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Abstract 
This paper introduces an efficient and practical population synthesis routine that could be readily 
used to create microdata in small geographies for Australian capital cities. The aim is to ease the 
challenging process of preparing the necessary geocoded microdata for microsimulation and 
incentivise further development of activity-based microsimulation models for travel demand in 
Australia. In this study, the proposed synthesis routine has been used to generate full size synthetic 
populations of households and individuals for Greater Sydney, Melbourne and Brisbane. Two 
heuristic algorithms have been formulated for data treatment before and after the synthesis process 
to improve the representation of the synthesised populations. The procedure proposed for data 
treatment before the synthesis routine ensures the consistency of the input data, whereas the 
procedure proposed for data treatment after the synthesis routine extends under-synthesised 
estimates to a complete synthetic population. The synthesis process was tested for its efficacy and 
the synthesised populations were validated extensively. This paper presents an overview of the 
synthesis routine with examples of validated experimental results for the generated synthetic 
populations. 
 

Introduction 
To date, the Four Step model remains a prevalent framework adopted for assessing and projecting 
the impact of transport policies in Australia. The model generates aggregate trips and forecasts 
aggregate travel demand. It is useful for evaluating large scale infrastructure projects and major 
capacity improvements in the transport system.  However, they are less sensitive to management 
and control of existing transport services and infrastructure. As policy measures in transport shift 
from “predict and provide” to “manage and control”, there is a need to supplement the existing 
travel demand model system with models that offer better representation and prediction of travel 
behaviour.  
 
Spatial microsimulation in activity-based travel demand modelling provides an important basis to 
analyse travel behaviour of individuals in spatial context. A spatial microsimulation framework 
consists of households and individuals with relevant attributes in fine geographical zones. The 
model design is well suited for the representation of complex travel behaviour and simulation of 
spatial interaction. The increasing demand for spatial microsimulation analysis in transport 
research has been driven firstly by, the need for policy makers to assess distributional effects from 
transport policy changes across different sub-groups of population. Spatial microsimulation 
models contain the necessary links between individuals and the geographical information that is 
useful for evaluating fine grain distributional and spatial effects of transport initiatives in urban 
and regional planning. Secondly, there is a need for more accurate and detailed projections of travel 
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demand to facilitate decision making in transport provision. The accuracy of travel demand 
projections defines the effectiveness of urban planning and infrastructure investment. Currently, 
the commonly used Four Step model for transport modelling in Australia is lacking in its capability 
to examine travel behaviour and accurately predict spatial variations in travel demand. The 
inadequacies of the Four Step model are well documented (Bhat et al. 2003, Mladenovic & 
Trifunović, 2014, Recker, McNally & Root 1986, McNally 2007). An activity-based 
microsimulation model for travel demand operates at household and person level. The model is 
able to capture interdependencies between households and individuals, linkages between activities 
and trips, and the underlying behaviour that lead to activity participation and creation of trips 
(McNally & Rindt, 2007). It is a flexible and responsive analytical tool that can be used to simulate 
the effects of policy decisions under alternate social demographic condition, transport options and 
land configuration scenarios.  
 
Thus far, Australia is yet to have a fully validated, operational, and open access microsimulation 
activity-based travel demand model that is readily to be used for transport modelling. An integral 
and critical part to building a microsimulation travel demand model is to obtain microdata of 
relevant attributes at fine geographical zones. Information at this level of detail is usually collected 
in Australian censuses. However, such comprehensive information cannot be made available in 
the public domain due to privacy reasons. Despite the increasing availability of national censuses, 
surveys and administrative data, geocoded microdata generally lacks small area demographic or 
geographic depth for microsimulation analysis. The requirement of spatial microdata remains a 
major barrier to developing a fully operational microsimulation travel demand model in Australia. 
 

What is population synthesis? 

Population synthesis is concerned with estimating unknown information at fine geographical level 
based on known aggregate information.  
  
The basic idea behind population synthesis in transport research is to construct a complete 
population with spatial micro units that is statistically representative of the actual population 
(Beckman, Baggerly & Mckay 1996). Population synthesis is a process of expanding disaggregate 
sample data to a full size synthetic population based on known distributions in the actual 
population. A synthetic population basically represents a reconstruction of one possible set of 
“best estimates” that mirrored the distributions of the actual population; where relevant attributes 
pertaining to every synthetic person and household in the entire study population are fully 
enumerated at detailed geographical level (Ryan, Maoh & Kanaroglou 2007). 
 
Population synthesis methods have been developed as viable alternatives to supplement the lack 
of completeness in spatial microdata for microsimulation analysis. These methods aim to generate 
synthetic microdata that is statistically sound enough for microsimulation while preserving the 
confidentiality of the actual population.  
 

Main Methods in Population Synthesis 
There are two main methods to population synthesis that are commonly applied in travel demand 
modelling: 

• Synthetic reconstruction (SR)  

• Combinatorial optimisation (CO) 
 

https://www.sciencedirect.com/topics/social-sciences/population-censuses
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Both methods attempt to recreate a complete list of persons and households in a population that 
are consistent with the known aggregate distributions (Huang & Williamson 2001).   

Synthetic reconstruction (SR)  

The SR method primarily relies on the Iterative Proportional Fitting (IPF) procedure. The IPF 
procedure is an iterative scaling method for estimating cell probabilities in a contingency table, 
subject to marginal constraints (Fienberg 1970a).  The application of was first introduced by 
Deming and Stephan in 1940 IPF using data from the US census of population (Fienberg & Meyer 
1981, Lomax & Norman, P. 2016).  The idea was to adjust contingency table cells from a sample 
data such that: (i) its row and column totals align with selected marginal totals obtained from cross 
tabulations of the actual population data, and (ii) the correlation structure of the sample data is 
retained after adjustments (Deming & Stephan 1940, Müller 2017). The IPF proof of convergence 
and its properties have been well established by several researchers after Deming and Stephen, 
including Bishop (1967, 1969), Brown (1959, 1976), Csiszar (1975), Fienberg (1968), Fienberg & 
Gilbert (1970), Ireland & Kullback (1968), Haberman (1974, 1984), Mosteller (1968) and 
Rüschendorf (1995). Parallel to Bishop (1967), Ireland and Kullback (1968) demonstrated that 
Brown’s proof of convergence for IPF could be extended to multi-dimensional contingency tables. 
In addition, they have proven that IPF produces unique maximum likelihood estimates for the 
table cell values given the imposed constraints, which represents a maximum entropy or minimum 
relative entropy (i.e. minimum discrimination information) solution (Birkin & Clarke 1988, Bishop 
1967, Ireland & Kullback 1968). Fienberg (1970b) has provided a detailed account of the 
mathematical development involved in IPF. 
 
Most of the population synthesisers used in travel demand modelling today are based on the IPF 
procedures proposed by Beckman, Baggerly & McKay in 1996 (Auld & Mohammadian 2010, 
McBride et al. 2016).  They were regarded as pioneers in generating individual records at fine 
geographical level to reconstruct a synthetic population for transport modelling (Müller & 
Axhausen 2011). The generated synthetic population was first applied in the TRansportation 
ANalysis SIMulation System (TRANSIMS) project (Los Alamos National Laboratory 2005). The 
TRANSIMS microsimulation model is an activity-based travel forecasting microsimulation model 
that simulates the travel behaviour of each synthetic person over 24 hours based on representative 
activities derived from survey data (Lee, KS et al. 2014).   
 
The TRANSIM population synthesiser consists of two stages: fitting and generation, which are 
typically the two principal stages for most population synthesisers that were developed after 
Beckman (Bowman 2004, Müller & Axhausen 2011, Pritchard & Miller 2012).   
 
At the fitting stage, two main type of data source are required: (i) disaggregate sample data and 
(ii) aggregate constraints. A disaggregate sample data is a representative sample file that usually 
consists of unit records drawn randomly from a population census. In TRANSIMS, the Public 
Use Microdata Sample (PUMS) provides an ideal matrix base for a seed dataset. The 1% and 5% 
sample from the US census of population offers relevant demographic attributes for households 
and persons in a collection of small geographical census areas. The sample file inheres reasonably 
reliable joint probability distributions of multiple attributes (McBride et al., 2016). The selected 
attributes used to construct a synthetic population in the sample file are referred to as control 
variables. The joint distributions of these control variables create a multidimensional contingency 
table referred to as a seed dataset (Müller & Axhausen 2011). Marginal totals from the seed dataset 
are basically Cartesian products of the control variables with each multi-dimensional cell represents 
a unique marginal total cross tabulated from two or more control variables. These marginal totals 
provide the number of households or persons with the same combination of demographic 
characteristics that define a homogenous group. 
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Aggregate constraints are a collection of demographic summary tables extracted from the fully 
enumerated population census or other sources of known aggregate data. These are one 
dimensional summary tables whereby each table contains univariate distributions in small 
geographical areas. Aggregate constraints by geographical areas assembled for each selected 
control variable also referred to as control marginal totals. 
 
