sudaou Moggo	200	11 532	02.4	18 481
Syuney–Wagga	507	17 959	/0.6	25 438
iviaukay-Hockhampton Broomo Both	385	13 32/	37.6	35 4/6
Divoine-Perin	111	6 890	83.3	8271
Total	40 105	3 408 718	69.3	4 816 037

TABLE I.1SERVICE FREQUENCY — SELECTED ROUTES SERVED BY DOMESTIC
AIRLINES BY QUARTER, JANUARY 1990 TO JUNE 1992 (CONT.)

TABLE I.1	SERVICE FREQUENCY — SELECTED ROUTES SERVED BY DOMESTIC
	AIRLINES BY QUARTER, JANUARY 1990 TO JUNE 1992 (CONT.)

			Average load	
Routes	Trips	Passengers	factor	Seats
January–March 1991				
Melbourne-Sydney	5 805	687 776	69.9	983 943
Brisbane-Sydney	4 048	452 873	71.8	630 742
Adelaide-Melbourne	2 147	215 239	74.5	288 782
Coolangatta-Sydney	2 303	193 552	73.6	262 978
Brisbane-Melbourne	1 548	143 884	76.7	187 593
Hobart-Melbourne	1 656	134 058	71.8	186 710
Adelaide-Sydney	1 378	130 865	75.7	172 873
Melbourne-Perth	1 37 9	145 585	71.1	204 857
Launceston-Melbourne	1 617	96 430	74.5	129 436
Brisbane-Cairns	1 094	90 249	74.5	121 194
Perth–Sydney	894	91 884	62.8	146 390
Canberra-Sydney	2 175	126 120	59.5	212 085
Canberra-Melbourne	1 595	106 412	63.3	168 107
Brisbane-Townsville	1 072	78 653	66.9	117 568
Melbourne-Coolangatta	760	70 940	76.2	93 056
Adelaide-Perth	644	58 761	74.2	79 157
Adelaide-Alice Springs	379	47 015	74.0	63 505
Alice Springs-Darwin	418	36 146	53.0	68 157
Brisbane-Rockhampton	609	32 294	62.4	51 781
Karratha–Perth	428	23 690	77.3	30 634
Hobart-Sydney	426	24 552	67.5	36 391
Devonport-Melbourne	366	23 810	79.2	30 050
Hamilton Island-Sydney	300	21 071	58.8	35 835
Coffs Harbour-Sydney	600	25 311	67.8	37 332
Cairns-Townsville	208	11 885	52.4	22 681
Brisbane-Hamilton Island	235	14 794	64.6	22 889
Brisbane-Darwin	240	16 438	59.7	27 550
Kalgoorlie–Perth	321	15 324	66.1	23 1 8 3
Brisbane-Mackay	414	21 374	58.6	36 474
Alice Springs-Cairns	330	19 727	67.2	29 370
Alice Springs-Sydney	353	24 749	62.9	39 347
Darwin-Kununurra	189	9 274	66.3	13 988
Perth-Port Hedland	216	10 805	69.4	15 577
Cairns-Sydney	315	26 443	69.4	38 121
Devonport-Sydney	181	10 272	69.5	14 787
Alice Springs-Ayers Rock	619	21 806	63.0	34 631
Geraldton-Perth	210	10 130	70.1	14 444
Sydney–Wagga	517	17 101	66.3	25 806
Mackay-Rockhampton	301	9 805	37.8	25 962
Broome-Perth	92	5 197	77.8	6 680
Total	38 382	3 302 294	67.4	4 730 649