Beckman, Baggerly and McKay (1996) used the IPF procedure to complete a multidimensional 
contingency for each geographical analysis zone. The IPF iterative process started with the seed 
data. The procedure provides a weighting mechanism whereby cell values in the seed data are 
repeatedly adjusted to create weights or cell probabilities that produce marginal totals closely 
matched the control marginal totals. Upon convergence, the weight or cell probabilities for the 
seed data were estimated for each homogenous group in each geographical zone. 
 
At the generation stage, the number of households for each homogenous group in the seed data 
is expanded for each geographical area. These numbers are allocated, either by multiplying the total 
number of households by the group weights estimated in the fitting stage, or by randomly drawing 
households according to the corresponding estimated weights until the expected number is 
reached. The estimated weights act as a fractional expansion factor for each household to grow 
the sample size into a full-size population. Once the allocation process is finalised, a synthetic 
population with the full properties and attributes of the sample data is constructed. 
 
The repeated probabilistic selection with replacement is the most commonly used method at the 
generation stage (Müller & Axhausen 2011, Bowman, 2004). Selection with replacement means 
that once a person or household is selected to be in the synthetic population, the sample unit is 
placed back in the sample to possibly be sampled again. In the selection without replacement 
method, once an individual or household is sampled, the sample unit is not placed back in the 
sample for resampling. This method is usually not suitable for small samples (Choupani and 
Mamdoohi 2016). There are a variety of selection methods proposed for the SR method, such as 
conditional Monte Carlo sampling (Pritchard & Miller 2009), deterministic selection (Srinivasan, 
Ma & Yathindra 2008), and altered selection probability (Auld & Mohammadian2010).  
 
The method used by Beckman, Baggerly and McKay (1996) to create the synthetic population was 
validated by creating pseudo census tracts from PUMS sample and compared the joint distribution 
of the household size and the number of vehicles in the households to the actual population. They 
have shown that the joint distributions created do not differ substantially from the true values of 
the actual population (Beckman, Baggerly & McKay 1996).  

Combinatorial optimisation (CO) 

The CO method generally generates a synthetic population by randomly allocating individuals 
from a disaggregate sample file into each geographical zone. The iterative algorithm is initiated by 
a random assignment of households from a disaggregate sample, matching the population size of 
each geographical zone. A goodness of fit statistic that indicates the extent to which control 
marginal totals are matched is calculated to measure the fit of the random selection set of 
households to the known distributions of the control variables in the zone. The assigned 
household is retained if the replacement improves the goodness of fit. Otherwise, the assigned 
household is replaced with another household. This process repeats until a given termination 
criterion to find the best fit synthetic population is reached (Cho et al. 2014). Williamson, Birkin 
and M, Rees (1998) first suggested using the CO approach to build a synthetic population based 
on the Samples of Anonymised Records (SAR) disaggregated by the smallest geographical units in 
UK (Voas & Williamson 2000). The approach was further improved by Voas and Williamson 
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(2000). They developed a ‘sequential fitting procedure’ whereby the least represented table for a 
given analysis zone is fitted first to the known aggregate controls, followed by the next least 
represented table and so on. At each stage, an assigned household that favour the fit of the later 
table at the expense of the preceding tables cannot be replaced. It was found that it is possible for 
this new solution to satisfy a level of minimum acceptable fit for every table used to constrain the 
selection of households from SAR (Huang & Williamson 2001). In Australia, Melhuish, Blake and 
Day, (2002) used CO to generate the socio-demographic profiles of synthetic households for each 
census collection district (CDs) in Australia. They benchmarked and validated the 
sociodemographic profile in the synthesised population with the census Basic Community Profile 
(BCP) by the Australian Bureau of Statistics (ABS) (Cho et al. 2014, p51). 
 
In recent years, there have been several researchers who used CO to generate synthetic populations. 
Harland et al. (2012) described using combinatorial optimisation with ‘simulated annealing’ 
method for population synthesis. The annealing threshold or terminal criterion set for the iterative 
process allows an assigned household to be randomly replaced if the replacement leads to an 
improvement in goodness of fit or if the deterioration in goodness of fits is within a set limit. The 
annealing thresholds are decreased with every replacement and the procedure stops when the 
threshold becomes zero. This empirical study demonstrates that the procedure does lead to better 
fit in generating a synthetic population, but it was computationally an intensive process (Ma & 
Srinivasan 2015). Abraham, Stefan and Hunt (2012) developed a software to match controls at 
both household and person level while accounting for constraints at multiple spatial resolutions 
(Konduri et al. 2016). They used the “stochastic hill climbing” method that is similar to the 
“simulated annealing” method but without the possibility of backsteps. That is without the option 
that could potentially deteriorate the goodness of fit in the iterative process (Ma & Srinivasan 2015). 
The algorithm is reasonably fast with high degree of accuracy (Abraham, Stefan & Hunt 2012). 
Namazi-Rad, Mokhtarian and Perez (2014) from Smart Infrastructure at the University 
Wollongong applied a CO algorithm using a quadratic function of population estimators to 
generate a dynamic synthetic population while considering a two-fold nested structure for 
individuals and households in the study area. The study used the Confidentialised Unit Record 
Files (CURFs) and 2006 Australian census tables.   
 
Both SR and CO methods are classified under the static spatial microsimulation approach, which 
simulate cross-sectional population data at a specific point in time (Lambert et al. 1994, Tanton 
2014).   

Other Emerging Methods in Population Synthesis  

In addition to SR and CO methods, there are other emerging methods in population synthesis for 
transport modelling, such as model-based generation of synthetic data. For example, Farooq et al. 
(2013) and Saadi et al. (2015) proposed a simulated-based model to create a synthetic population 
by using the Markov Chain Monte Carlo (MCMC) methods (Zhuge et al. 2018).  MCMC methods 
simulate a sequence of random draws using partial or/and full conditional probabilities from the 
actual population to create a synthetic population (Saadi et al. 2015). Another example of a model-
based generation method is to synthesise a synthetic population based on Bayesian networks. A 
Bayesian network is a graphically representation of a joint probability distributions that encoding 
probabilistic relationships among a set of variables (Sun & Eratha 2015). 

Validation 

The accuracy or goodness of fit of a synthetic population is assessed differently, depending on   
the synthesis method and the data involved (Müller, 2017). Broadly, there are two type of validation 
for evaluating the representation of a synthetic population: internal and external validation 
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(Edwards & Clarke 2009). Internal validation generally involves comparing the synthesised 
estimates in a synthetic population to the marginal constraints used in the model.  In external 
validation, synthesised estimates are compared to external data that was not used in the model. 
Internal validation aims at measuring errors introduced in the synthesis and selection process, 
whereas the purpose of external validation is to demonstrate synthesised estimates agree with the 
existing aggregate data from sources that were not used in the synthesis process (Caldwell & 
Keister 1996).  
 
Most synthetic populations generated from population synthesisers such as PopGen, PopSynWin 

CEMDAP, FSUTMS and TRANSIMS were validated internally (Choupani & Mamdoohi 2014). 
Internal validation usually examines how the magnitudes of the percentage differences vary for 
each synthesised population groups compared to the actual data. There are different statistical tests 
used to validate a synthetic population using IPF procedure and its variants, such as total absolute 

error and standardised absolute error, distribution  𝜒2, the normal and modified Z score.  Lovelace 
et al. (2015) discussed various validation techniques for verifying the integrity of a synthetic 
population generated using IPF procedure. Voas and Williamson (2001) presents an excellent 
discussion of different statistical tests to evaluate the fit of synthetic microdata estimates (Rose & 
Nagle 2016). The challenge of conducting an external validation to a synthetic population is that 
there are rarely confirmatory data by which to validate against. The limitation in validating a 
synthetic population is highlighted in several literature sources (Ballas & Clarke 2001, Birkin 2013, 
Edwards & Tanton 2013, Morrissey & O’Donoghue 2013, Ruther et al. 2013, Williamson et al. 
1998).  
 

Population Synthesis Procedure 
The synthesis procedure adopted in this study is based on the Iterative Proportional Updates (IPU) 
procedure. The IPU procedure is a modification of the IPF procedure developed by Ye et al in 
2009. The classic IPF procedure can either conform to constraints imposed at household level or 
person level but not for both simultaneously (Guo & Bhat 2007, Müller & Axhausen 2011). It is 
an issue that may significantly diminish the representativeness of the synthesised population 
(McBride et al. 2016). The IPU procedure addresses the issue in the IPF algorithm by fitting person 
and household constraints simultaneously during the fitting stage (Müller, 2017).   

General IPU Algorithm 

IPU extends from IPF by adjusting the household weights based on the person weights obtained 
from IPF (Ye, et al 2009). The IPF procedure is well established and documented as referenced in 
the previous section. The mathematical description of IPF is not included in this paper. 
 
The IPU algorithm begins by creating a frequency matrix D (Table 1). The matrix frequency D 
shows the household type u and the frequency of different person types T within each household 

for the sample data 𝑃𝑠.  𝑃𝑠 is constructed from 𝑃; where 𝑃 is a matrix of households obtained from 

the merging of a set of 𝑛 persons 𝑋 into a set of 𝑚 households 𝑌.  Each person 𝑥 is characterised 

by 𝑡𝑥 from 𝑞 different person types T, where T denotes attributes of the person. Each household 

𝑦 is characterised by 𝑢𝑦 from 𝑝 different household types 𝑈, where 𝑈 denotes attributes of the 

household. The number of persons in each person type is defined as 𝑛𝑇 = {𝑛𝑡𝑘}1≤𝑘≤𝑞 and the 

number of households in each household type is defined as 𝑛𝑈 = {𝑛𝑢𝑙}1≤𝑙≤𝑝 . The dimension of 

D is therefore |𝑃𝑠| × (𝑝 + 𝑞) (R).  An element 𝑑𝑖𝑗 of D represents the contribution of household 

𝑖  to the frequency of person/household type 𝑗 .  The purpose of 𝑃𝑠   is to reconstruct 𝑡𝑥  by 

https://www.sciencedirect.com/science/article/pii/S0198971516301338#bb0185
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estimating a weight 𝜔𝑖 associated with each person and each household of the sample that match 
the total number of each person type in X and households Y.  
  
Table 1 IPU Table 

Household 
ID 

Household 

Type 𝑢1 
… 

Household 

Type 𝑢𝑝 

Person 

Type 𝑡1 
… 

Person 

Type 𝑡𝑞 
Weight 

1 𝑑11 … 𝑑1𝑞 𝑑1𝑞+1 … 𝑑1𝑞+𝑝 𝝎𝟏 

… … … … … … … … 

⌈𝑷𝒔⌉ 𝑑|𝑃𝑠|1 … 𝑑|𝑃𝑠|𝑞 𝑑|𝑃𝑠|𝑞+1 … 𝑑|𝑃𝑠|𝑞+𝑝 𝝎|𝑷𝒔| 

WS 𝝎𝒔𝟏 … 𝝎𝒔𝒑 𝝎𝒔𝒑+𝟏 … 𝝎𝒔𝒑+𝒒  

E 𝒆𝟏 = 𝒏𝒖𝟏̂
  … 𝒆𝒑 = 𝒏𝒖𝒑̂

 𝒆𝒑+𝟏 = 𝒏𝒕𝟏̂
 … 𝒆𝒑+𝒒 = 𝒏𝒕𝒒̂

  

𝜹 𝜹𝟏 … 𝜹𝒑 𝜹𝒑+𝟏 … 𝜹𝒑+𝒒  

Source: After Lenormand & Deffuant 2013, p 3 
 

When the match between the weighted sample constraints converged to the pre-specified 
threshold, the algorithm stops. During the generation stage, the procedure randomly draw 

household from 𝑃𝑠  with probabilities corresponding to the estimated weights (Lenormand & 
Deffuant 2013). Household selection probabilities are estimated using rounded weights.  As the 
IPU procedure considers joint distributions of household and person level, households which are 
in the same household type may have different selection probabilities. Households from the 
sample data are randomly drawn until the number of households in the synthetic population 
matches the frequencies of households in the rounded joint distribution table for all household 
types. The drawing process is repeated until a synthetic population with the best possible fit is 
generated (Ye et al. 2009).   

Geometric Interpretation of IPU Algorithm 

The underlying logic behind the IPU algorithm can be explained using a two-dimensional graph. 
Assuming that there two households of the same household type (household 1 and household 2) 
that are subjected to a set of control variables. In table 2, household 1 has no individual in person 
type 1 while the household 2 has one individual.  Suppose the household type 1 constraint is 4 and 
the person type 1 constraint is 3, then the weights for satisfying both person and household 
constrains can be resolved by finding solution a for two simple linear equations. 
  
Table 2 Geometric Interpretation of IPU Algorithm 

Household Id Household Type 1 Person Type 1 Weights 
1 1 0 𝜔1 
2 1 1 𝜔2 

Constraints 4 3  

Source: Ye et al. 2009 

As shown in Figure 1,  𝜔1 on the vertical axis and 𝜔2 on the horizontal axis denote weights for 
household 1 and 2 respectively.  The iterative process begins at point S, adjusted for household 
type 1 constraint to point B, then adjusted for person type 1 constraint to point C.  These 
adjustments continue to point D and E until finally both household and person type constraints 

are met at intersection 𝐼. 
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Figure 1 Geometric Interpretation of IPU Algorithm – Feasible Solution Case 

 

Source: Ye et al. 2009 
 

However, it is not always feasible to have a perfect solution where both household and person 
type constrains are met exactly, especially when there are many constrains imposed.  Figure 2 
shows a case of infeasible solution.  The solution I where both constraints are met is outside the 
first quadrant. In this instance, the algorithm will attempt to move the coordinates closer to I from 
one iteration to another by alternating the adjustment between household and person type 

constraints.  The algorithm will eventually move the coordinates back and forth between 𝐼1 and 

𝐼2, where the two constraints intersect with the horizontal axis. As the coordinates can never reach 

𝐼, one can choose to adopt a corner solution of 𝐼1 for matching the household constraint or 𝐼2 for 

matching the person constraint. Or to adopt a solution between 𝐼1 and  𝐼2, which is a trade-off 

between matching one constraints to another. The IPU algorithm adopts the corner solution (𝐼1 ) 
corresponding to household constraints (Ye et al. 2009).   
 

Figure 2 Geometric Interpretation of IPU Algorithm – Infeasible Solution Case 

 

Source: Ye et al. 2009 

IPU Zero-cell and Zero -Marginal Corrections 

One of the most commonly encountered issues of generating a multidimensional contingency table 
in small geographies for IPU or IPF using sample data is the presence of zero values in some cells. 
These zero cells exist when there were no respondents who satisfied the parameters of the cell in 
the contingency table. However, not all zero cells in the table are true zeros.  There may be actual 

S 
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counts of persons or households in those zero cells that represent a particular set of population 
characteristics when referred to the known population. The occurrence of zero cells is inflated 
when many control variables and high geographical resolutions are used to build a 
multidimensional contingency table for the IPF procedure.  The execution of an IPF or IPU 
procedure on any zero cell values will prevent the iterations from ever reaching the constraint 
totals. As a result, the procedure fails to converge (Guo & Bhat 2007). This is referred to as the 
zero-cell problem in the literature (Müller & Axhausen 2011). Ye et al. (2009) correct the zero-cell 
problem in IPU by substituting zero cells in the zone level seed with associated probabilities 
computed from the region level seed.  However, this process poses a risk of over-representing the 
demographic group, which are infrequent homogenous groups as evidenced by the zero cell from 
the start.   These inconsistencies are corrected by imposing an upper bound threshold for estimated 
probabilities obtained at regional level when applying to zero cells.  This is to ensure that the 
estimated frequencies in zero cells are not over-estimated. If the sum of cells of the demographic 
group is greater than unity after substitution, all non-zero cell probabilities are scaled down linearly 
to reach unity (Ye et. al, 2009, Choupani & Mamdoohi 2016). 
 
The zero-marginal problem occurs when the marginal value of a control variable for a 
homogenous group is zero from the census data. In the IPU context, the initial IPF procedure will 
assign a zero to all household/person type cells in the zero-marginal category. However, when the 
denominator takes a zero value, the weight adjustments fail to proceed.  The solution implemented 
in IPU is to introduce a small value of 0.001 to the zero-marginal categories. This allows the IPU 
algorithm to proceed with computing the corresponding weights to meet with both household and 
person constraints (Ye et al. 2009).  
 

Research Scope 
In this study, Greater Sydney, Melbourne and Brisbane were selected for the synthesis routine.  
These three cities have consistently shown the highest estimated traffic volume and congestion 
cost among all major cities (BITRE 2015). 
 