·· ···-			Average	
Routes	Trips	Passengers	load factor	Seats
April–June 1991				
Melbourne-Sydney	6 468	729 284	66.4	1 098 319
Brisbane-Svdnev	4 440	508 135	68.6	740 722
Adelaide-Melbourne	2 339	223 192	75.9	294 190
Coolangatta-Svdnev	2 234	154 892	66.2	234 094
Brisbane-Melbourne	1 784	165 834	73.5	225 624
Hobart-Melbourne	1 550	119 830	70.0	171 186
Adelaide-Svdnev	1 422	127 222	74.9	169 931
Melbourne-Perth	1 355	132 778	66.7	199 167
Launceston-Melbourne	1 440	76 976	70.1	109 757
Brisbane-Cairns	1 477	132 640	71.0	186 905
Perth-Svdnev	945	97 308	62.9	154 621
Canberra-Svdnev	2 624	143 324	57.9	247 537
Canberra-Melbourne	1 751	113 820	61.5	185 073
Brisbane-Townsville	1 092	77 164	66.7	115 746
Melbourne-Coolangatta	719	56 050	68.7	81 626
Adelaide-Perth	657	53 430	66.0	80 955
Adelaide-Alice Springs	377	43 341	76.7	56 483
Alice Springs–Darwin	422	40 902	67.2	60 836
Brisbane-Rockhampton	731	44 327	70.6	62 816
Karratha-Perth	485	27 896	81.1	34 383
Hobart-Sydney	214	10 610	57.6	18 409
Devonport-Melbourne	359	19 154	65.9	29.065
Hamilton Island-Sydney	269	20 446	67.3	30 380
Coffs Harbour-Sydney	560	22 256	63.7	34 957
Cairns-Townsville	161	8 773	51.9	16 915
Brisbane-Hamilton Island	223	13 496	65.9	20 480
Brisbane-Darwin	251	21 469	72 7	29 544
Kalgoorlie-Perth	339	16 336	65.9	24 777
Brisbane-Mackay	378	19 772	60.9	32 466
Alice Springs-Cairns	309	15 271	56.3	27 124
Alice Springs-Sydney	378	30 245	73.6	41 075
Darwin-Kununurra	190	10 031	71.4	14 056
Perth-Port Hedland	216	10 861	70.7	15 362
Cairns-Sydney	394	43 313	79.2	54 711
Devopport-Sydney	182	11 354	70.0	16 212
Alice Springs-Avers Bock	370	21 127	59.8	35 310
Geraldton_Porth	214	9 484	61.3	15 471
Svdpev-Wagaa	526	10 070	77 4	24 628
Mackay-Bockhampton	370	12 690	38.8	32 678
Broome-Perth	174	10 113	80.1	12 625
Total	40 389	3 414 216	67.3	5 036 216

TABLE I.1 SERVICE FREQUENCY — SELECTED ROUTES SERVED BY DOMESTIC AIRLINES BY QUARTER, JANUARY 1990 TO JUNE 1992 (CONT.)

TABLE I.1	SERVICE FREQUENCY — SELECTED ROUTES SERVED BY DOMESTIC
	AIRLINES BY QUARTER, JANUARY 1990 TO JUNE 1992 (CONT.)

			Average load	
Routes	Trips	Passengers	factor	Seats
July-September 1991				
Melbourne-Sydney	7 364	923 425	77.3	1 194 084
Brisbane-Sydney	4 749	658 341	85.3	771 795
Adelaide-Melbourne	2 808	295 016	82.1	359 483
Coolangatta-Sydney	2 569	236 819	84.0	281 927
Brisbane-Melbourne	2 023	223 880	86.1	260 023
Hobart-Melbourne	1 488	127 469	76.2	167 2 8 2
Adelaide-Sydney	1 636	175 491	82.0	214 013
Melbourne-Perth	1 734	208 850	78.3	266 617
Launceston-Melbourne	1 440	82 216	71.6	114 827
Brisbane-Cairns	1 722	197 466	89.8	219 895
Perth-Sydney	1 112	132 084	76.1	173 490
Canberra-Sydney	2 893	176 995	64.4	274 837
Canberra-Melbourne	1 830	128 942	67.0	192 355
Brisbane-Townsville	1 101	97 134	83.9	115 728
Melbourne-Coolangatta	918	96 624	88.4	109 262
Adelaide-Perth	725	73 428	76.7	95 734
Adelaide-Alice Springs	382	35 683	83.6	42 683
Alice Springs–Darwin	459	41 167	77.1	53 394
Brisbane-Rockhampton	757	41 771	71.9	58 096
Karratha–Perth	531	30 135	78.0	38 651
Hobart-Sydney	193	12 160	64.8	18 765
Devonport-Melbourne	372	22 569	64.1	35 209
Hamilton Island–Sydney	349	31 835	80.5	39 563
Coffs Harbour–Sydney	561	26 315	74.5	35 338
Cairns-Townsville	116	8 107	68.3	11 870
Brisbane-Hamilton Island	235	14 774	64.9	22 753
Brisbane-Darwin	305	28 673	81.4	35 239
Kalgoorlie-Perth	381	18 592	67.1	27 722
Brisbane-Mackay	467	24 538	68.9	35 614
Alice Springs-Cairns	341	20 701	77.7	26 642
Alice Springs–Sydney	393	39 229	87.0	45 108
Darwin-Kununurra	208	11 472	72.6	15 794
Perth-Port Hedland	246	11 510	67.6	17 027
Cairns-Sydney	469	67 782	95.9	70 704
Devonport–Sydney	184	12 369	70.1	17 645
Alice Springs–Ayers Rock	460	28 916	63.5	45 513
Geraldton-Perth	231	9 886	63.0	15 692
Sydney–Wagga	513	18 932	80.2	23 606
Mackay–Rockhampton	278	9 046	42.8	21 152
Broome-Perth	213	12 819	82.7	15 494
Total	44 756	4 413 161	75.4	5 580 629