The geographical coverage for each city is defined by the ABS Greater Capital Cities Statistical 
Areas (GCCSAs).  According to the ABS, GCCSAs are designed to provide a stable and consistent 
boundary that represent the social economic extent of capital cities in Australia (ABS 2011).  The 
definition of GCCSAs includes people who regularly socialise, shop or work within the city who 
live in the small towns and rural areas surrounding the city. GCCSAs are built from aggregation of 
Statistical Area Level 4 (SA4), based on the ABS Australian Statistical Geography structure (ASGS) 
(See Appendix 1). In fact, SA4s are specifically devised to reflect labour market and are used to 
facilitate the output of Labour Force Survey data (ABS, 2011). Therefore, these statistical areas 
capture a large portion of the commuting population within each state and territory. This is 
relevant in the context of travel demand modelling.  
 
This study synthesised households and individuals in occupied private dwellings at Statistical Area 
Level 1. Based on ASGS, Statistical Area Level 1 (SA1) is the smallest unit of the released census 
data. An SA1 generally contains between 200 and 800 people with an average population size of 
400 people. SA1s can be directly built up to SA2, SA3 and SA4 for coarser geographical zones. 
The research scope for this study include 10845 SA1s for Greater Sydney, 9658 SA1s for Greater 
Melbourne and 5485 SA1s for Greater Brisbane. Table 3 provides a summary of household and 
person counts from CURF and census data from the ABS table builder for the three major cities. 
Synthetic households and persons populations were generated at SA1 level based on data from the  
Although the latest Population Census was conducted in 2016, its microdata was not released 
during the course of this research study. 
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Table 3 Summary Statistics of Person and Household Counts in Greater Sydney, Greater 
Melbourne and Greater Brisbane, 2011 

 Greater Sydney Greater Melbourne Greater Brisbane 
 Census 1% CURF Census 1% CURF Census 1% CURF 
Household counts 1,598,439 16,030 1,491,729 14,939 814,364 8,153 
Person counts 4,308,248 42,995 3,912,141 38,650 2,155,966 21,292 

 

Overall, there were 840 household marginal constraints and 144 person marginal constraints 
involved in each synthesis process of the three cities. The input parameters for the synthesis 
process are shown in Figure 3. The synthesised results presented in the next section were based 
on the default input parameter setting in PopGen.  Under the default parameter setting, the 
maximum iterations for IPF is 250 and the maximum iterations for IPU is 50.  The tolerance level 
for convergence for both IPF and IPU procedures is set at 0.0001. The number of specified 
iterations affects the convergence speed and the achievable accuracy of a synthetic population. 
There is a trade-off between the computational cost and reconstruction accuracy. The question is 
whether it is possible to modify the number of iterations given the tolerance level to improve the 
representation of the synthetic population without increasing the computational cost. There has 
been emerging research exploring a faster convergence to an approximated set of minimised errors 
by neural network and deep learning (Giryes 2016). This relatively new approach is still evolving, 
and it is beyond the scope of this research study. As most iterations converged well below the 
default limit, these settings remained unchanged for all synthesis processes performed in this study. 
The configuration of input parameters for the rounding procedures were further tested later to 
examine the effects of these procedures on the performance results of the generated populations. 

 
Figure 3 Input Parameters in PopGen 
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Data Preparation and Software Implementation 

Data sources 

Two types of data from the ABS Population and Housing Census are required to prepare the input 
data for population synthesis: 

• 1% microdata from the Confidentialised Unit Record File (CURF) 

• Aggregate cross tabulation data from the ABS Table Builder, Population and Housing 
Census  

 
The CURF microdata provides the necessary seeds matrix for household and person samples, 
while the aggregate census data extracted from the ABS Table Builder provides known household 
and person constraint or marginal totals. This research study is based on the ABS Census and 
Housing population data from 2011.  While the latest census was conducted in 2016, the microdata 
(CURF) 2016 was not released until mid-2019.  

Data Preparation for Population Synthesis 

Five input data files are required to generate a synthetic population using PopGen: 

• Geographical correspondence data files 

• Sample data files at household level  

• Sample data files at person level  

• Constraints total or marginal distribution data files at household level  

• Constraints total or marginal distribution data files at person level 
 
These data files need to be assembled and pre-treated before feeding into the population 
synthesiser. As PopGen was primarily developed and designed to be used in the United States, it 
is necessary to reformat and adapt all input data from the Australian population census data files 
to generate synthetic populations for Australian cities. There are a few common features in all 
input data files: 

• The first row specifies the variable names 

• The second rom specifies the variable types: 

• Integers – bigint 

• Floating point value – double 

• Strings – text 

• There is a fix format for the first few columns in each input data file.  Field specifications 
in the first few columns are compulsory. Specifications of subsequent columns are 
optional.  
 

The following subsections outline the necessary steps involved to produce these data files. 

Geographical Correspondence  

The geographical correspondence data file provides links between the geographical classifications 
used in CURF microdata, census marginal totals from the ABS table builder and the existing built-
in geographical classification used in PopGen.  
 
The preparation of the geographical correspondence data files begins by extracting for each city 
based on GCCSA from the ABS ASGS Main Structure and GCCSA. This step defines the study 
area or geographical coverage for each city at SA1 level. The next step is to link all included SA1s 
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in each GCCSA to area codes in CURF. Although the geographical areas assigned to CURF 
microdata and census marginal totals from the table builder are both based on ASGS, they were 
coded at different geographical hierarchical level. Microdata from CURF 2011 was coded at 
Statistical Region (SR), whereas the census marginal totals from table builder were coded based on 
Statistical Area Level (SA). SR is allocated based on SA4. Hence, it is possible to link both data 
sources and ensure that the geographical coverage in CURF and in the marginal totals from census 
data are well aligned. Appendix 2 shows the geographical correspondence between CURF and 
census data for the three Australian cities at SA4. As mentioned, the build in geographical structure 
in PopGen was designed for PUMA. PUMA is generally based on the US Census geographical 
hierarchy by block group, census tract, county and state.  The compulsory fields in the first few 
columns of the geographical correspondence file are in the order of county, tract, bg (block group), 
state, pumano (PUMA number), stateabb and county name. These columns are matched with the 
ASGS geographical classifications for Australian cities (Table 4).  
 
Table 4    Data Structure for Geographical Correspondence File  

US county tract bg state pumano stateabb countyname 

 int int int int int text text 

Australia GCCSA SA4 SA1 
State 
Code 

CURF 
Area Code 

State 
GCCSA 
Name 

 
Record linkages and matching control categories 

Before preparing for the sample and marginal files at household and person level, the 
corresponding categories to each selected control variable in these data files must be aligned. 
Generally, variables in CURF are categorised in more aggregated groups with fewer categories than 
the actual census data.  It is necessary to regroup or collapse some of these groups, either in CURF, 
census data or in both to ensure that the grouping of categories for the selected control variables 
are consistent throughout. Appendix 3 and 4 show how the selected control variables were linked 
by common categories assigned at both household and person level.  
 
The data structure for household and person sample files are shown in Table 5 and Table 6 
respectively. In PopGen, the first four columns of these sample files, that is state, pumano, hhid 
and serialno, are compulsory fields. Additional control variables or attributes can be added in the 
subsequent optional fields. State and pumano codes in these sample files are assigned in 
accordance to the geographical correspondence file prepared earlier. The household identifier 
(hhid) in Table 5 and person identifier (pnum) in Table 6 are allocated by assigning a unique 
identifier to each housing or person unit. In this study, hhid is generated by creating a sequence 
increment by one. The serialno is obtained from the truncated ABS household identifier (ABSHID) 
and person identifier (ABSPID) in CURF accordingly. Both sample files also contain a unique 
identifier for each household (Hhiduniqueid) and for each person (Personuniqueid) in the last 
column of the data file.  These are unique numbers used to identify households and persons from 
the original sample file or seed data, to which in this study were assigned by concatenating the 
serialno with hhid for household sample file or with pnum for person sample file. The assignment 
of the household and person identifier is required to be handled with care to ensure each person 
is numbered correctly in the household. This is important for data manipulation before and after 
the population synthesis process. Finally, there is an extra column in the person sample file to 
specify the initial weight for each person (pweight), which is equivalent to 100 for each person in 
CURF.  
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Table 5    Data Structure for Household Sample File 

state pumano hhid serialno 
Household 
variable 1 

… 
Household 
variable X 

Hhid- 
uniqueid 

bigint bigint bigint bigint bigint bigint bigint bigint 

 

Table 6    Data Structure for Person Sample File 

state pumano hhid serialno pnum pweight 
Person 

variable 1 
… 

Person 
variable Y 

Person- 
uniqueid 

bigint bigint bigint bigint bigint bigint bigint bigint bigint bigint 

 
Balancing census total counts  

When preparing for the household- and person-level marginal distributions data files, data are 
extracted from the ABS Census Table Builder for all selected control variables.  Each extracted 
univariate dataset is a cross tabulated table containing marginal totals of the pertaining control 
variable by the selected geographical area (i.e. SA1 for this study) of the study region. These 
datasets are then collated to provide a multi-dimensional marginal data file. At this point, it is 
essential to ensure that the sum of the marginal totals for all control variables is consistent. Any 
inconsistencies in marginal totals between the control variables will lead to a breakdown of the 
IPF and IPU processes in the synthesis algorithm.  Census data in the ABS Table Builder are 
subject to random perturbation to protect the confidentiality of individuals. The randomisation 
process introduces data inconsistencies and hence inevitably affects the total marginal constraints 
of the control variables. This is a common practice in census data. However, inconsistent marginal 
constraints inhibit convergence in a constraint optimisation problem embedded within the 
synthesis process. The process of overcoming data inconsistencies in census data is known as 
Census data ‘balancing’ (Chin and Harding, 2006). This process is one of the most time consuming 
processes in the creation of small-area weights (Chin and Harding, 2006).  
 
In this study, a sequence of readjustments and redistributions steps have been formulated to 
achieve consistencies across marginal totals of each selected control variables in each geographical 
area. In a nutshell, the process involves collating and rearranging all extracted data from the ABS 
Census Table Builder in such a way that marginal counts for all selected control variables can be 
realigned across all geographical areas simultaneously. This process can be effectively and 
efficiently applied to balance the census total counts in seconds using common statistical programs 
such as SAS, R, SPSS etc.   
 
Below is a summary of the steps taken to realign the imbalance marginal totals across different 
control variables within each geographical area:   
 

1. First, marginal totals for each selected control variable from the Table Builder were 
extracted into the selected statistical program separately. This step creates a dataset for 
each control variable datasets at SA1 level for the study area. Each dataset contains the 
marginal counts by SA1 for each category of the control variable.  
 

2. Then, for each margin dataset created in step one, a new variable is introduced in each row 
to identify the associated control variable. For instance, if the margin dataset is for 
household composition (HHCD) with four categories, then the new variable is labelled 
HHCD for each SA1.  Once the new variable is incorporated for each SA1, the category 
names of the control variable are renamed to a set of generic variable names; such as Mar1, 
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Mar2, Mar3 and so on. This step is repeated for all marginal datasets where the same 
generic variable names are used to rename the categories of each control variables.  The 
purpose of this step is to ensure that when all margin datasets are concatenated, the new 
identifier created retains the identity of each variable, while the generic variable names 
allow data comparisons and adjustments simultaneously. 
 

3. At this point, the sum of marginal totals for the same control variable should be the same 
for each SA1. For example, the sum of marginal total for household composition (HHCD) 
should be the same as the sum of marginal total for dwelling structure (STRD) within the 
same SA1. However, as discussed, that is not always true due to the randomisation process 
by ABS. Table 7 compares the marginal totals of four household control variables added 
up for all SA1 in Greater Sydney: 

Table 7   Comparison of Marginal Totals from ABS Census Table Builders 2011 

Marginal totals for household counts 

GCCSA 
Greater Sydney 

HHCD 
Household 

Composition 

NPRD 
 Number of Persons Usually 

Resident in Dwelling 

STRD  
Dwelling 
Structure 

VEHD 
Number of Motor 

Vehicles 

1,601,530 1,598,439 1,593,904 1,597,383 1,590,648 

Source: ABS Census Table Builder 
 

While the marginal total for the entire Greater Sydney is 1,601,530, the marginal total for 
every selected control variable summed up from all SA1 is different. In particular, the 
difference between the household counts for variable VEHD is almost 11,000 less than 
the actual household counts for the entire Greater Sydney. The discrepancies inevitably 
also occur for each control category of corresponding control variable between the 
marginal totals from summing up all SA1s and from the entire study region. These 
differences can be substantive. 

The third step involves concatenating all margin datasets prepared in step 2 into one single 
dataset. To adjust the inconsistencies of marginal totals at SA1 level, a marginal total of 
one control variable is selected to be the benchmark for all other control variables at each 
SA1 level. Adjustments of marginal totals begin by calculating discrepancies between the 
benchmark totals and census data totals from the ABS Table Builder in the concatenated 
table.  
 

4. Then the concatenated table is split up into individual dataset again by control variables. 
The discrepancies at SA1 calculated in step 3 is redistributed among the variable categories 
based on the probability distribution for the benchmark control variable. After the 
redistributions, the marginal total in each SA1 is now equal to the benchmark total.  
However, the probability redistribution process produces non integer values. These values 
are rounded up to the nearest integers.  The rounding up process slightly distorted the 
perfectly adjusted marginal totals and required a second round of alignments with the 
benchmark totals. These misalignments from rounding were eliminated by adjusting the 
last category of each variable with a non-zero value. The process continues until all 
marginal totals for each control category is adjusted to equal the benchmark marginal total 
at SA1 again. Step 4 is repeated for every control variable.  
 

5. The final step concatenates all datasets adjusted in step 4.  The balances of marginal totals 
for each control variables are checked again to make sure that they are consistence at SA1 
level. All processed marginal datasets are then merged again by SA1 to form one large 
dataset. The merged dataset should contain columns with marginal totals of all categories 



P a g e  | 15 

 

 

of the selected control variables and each row represents a geographical area (SA1) of the 
study region.  
  

The balancing census counts process discussed above are applied to both household and person 
marginal data files.  Once both data files are consistent in marginal totals, each file is merged with 
the geographical correspondence file created before to fit into the build-in geographical structure 
of the population synthesiser.  In this study, SAS has been used for balancing the total counts of 
the census data.  

The data structure for marginal marginal distribution data files at household level and person level 
are as shown in Table 8 and 9.  The first four columns of these files are compulsory fields, that is 
state, county, tract and bg.  Subsequent fields are marginal totals listed in one column for each 
category of the selected control variable.  When the marginal totals for every control category of 
all control variables are added in the optional fields, these files provide the marginal distributions 
or constraints that the synthetic population strives to match at household and person level. Now 
all input datasets are ready for population synthesis. 

Table 8    Data Structure for Marginal Distribution Data File at Household Level 

state county tract bg 
Household 
Variable 1 
Category 1 

… 
Household 
Variable 1 

Category N 
… 

Household 
Variable X 
Category 1 

… 

Household 
Variable X 
Category 

N 

bigint bigint bigint bigint bigint … bigint … bigint … bigint 

 

Table 9    Data Structure for Marginal Distribution Data File at Person Level 

state county tract bg 
Person 
Variable 1 
Category 1 

… 
Person 

Variable 1 
Category N 

… 
Person 

Variable Y 
Category 1 

… 

Person 
Variable Y 
Category 

N 

bigint bigint bigint bigint bigint … bigint … bigint … bigint 

 
The IPU procedure is solely based on a mathematical algorithm. The performance of the IPU 
algorithm relies on the quality and integrity of input data. Any inconsistencies in the input data 
would prevent the mathematical algorithm from producing a synthetic population that meets the 
acceptable validation criteria. Data consistencies must be maintained in population totals for 
person and household variables, assignments of sample serial numbers, and links in geographical 
correspondence for all input datasets.  

Software Implementations 

To date, PopGen is the only standalone software that uses the IPU algorithm. As discussed earlier, 
the software was developed in 2009 by Karthik Kondari and Bhargava Sana from the School of 
Engineering at Arizona State University based on the IPU algorithm by Ye et al. (2009).   
 
PopGen was mainly developed and designed to be used in the US. The built-in graphic interface 
features and spatial data are not applicable to other countries and the mapping of simulated study 
region outside the US is not possible within the system. As discussed in previous sections, 
adaptations of input data are necessary as the designated data structure and format were formatted 
in accordance with PUMA. 
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PopGen is implemented using a suite of python based open-source software and uses MySQL as 
the database manager (Figure 4). Essentially, the GUI based PopGen software application integrate 
multiple open-source software on a platform to deploy multiple interdependent stacks of codes. 
PopGen uses MYSQL to manage data. PopGen 1.1 generally works with most recent versions of 
Window operating system.  The supplementary software package which support PopGen can be 
downloaded at https://www.mobilityanalytics.org/popgen.html#Software. The link also provides 
instruction for installation. However, the application of multiple open-source software on a 
proprietary platform often creates complex issues, such as transparency, compatibility and 
reliability of the open-source software. Most open-source software evolves over time, but 
structured supports and updates are limited. There are many ongoing parallel developments for 
various open-source software. It is not always clear what functionalities are present or improved 
upon in each updated version. The assembly of multiple updated versions of open-source software 
only works when all software versions in PopGen are stable and compatible with the operating 
system.   
  