			Average	
Routes	Trips	Passengers	factor	Seats
October–December 1991				
Melbourne-Sydney	7 164	979 432	83.1	1 178 146
Brisbane-Sydney	5 207	682 823	82.9	823 340
Adelaide-Melbourne	2 904	319 424	84.6	377 719
Coolangatta-Sydney	3 203	289 443	81.4	355 436
Brisbane-Melbourne	2 111	235 238	84.4	278 718
Hobart-Melbourne	1 514	143 355	83.1	172 509
Adelaide-Sydney	1 818	205 883	84.4	243 841
Melbourne-Perth	1 735	216 669	83.3	260 211
Launceston-Melbourne	1 668	99 492	78.8	126 205
Brisbane-Cairns	1 760	172 375	79.9	215 648
Perth–Sydney	1 148	150 786	84.3	178 868
Canberra-Sydney	2 768	170 118	63.7	267 061
Canberra-Melbourne	1 798	136 536	70.2	194 496
Brisbane-Townsville	1 102	89 603	76.4	117 333
Melbourne-Coolangatta	857	91 576	89.4	102 434
Adelaide-Perth	844	98 383	81.3	121 012
Adelaide-Alice Springs	382	32 922	78.6	41 868
Alice Springs-Darwin	457	30 874	59.9	51 543
Brisbane-Rockhampton	1 004	48 922	72.1	67 884
Karratha-Perth	565	30 919	76.6	40 364
Hobart-Svdnev	497	28 299	58.7	48 237
Devonport-Melbourne	107	6 560	21.3	30 798
Hamilton Island-Sydney	268	27 899	73.0	38 218
Coffs Harbour-Svdnev	595	29 644	77.8	38 087
Cairns-Townsville	87	5 106	56.4	9 048
Brisbane-Hamilton Island	373	26 716	72.7	36 731
Brisbane-Darwin	358	22 419	54.2	41 338
Kalooorlie-Perth	393	19 288	67.4	28 603
Brisbane-Mackay	662	30 659	68.9	44 476
Alice Springs-Cairns	507	27 258	75.6	36 040
Alice Springs-Sydney	370	32 794	76.8	42 719
Darwin-Kununurra	199	10 563	69.3	15 242
Perth-Port Hedland	256	12 498	69.4	18 000
Cairns-Svdnev	477	60 685	85.1	71 282
Devonport-Sydney	50	3 758	26.1	14 398
Alice Springs-Avers Rock	549	33 628	64.1	52 462
Geraldton–Perth	241	9 868	59.9	16 483
Svdnev–Wagga	597	21 043	76.0	27 676
Mackav–Rockhampton	315	9 1 4 4	42.6	21 465
Broome–Perth	187	10 903	80.3	13 578
Total	47 097	4 653 505	73.8	6 859 517

TABLE I.1 SERVICE FREQUENCY — SELECTED ROUTES SERVED BY DOMESTIC AIRLINES BY QUARTER, JANUARY 1990 TO JUNE 1992 (CONT.)

TABLE I.1	SERVICE FREQUENCY — SELECTED ROUTES SERVED BY DOMESTIC
	AIRLINES BY QUARTER, JANUARY 1990 TO JUNE 1992 (CONT.)