Figure 4 PopGen: Open Source Framework 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Source: ASU 2009 

 
Below is an overview of PopGen methodology (Figure 5). The IPF procedure is first applied to 
the priors adjusted household/person type sample data and also household /person marginal 
distributions. These seed data are then adjusted to account for the zero-cell problem and also the 
zero-marginal problem. The IPF procedure proceeds to estimate number of person/household 
type in each cell.  Next, the IPU procedure is used to estimate household level sample weights that 
satisfy constraints obtained from IPF.  After the IPU procedure, the IPU computed weights are 
used as the selection probabilities to construct a synthetic population. Monte Carlo drawing 
procedures are used in the household selection process.   

 
PopGen is menu driven. In summary, there are six major steps in the setup phase: 

Step 1 Create a new project for a region. This includes assign a project name, select a project file 
location and enter the project descriptions. 

Step 2 Specify a geographical resolution. For the case of Australian cities, the only option is to 
choose Traffic Analysis Zone (TAZ), which is a geographical resolution that offers the 
flexibility to specify your own geographical correspondence other than PUMA. 

Step 3 Specify sample files for household and person level and their file locations. 

Input Data 

Results 

Synthesiser Core 
(Algorithm) 

MySQL 

Python 

QGIS 

PyQt 

https://www.mobilityanalytics.org/popgen.html#Software
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Step 4 Specify marginal files for household and person level and their file locations. 
Step 5 Establish MYSQL connection.  
Step 6 A project summary of all selected options in previous steps is displayed. Changes of these 

selected setting is possible if there is a need. 
 

Figure 5 Overview of PopGen Methodology 

 
 
Once a new project is created, the next stage is to import and process all the input files prepared 
earlier to a MySQL database. This can be carried out under the data menu. The final step of the 
importing process also involves downloading and extracting the shape files containing the 
boundaries of the geographies of interest. This is optional. The data menu also offers the options 
to display the imported data files and modify marginal distributions. The display option allows 
checking of import data, ensuring that the read in data are formatted correctly and designated to 
the right file locations.  
 
The final stage before running the synthesis process is to set the corresponding variables and 
specify the run parameters under the synthesizer menu option. The setting of corresponding 
variables is for establishing correspondence between the control categories of households and 
persons. The option for linking the group-quarters is not required for Australian data. This is 
where the number of household and person control variables for running the population synthesis 
is specified. Correspondences must set for at least one control variable in household and person. 
Below is a list of control variables used in running the synthesis routines for this study. Overall, 
840 household type constraints and 144 person type constraints have been imposed on the 
synthesis process in this research study (Table 10).  
 
It is also under the synthesizer menu option, the parameters/setting allows for four type of 
adjustments: 

• IPF related parameter 
For specification of tolerance level for convergence and maximum number of iterations in 
the IPF procedures.  

• IPU related parameter 

Household Selection Process

Households are randomly drawn from the household sample based on the estimated 
household weights from IPU until a complte synthetic population is generated

Sample Weight Generation

Estimate household level sample weights using IPU algorithm that satisfy constraints 
obtained from IPF

Iterative Proportional Fitting

Run IPF to estiamte person/household type constraints
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For specification of tolerance level for convergence and maximum number of iterations in 
the IPU procedures.  

• Synthetic population draw-related parameters 
For specification of the maximum number of draw and the threshold level of the p-value 
to achieve a desirable synthetic population 

• Rounding procedure 
The rounding procedure is used to convert estimated weights with decimal values to 
integers.  

 
Table 10 Selected Household and Person Control Variables for Population Synthesis 
 

Control Variables at Household Level Control Variables at Person Level 
HHCD Household Composition Agep Age 

HHCD1 One family household Agep1 0-4 years 

HHCD2 Two or more family household Agep2 5-9 years 

HHCD3 Non- family household Agep3 10-14 years 

HHCD4 Other groups Agep4 15-19 years 

  Agep5 20-24 years 
STRD Dwelling Structure Agep6 25–29 years 

STRD1 Separate house Agep7 30–34 years 

STRD2 Semi-detached, row Agep8 35–39 years 

STRD3 Flat, unit or apartment Agep9 40–44 years 

STRD4 Other dwelling Agep10 45–49 years 

STRD5 Other groups Agep11 50–54 years 

   Agep12 55–59 years 

NPRD Number of people (Derived) Agep13 60–64 years 

NPRD1 1 person Agep14 65–69 years 

NPRD2 2 persons Agep15 70–74 years 

NPRD3 3 persons Agep16 75–79 years 

NPRD4 4 persons Agep17 80–84 years 

NPRD5 5 persons Agep18 85 years and over 

NPRD6 6 persons or more     

NPRD7 Not applicable Sexp Sex 

  Sexp1 Male  

VEHD Number of Motor Vehicles Sexp2 Female 

VEHD1 None     

VEHD2 1 motor vehicle Lfsp Labour Force Status 

VEHD3 2 motor vehicles Lfsp1 Employed 

VEHD4 3 motor vehicles Lfsp2 Unemployed 

VEHD5 4 or more motor vehicles Lfsp3 Not in the labour force 

VEHD6 Other groups Lfsp4 Other groups 

Total Number of Household type constraints = 840 Total Number of Person type constraints = 144 

 
Note that PopGen allows a project to test up to five different scenarios under the scenario option 
on the menu bar in the PopGen interface. The scenario option offers the flexibility to test a number 
of different settings, including the number of household- and person-level control variables, 
geographies and changes in selection criterion for the IPF and IPU algorithms. After all the 
necessary configuration and specifications of the new project is completed, the synthesis process 
can be initiated by proceeding to run the synthesiser under the synthesizer menu option. This step 
will prompt the selection of geographies included for running the new project. At least one or 
more geographies can be selected for starting the process of population synthesis. After all selected 
geographies are highlighted and transferred into the synthesis process, it is time to execute the 
synthesis algorithm. Permission will be requested for pre-processing the data for any changes in 
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the control variables and their categories. The progress of the population synthesis can be 
monitored from the output screen. 
 
Upon completion of the synthesis process, synthesised results can be viewed for the entire study 
region or at the individual geographical level.  There are four options to examine the synthesis 
results using the results menu:   

• Average Absolute Relative Difference (AARD) shows the distribution of the AARD values 
of geographies selected for population synthesis 

• P-value shows the distribution of p-values for all geographies selected for population 
synthesis. 

• Distributions of household attributes compares numbers of the selected control variables 
at the household level generated from the synthesis process and those from the marginal 
data files (the actual marginal distributions from census data). 

• Distribution of person attributes compares numbers of the selected control variables at 
person level generated from the synthesis process and those from the marginal data files 
(the actual marginal distributions from census data). 

 
The built-in analysis of the synthesised results is fairly limited, however in depth analysis of the 
results is possible using other software. The synthesised households, persons and performance 
statistics can be easily exported to another software application in CSV or tab-delaminated format. 

 

Synthesised Estimates  
This paper mainly features the synthesised estimates and performance results for Greater Sydney 
as an example to illustrate the validation process, testing of IPU algorithm and data treatment after 
the synthesis process. The validation process gauges if the synthetic data reflected the source data 
and the relationships between the control variables were retained (Knight et al. 2017). Further 
statistical tests were carried out to evaluate the goodness of fit of the generated synthetic 
populations.  To fundamentally assess whether the IPU algorithm produced reasonable spatial 
allocations of the control variables, the synthesised results were mapped and compared to the same 
variables from the actual census data. Detailed descriptions and discussions of the synthesis 
process and performance results for all three cities can be found in Lim, 2019. 

Synthesised Households, Greater Sydney 

Overall, the synthetic population generated produced almost a virtual match to the actual 
population at household level for Greater Sydney, with zero percent difference in percentage. 
There is a discrepancy of -4.4 percent between the actual number of persons and the synthesised 
number of persons for Greater Sydney (Table 11). The issue of under representation of synthetic 
persons is investigated further in the next section and the results are rectified by a heuristic 
algorithm proposed for this study in the later section. 
 
Table 11 Comparison of Overall Synthesised and Actual Population of Greater Sydney, 2011 

 Actual Synthesised Difference (%) 

Households 1,598,439 1,598,433 -0.00 

Persons 4,308,248 4,118,543 -4.40 

 

Figure 6 provides overall household aggregate distributions by the selected control variables for 
the actual and synthesised data. The aggregate comparisons by household attributes show that the 
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synthesised household distributions of these variables are generally closely matched with the actual 
distributions.  
 
Figure 6 Household Estimates at SA1 by Control Variable, Greater Sydney 2011 

 

 
Table 12 presents the distributions by the household attributes in percentage between the 
synthesised and actual data.  The percentage difference for each category of the control variables 
were calculated. As shown, the discrepancies in percentage points for each sub population group 
by the control variables were all within ±1%.  
 
Table 12 Distribution of Actual and Synthesised Population at SA1 by Household Attributes, 

Greater Sydney 2011 

 Actual Synthesised Difference 

 % % % point 

Dwelling Structure    

Separate house 59.71 60.36 -0.65 
Semi-detached, row or terrace house, town house, etc. 12.68 12.09 0.59 
Flat, unit or apartment 26.96 26.99 -0.03 
Other dwelling 0.50 0.45 0.06 
Other 0.14 0.11 0.04 
    
Household Composition    
One family household 67.19 68.07 -0.88 
Two or more family household 2.30 1.83 0.47 
Non-family household 25.56 25.18 0.38 
Other 4.95 4.92 0.03 
    
Number of Persons Usually Resident in Dwelling    
1 person 21.57 21.96 -0.39 
2 persons 29.35 29.82 -0.47 
3 persons 16.40 16.39 0.01 
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Table 12 Distribution of Actual and Synthesised Population at SA1 by Household Attributes, 
Greater Sydney 2011 (continued) 

 Actual Synthesised Difference 

 % % % point 

 
4 persons 16.73 16.71 0.02 
5 persons 7.42 7.11 0.30 
6 persons 3.51 3.16 0.35 
7 persons 5.01 4.84 0.17 
    
Number of Motor Vehicles     
None 11.60 11.81 -0.20 
1 motor vehicle 37.69 37.06 0.64 
2 motor vehicles 32.15 31.64 0.51 
3 motor vehicles 8.69 8.85 -0.17 
4 or more motor vehicles 3.12 3.57 -0.45 
Other 6.74 7.07 -0.33 

 
Figure 7 shows the number of synthesised households compared to the number of actual 
households at SA1 level.  The upper chart shows the aggregate totals between actual and 
synthesised number of households by SA1, and the lower chart shows the percentage difference 
between the actual and synthesised households for each SA1. The number of synthesised 
households were perfectly matched with the actual households at every synthesised SA1 for 
Greater Sydney. There is no percentage difference between the two distributions. This is expected 
at household level.  The IPU algorithm prioritised matching the distributions of all selected control 
variables at household level.  
 

Figure 7 Distributions of Actual and Synthesised Households at SA1, Greater Sydney 2011 
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Synthesised Persons, Greater Sydney 

Figure 8 provides overall distributions of persons by the selected control variables between the 
actual and synthesised data.  
 
The overall underestimated number of persons of the IPU algorithm is reflected in each of the 
person control variable (Table 13). Table 13 presents the frequency distributions between the 
synthesised and actual data.  It can be seen that the differences in percentage points for the 
distributions of person control variables are mostly within one percent point from the actual 
distributions. Comparatively, percent differences between the actual and synthesised persons by 
person attributes are smaller relative to the number of synthesised households by household 
attributes. In fact, the spread of the distributions for synthesised persons by gender and age 
matched the actual distributions very well.  
 
Figure 8 Person Estimates at SA1 by Control Variable, Greater Sydney 2011 

 

 
 

Table 13 Distribution of Actual and Synthesised Population at SA1 by Person Attributes, Greater 
Sydney 2011 

 Actual Synthesised Difference 

 % % % point 

Gender    

Male 49.09 49.18 -0.06 
Female 50.91 50.82 0.06 
    
Age    
0-4 years 6.93 7.09 0.16 
5-9 years 6.38 6.47 0.08 
0-14 years 6.22 6.34 0.12 
15-19 years 6.31 6.36 0.05 
20-24 years 7.05 6.82 -0.22 
25–29 years 7.84 7.67 -0.17 
30–34 years 7.72 7.72 -0.01 
35–39 years 7.66 7.66 0.00 
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Table 13 Distribution of Actual and Synthesised Population at SA1 by Person Attributes, Greater 
Sydney 2011 (continued) 

 Actual Synthesised Difference 

 % % % point 

 
40–44 years 7.31 

 
7.32 

 
0.01 

45–49 years 7.05 7.07 0.02 
50–54 years 6.60 6.56 -0.04 
55–59 years 5.76 5.8 0.04 
60–64 years 5.19 5.2 0.01 
65–69 years 3.84 3.85 0.00 
70–74 years 2.91 2.89 -0.02 
75–79 years 2.21 2.21 0.00 
80–84 years 1.69 1.69 0.00 
85 years and over         1.31 1.29 -0.02 
    
Labour Force Status    
Employed 47.21 47.85 0.65 
Unemployed 2.85 2.45 -0.39 
Not in the labour force 25.39 25.51 0.13 
Not stated 24.56 24.18 -0.38 

 
There were small variations by percentage between the actual and synthesised persons at SA1 level.  
In Figure 9, the top chart shows the aggregate number of synthesised persons versus actual persons.  
The variations are not prominent and hardly observable as the percentage difference in each SA1 
is between ±0.005 percent. In fact, 99.7 percent of the synthesised persons are accurate to 0.001 
percent difference when compare to the actual number of persons by SA1. Overall, the number 
of synthesised persons were reasonably matched with the actual persons at every synthesised SA1 
for Greater Sydney. 
 
Figure 9 Distributions of Actual and Synthesised Persons at SA1, Greater Sydney 2011 
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Performance Measures 
Performance Statistics 

Three performance measures were used to gauge the goodness of fit of the generated synthetic 
populations:  

• Average Absolute Relative Difference 

• 𝜒2 statistics and P-value 

• Validation of Spatial Distribution by control variables  

Distribution of Average δ Value 

The Average Absolute Relative Difference (AARD) measures the average deviation of the 
weighted sums with respect to the household/person type constraints. The average value across 
all constraints is denoted by δ Value and serves as an overall goodness of fit measure for each 
complete iteration in the IPU algorithm.  The δ Value is useful in monitoring the convergence of 
the IPU algorithm. However, it is not an appropriate measure of fit for the synthetic population 
as the differences in magnitude between the synthesised actual distributions are concealed in the 
way δ Value is derived. Figure 10 displays a positively skewed distribution of the δ values with long 
tail, whereby more than 90% of SA1s for Greater Sydney were concentrated on the lower ranges.  

Figure 10 Distribution of 𝛿 Values at SA1 Level, Greater Sydney 2011 

 
 
Note that less than one percent of SA1s have been observed to have δ values which fall into the 
higher end of the spectrum in the three charts above. These outliers arise possibly from the 
inherent variability of the sample data.  It is possible that an outlier was a result of legitimate 
random sampling from the population. Sample size plays a role in the probability of outlying values 
(Osborne and Overbay 2004). Within a normally distributed population, a given data point is more 
likely to be drawn from a highly concentrated area of the distribution, rather than from one of the 
tails (Evan 1999; Sachs 1982). A large sample tends to resemble more of the population from 
which it was drawn, and thus the likelihood of the occurrence of outlying values becomes greater. 
In other words, there is about a one percent chance of getting an outlying data point from a 
normally distributed population.  That means, on average there is about one percent of the sample 
data points that are three standard deviations away from the mean (Osborne and Overbay 2004). 
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Distribution of Chi-Square Statistics  

An alternate measure of fit for the synthesised data is the Chi-square ( 𝜒2 ) statistic.  𝜒2  is 
commonly used to statistically compare two distribution of interest. The Chi Square distribution 
is the distribution of the sum of squared standard normal deviates. A standard normal deviate is a 
random sample from the standard normal distribution. The degrees of freedom of the distribution 

is equal to the number of standard normal deviates being summed. The 𝜒2-distribution with k 
degrees of freedom is the distribution of a sum of squared k independent standard normal random 
variables. The chi-square curve approaches normal distribution as the degree of freedom increases. 
A chi-square goodness of fit test determines if a sample matches a population. In the context of 

this study, the 𝜒2  statistics serve as an appropriate measure of fit to evaluate the statistical 
differences between the joint distributions obtained from the IPU algorithm and the actual joint 
distributions.   
 

Figure 11 Distribution of 𝜒2 Values at SA1 Level, Greater Sydney 2011 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 12 Distribution of p-values at SA1 Level, Greater Sydney 2011 
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Figure 11 shows the distribution of 𝜒2 values with 143 degree of freedom and Figure 12 shows 
the distribution of p-value across all SA1 in Greater Sydney in 2011.  The average p-value across 
10,487 SA1 in Greater Sydney is 0.9824, indicating a high level of confidence that the synthesised 
joint distribution matches the actual joint distribution.  In fact, 96.4 percent of all SA1 in Greater 
Sydney has a corresponding p-value of more than 0.99, of which nearly 60 percent of those p-
value are very close to unity.   