-

			Average load	
Routes	Trips	Passengers	factor	Seats
January–March 1992				
Melbourne-Sydney	6 219	825 538	84.2	980 449
Brisbane-Sydney	4 767	544 005	77.2	704 670
Adelaide-Melbourne	2 604	259 524	83.2	311 928
Coolangatta-Sydney	3 205	279 183	75.2	371 254
Brisbane-Melbourne	2 027	199 438	84.5	236 021
Hobart-Melbourne	1 589	145 741	80.7	180 596
Adelaide-Sydney	1 648	166 832	85.5	195 125
Melbourne-Perth	1 529	181 299	91.0	199 230
Launceston-Melbourne	1 658	107 054	80.1	133 650
Brisbane-Cairns	1 514	127 162	75.8	167 760
Perth-Sydney	1 050	132 476	87.6	151 228
Canberra-Sydney	2 490	148 748	62.1	239 530
Canberra-Melbourne	1 628	122 449	68.8	177 978
Brisbane-Townsville	1 089	76 511	65.9	116 102
Melbourne-Coolangatta	939	98 356	83.3	118 074
Adelaide–Perth	721	77 920	90.2	86 386
Adelaide–Alice Springs	369	32 847	83.1	39 527
Alice Springs–Darwin	408	28 549	67.0	42 610
Brisbane-Rockhampton	992	46 668	69.6	67 052
Karratha–Perth	525	29 351	77.3	37 970
Hobart-Sydney	618	38 240	60.3	63 416
Devonport-Melbourne				
Hamilton Is-Sydney	195	20 791	67.4	30 847
Coffs Harbour-Sydney	589	27 469	74.0	37 120
Cairns-Townsville	48	2 890	58.2	4 966
Brisbane-Hamilton Is	309	20 332	64.2	31 670
Brisbane-Darwin	309	23 343	63.7	36 645
Kalgoorlie–Perth	342	16 145	64.6	24 992
Brisbane-Mackay	604	26 745	66.6	40 158
Alice Springs-Cairns	474	25 660	75.8	33 852
Alice Springs–Sydney	363	31 576	81.2	38 887
Darwin-Kununurra	186	9 605	67.3	14 272
Perth–Port Hedland	206	10 203	67.8	15 049
Cairns–Sydney	418	48 254	85.6	56 371
Devonport-Sydney			. .	
Alice Springs–Ayers Rock	501	31 860	65.7	48 493
Geraldton-Perth	185	9 538	75.6	12 616
Sydney–Wagga	543	20 559	81.5	25 226
Mackay–Rockhampton	362	9 862	40.1	24 594
Broome-Perth	155	8 670	77.5	11 187
Total	43 378	4 011 393	73.9	5 107 502

			Average	
			load	
Routes	Trips	Passengers	factor	Seats
April–June 1992				<u> </u>
Melbourne-Sydney	6 649	794 445	78.3	1 014 617
Brisbane-Sydney	4 901	517 877	72.4	715 300
Adelaide-Melbourne	2 800	252 908	74.6	339 019
Coolangatta-Sydney	3 095	239 249	68.4	349 779
Brisbane-Melbourne	2 174	197 268	77.8	253 558
Hobart-Melbourne	1 469	122 930	72.4	169 793
Adelaide-Sydney	1 821	162 335	75.8	214 162
Melbourne-Perth	1 341	139 723	80.7	173 139
Launceston-Melbourne	1 520	82 734	69.3	119 385
Brisbane-Cairns	1 698	146 539	78.0	187 871
Perth-Sydney	936	104 333	79.1	131 900
Canberra-Svdnev	2 891	160 991	58.7	274 261
Canberra-Melbourne	1 928	130 468	61.4	212 489
Brisbane-Townsville	1 100	88 201	74.9	117 758
Melbourne-Coolangatta	745	74 207	77.6	95 628
Adelaide-Perth	640	66 253	82.9	79 919
Adelaide-Alice Springs	374	35 736	79.5	44 951
Alice Springs-Darwin	398	34 180	69.6	49 109
Brisbane-Rockhampton	1 007	49 298	73.3	67 255
Karratha–Perth	550	32 318	79.9	40 448
Hobart-Sydney	541	32 503	59.2	54 904
Devonport-Melbourne				·
Hamilton Is-Sydney	187	18 3 19	68.9	26 588
Coffs Harbour-Svdnev	581	24 812	67.3	36 868
Cairns-Townsville	62	3 533	54.8	6 447
Brisbane-Hamilton Is	250	18 751	62.8	29 858
Brisbane-Darwin	345	29 005	70.9	40 910
Kalgoorlie-Perth	372	18 238	67.2	27 140
Brisbane-Mackay	665	32 839	74.3	44 198
Alice Springs-Cairns	499	23 939	67.6	35 413
Alice Springs-Sydney	364	31 755	76.2	41 673
Darwin-Kununurra	206	11 442	74.2	15 420
Perth-Port Hedland	214	10 191	67.9	15 009
Cairns-Svdnev	439	47 236	83.2	56 774
Devonport-Svdnev				
Alice Springs-Avers Bock	466	28 513	63.9	44 621
Geraldton–Perth	229	9 797	61.1	16 034
Sydney-Waga	531	19 963	81.0	24 646
Mackay-Rockhampton	313	9 362	44.5	21 038
Broome-Perth	170	8 655	71.5	12 105
Total	44 471	3 810 846	71.1	5 199 986

TABLE I.1 SERVICE FREQUENCY — SELECTED ROUTES SERVED BY DOMESTIC AIRLINES BY QUARTER, JANUARY 1990 TO JUNE 1992 (CONT.)

.. Service by domestic carrier discontinued

Source BTCE (from Department of Transport and Communications aviation statistics database).

APPENDIX II AIRCRAFT ARRIVAL AND DEPARTURE DELAYS AT MAJOR AIRPORTS

By international convention, aircraft arrivals at and departures from the terminal within 15 minutes of the scheduled times are considered to be on-time. Arrival and departure delays therefore refer to delays of 15 minutes or more.

This appendix presents a series of graphs which depict aircraft arrival and departure delays at Sydney, Melbourne, Brisbane, Adelaide and Perth airports for the September quarter in 1991 and 1992. Figures II.1 to II.5 show the percentage of flights which arrived at and departed from the various airports within 15 to 29 minutes, 30 to 44 minutes, and 45 minutes or more of the scheduled times. These delay categories were chosen on the basis that delays of varying duration represented differing degrees of inconvenience to consumers. While short delays could often be accommodated in the traveller's schedule, delays of longer duration might have serious consequences.

Figures II.1 to II.5 show that most arrival and departure delays were within the 15 to 29 minutes category while delays of 45 minutes or more occurred as frequently as delays in the 30 to 44 minutes category. For all airports there was a significant decrease in the percentage of regular public transport aircraft arrivals and departures which were delayed in 1992 when compared to 1991.

Source BTCE (from CAA flow management database).

Source BTCE (from CAA flow management database).

Figure II.4 Regular public transport flight delays at Adelaide airport

REFERENCES

Abbreviations

- AGPS Australian Government Publishing Service
- BTCE Bureau of Transport and Communications Economics
- DTC Department of Transport and Communications
- FAC Federal Airports Corporation
- US DOT United States Department of Transportation

Australian Aviation 1991, 'Regional airline directory', Australian Aviation, December 1991 (and earlier issues).

Australian Financial Review 1992, 'Recession and war land airlines in red', Australian Financial Review, 8 September, p. 10.

BTCE 1991, *Deregulation of Domestic Aviation — the First Year*, BTCE Report no. 73, AGPS, Canberra.

—— 1992, *Quality of Service: Conceptual Issues and Telecommunications Case Study*, BTCE Report no. 75, AGPS, Canberra.

Carlzon, J. 1987, *Moments of Truth,* Harper & Rowe, New York.

Craun, J. M. 1990, '*Remarks', speech to the Charles River Associates Eighth Annual Antitrust Conference,* 6 December.

Cunningham, L. F. & Brand, R. 1989, 'Evaluating the effectiveness of DOT's Air Travel Consumer Report', *Transportation Quarterly*, Eno Foundation for Transportation Inc., Westport, Connecticut, vol. 43, no. 4, October 1989.

Dempsey, P. S. 1990, *Flying Blind: The Failure of Airline Deregulation,* Economic Policy Institute, Washington, D.C.

DTC 1991a, Air Transport Statistics — Commuter Airlines 1989–90, DTC, Canberra.

----- 1991b, Air Transport Statistics - Domestic Airlines 1990-91, DTC, Canberra.

—— 1992, *Domestic Airline Activity Weekly Status Report*, DTC, Canberra, weekly issues.

FAC 1990, *Sydney Airport Draft Planning Strategy*, by consultants Sinclair Knight/Bechtel Aviation, FAC, 1990.

----- 1991a, Annual Report 1 April 1990 - 30 June 1991, FAC, Sydney.

----- 1991b, Sydney Airport Peak Period Pricing Review, July 1991, FAC, Sydney.

Ippolito, R. A. 1981, 'Estimating airline demand with quality of service variables', *Journal of Transport Economics and Policy,* January 1981.

Keating P. 1992, *One Nation,* Statement by the Prime Minister the Honourable P. J. Keating, M. P. AGPS, Canberra, 26 February.

Lancaster, K. J. 1966, 'A new approach to consumer theory', *Journal of Political Economy*, April, pp. 132–57.

----- 1971, Consumer Demand: A New Approach, Columbia University Press, New York.

Martel, N. & Seneviratne, P. N. 1990, 'Analysis of factors influencing quality of service in passenger terminal buildings', *Transportation Research Record No. 1273, Aviation, Airport Terminal and Landside Design and Operation 1990,* pp. 1–10.

McGowan, F. & Seabright, P. 1989, *Deregulating European Airlines*, Economic Policy, University of Sussex and University of Cambridge, Cambridge, Great Britain.

Morrison, S. A. & Winston, C. 1986, *The Economic Effects of Airline Deregulation*, Brookings Institution, Washington, D.C.

Mumayiz, S. & Ashford, N. 1986, Methodology for planning and operations management of airport terminal facilities', *Transportation Research Record No. 1094, Issues in Air Transport and Airport Management,* pp. 24–35.

National Consumer Council 1986, *Air Transport and the Consumer — A Need For Change?*, A report on air transport regulation in Europe by the National Consumer Council, HMSO, London.

Nyathi, M., Hooper, P. & Hensher, D. 1992, *Compass Airlines: 1 December 1990 to 20 December 1991*, Working Paper no. 92–2, Institute of Transport Studies, Graduate School of Business, University of Sydney, Sydney.

Oum, T. H., Stanbury, W. T. & Tretheway, M. W. 1990, Airline Deregulation in Canada and its Economic Effects, Working Paper no. 90–TRA-013, Faculty of

Commerce and Business Administration, University of British Columbia, Vancouver.

Ratner Associates Inc. 1992, *1992 Review of the Australian Air Traffic Services System*, Prepared for Bureau of Air Safety Investigation, Department of Transport and Communications, Commonwealth of Australia, and Civil Aviation Authority of Australia, AGPS, Canberra.

Russon, G. R. & Hollingshead, C. A. 1989, 'Aircraft size as a quality of service variable in a short-haul market', *International Journal of Transport Economics*, vol. XVI, no. 3, October 1989.

Shaw, S. 1990, Airline Marketing & Management, Pitman Publishing, London.

Smith, D. & Street, J. 1992, 'Estimating the net welfare gains from Australian domestic aviation reforms', In *Papers of the Australasian Transport Research Forum*, vol. 17, part 3, Australasian Transport Research Forum, c/o Institute of Transport Studies, University of Sydney, Sydney.

Transportation Research 1992, *Transportation Research, Special Issue — Airport Landside Planning And Operations,* New York, vol. 26A, no. 1, January 1992.

Triplett, J. E. 1986, 'The economic interpretation of hedonic methods', *Survey of Current Business*, January, pp. 36–40.

US DOT 1988, Secretary's Task Force on Competition in the U.S. Domestic Airline Industry, 1988, Department of Transportation, Washington, D.C.

—— 1990, Secretary's Task Force on Competition in the U.S. Domestic Airline Industry, Pricing Executive Summary — February 1990, Department of Transportation, Washington, D.C.

—— 1992, *Air Travel Consumer Report,* Office of Consumer Affairs, Department of Transportation, Washington, D.C., monthly.

Willis R. 1989, *International aviation: maximising the benefits*, Statements by the Honourable Ralph Willis, M. P., Minister for Transport and Communications, AGPS, Canberra, 15 June 1989.

ABBREVIATIONS

ACS	Australian Customs Service
BASI	Bureau of Air Safety Investigation
BTCE	Bureau of Transport and Communications Economics
CAA	Civil Aviation Authority
DTC	Department of Transport and Communications
FAC	Federal Airports Corporation
RPT	Regular public transport
US DOT	United States Department of Transportation

- -