Validation of Spatial Distribution by Control Variable 

To fundamentally assess whether the IPU algorithm produced reasonable spatial allocations of the 
control variables, the synthesised results were mapped and compared to the same variables from 
the actual census data.  
 
There is a basic feature in PopGen for plotting thematic maps households or persons that is linked 
to an open source mapping software; Quantum Geographic Information System (QGIS). 
However, this feature is not available for any input data outside the United States.  Hence, the 
thematic mapping for any non-US cities need to be conducted using other independent mapping 
tools. MapInfo is used for the analysis presented in this section.  The spatial data for Greater 
Sydney, Melbourne and Brisbane were obtained from the ABS website. These shape files for 
mapping are readily available from the link below: 
 
https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1270.0.55.001July%202011?Open
Document  
 
These maps are in the Mapinfo and ESRI (Environmental Systems Research Institute) format. 
Depending on the software, both formats are commonly used for mapping. 
 
The number of synthesised and actual households and persons by selected subcategories of the 
control variables at SA1 were aggregated to SA3 for visual comparisons. To obtain percentage 
difference in number of households and persons generated compared to the actual population, the 
percentage distribution by the control variables across selected subcategories were calculated for 
each SA3 and then subtracted from the percentage distribution of the equivalent actual data. As 
the accumulative differential effects of these distributions showed very minimal differences at finer 
level of geography (i.e. SA2 and SA1), mapping results at spatial resolution smaller than SA3s could 
not effectively provide clear visual distinctions between synthesised and actual distributions. This 
validation process helps to determine whether the population synthesis process have accurately 
recreated the spatial variation and retained the spatial heterogeneity of the actual data. 
 
The following maps compare the spatial distributions of aggregated synthesised and actual 
estimates for each selected subcategory of the control variables by SA3.  In each figure, two smaller 
maps on the side provide a visual comparison of the aggregate distribution by SA3 for either the 
number of households or persons. The bigger map on the right displays the positive and negative 
accumulative differential effects in percentage for the corresponding subcategory of a control 
variable. If the percentage differences are positive, indicating over synthesised percentages of 
households or persons, the range of these percentage differences are shown in modular colour of 
blue. Whereas if the percentage differences are negative, indicating under synthesised percentages 
of households or persons, the range of these percentage differences are shown in the modular 
colour of red.   
 
The synthesised and actual results were mapped for household composition (one family household 
and multiple family household) and for labour force status (employed and unemployed persons) 
for Greater Sydney. Figure 13 shows the spatial allocation of IPU estimates for one family 

https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1270.0.55.001July%202011?OpenDocument
https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1270.0.55.001July%202011?OpenDocument


P a g e  | 27 

 

 

household in Greater Sydney in 2011. The distribution of the synthesised results was nearly 
identical to the actual distribution, asserting that the spatial variation of the actual distribution was 
recreated in the synthesised distribution and the spatial heterogeneity is retained throughout the 
synthesis process. The accumulative percentage differences were within the range of ±0.04 percent.  
Twelve SA3s were marginally under-synthesised, of which eleven of them are within -0.01to 0.02 
percent. The only SA3 with a slightly higher percentage difference of -0.05 percent for the number 
of synthesised one family household is in Sydney inner city, follow by a percentage difference of -
0.02% in both Gosford and Cronulla-Miranda-Caringbah.  The rest of SA3 in Greater Sydney were 
minimally over synthesised between 0.01 to 0.02 percent with two SA3 (Marylands – Guildford 
and Fairfield) at a differential percentage of 0.03 percent.  
 
Figure 13 Synthesised and Actual Distribution of One Family Households in Greater Sydney 2011 

 
 

Figure 14 Synthesised and Actual Distribution of Multiple Family Households in Greater Sydney 
2011 
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Figure 14 shows nearly similar distributions between synthesised and actual number of multiple 
family households. Gosford and Wyong appeared to have marginally under synthesised by a 
percentage of 0.52 percent and 0.8 percent respectively. Fairfield was slightly over-synthesised by 
0.71 percent. 
 
Figure 15 Synthesised and Actual Distribution of Employed Persons in Greater Sydney 2011 

 
 
Figure 16 Synthesised and Actual Distribution of Unemployed Persons in Greater Sydney 2011 

 
 
The spatial distribution for synthesised employed and unemployed persons is also consistent with 
the actual distribution with marginal differences in percentages (Figure 15 and Figure 16). The 
highest percentage difference is in Sydney inner city where the employed persons were over 
synthesised by 0.04 percent and Strathfield-Burwood-Ashfield were under synthesised by 0.03 
percent compare to the actual number of employed persons (Figure 15).  
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Figure 16 displays higher variations in the percentage differences between synthesised and actual 
unemployed persons. Wyong, Gosford, Blacktown, Mount Druitt, Paramatta, Maryland-Guildford, 
Fairfield and Bringelly-Green Valley were all over synthesised between 0.20 to 0.26 percent, while 
Warringah, North and South Eastern Suburbs and Cronulla-Miranda-Caringbah were under 
synthesised between 0.12 and 0.15 percent. However, these differential in percentages is relatively 
minimal.   
 

Testing of IPU Algorithm 
In this section, four different scenarios were set up to gauge the efficiency and efficacy of the IPU 
algorithm. These experiments were conducted in all three cities to test the computational time and 
performance results. 
 

• Scenario 1 Pre-synthesis zero marginal totals adjustment  
• Scenario 2 Change in control categories 

• Scenario 3 Change in geographical resolution 

• Scenario 4 Change in rounding procedure 
 

Scenario 1 Pre-synthesis zero marginal totals adjustment 
This scenario tests if eliminating zero marginal totals in the input data for marginal totals prior to 

the synthesis process would improve the synthesised results and performance. Table 14 shows the 
SA1 counts before and after the zero marginal corrections for the three cities. In this 
experimental run, the input data for household and person marginal totals were adjusted to 
eliminate zero marginal totals before feeding into the synthesis process. Zero marginal totals 
include:  
 

• marginal totals with zero households and zero persons in the corresponding geographical 
zone; 

• marginal totals with zero households and non-zero persons in the corresponding 
geographical zone and; 

• marginal totals with non-zero households and zero persons in the corresponding 
geographical zone. 

 
From the ABS Table Builder 2011 census, Greater Sydney consists of 10,845 SA1s, of which 305 
SA1s had zero households and zero persons; 51 SA1s had zero households and non-zero persons 
and two SA1s had households with zero persons. Hence, after eliminating all combination of zero 
marginal totals by SA1, the total synthesised SA1 for Greater Sydney was 10,487.  
 
Table 14 SA1 Counts for Greater Sydney, Greater Melbourne and Greater Brisbane, 2011 

Number of SA1  Greater Sydney Greater Melbourne Greater Brisbane 
Before Zero Marginal Correction 10,845 9,658 5,485 
After Zero Marginal Correction 10,487 9,420 5,333 

 
Scenario 2 Change in control categories 
This scenario tests if reduction in control categories affects the performance results and the extent 
of the computational time. In this experiment, three instead of four household control variables 
were used. They are dwelling structure, household composition and number of motor vehicles per 
household. This combination of household control variables reduced the household constraints 
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from 840 to 120. The number of constraints for person control variables were also reduced from 
144 to only 18, where by only gender and age were included in the experimental run.  
 
Scenario 3 Change in geographical resolution  
This scenario tests the performance and computational time of changing geographical resolution 
from SA1 to SA2. For Greater Sydney, the geographical zones were combined from 10,485 SA1s 
to 270 SA2s, Greater Melbourne from 9,658 SA1s to 278 SA2s and Brisbane from 5,485 to 246 
SA2s. 
 
Scenario 4 Change in rounding procedure 
This scenario tests if changing the rounding procedure in PopGen affects the performance results 
and computational time. The synthesis results presented in above for Greater Sydney was based 
on the arithmetic rounding procedure.  Under Scenario 4, two more type of rounding procedures 
were tested. They are bucket and stochastic rounding procedures.  Differences between these 
rounding procedures were explained in the previous section. 
 
Below are examples of test results for Greater Sydney (Table 15). P-values produced under these 
scenarios are examined to gauge the performance of the synthesis results at SA1 level (Figure 17 
on page 32). 
 
Table 15 Comparison of Experimental Results by Control Variables, Greater Sydney 2011 

 
Actual  Synthesised1  

 
Zero Margin 
Corrections 

Control 
Categories 

Geographic 
Resolution 

Rounding Procedures 
Scenario 4 

  Base Case Scenario 1 Scenario 2 Scenario 3 Bucket Stochastic 

Number of Households 1,598,439 1,598,433 1,598,433 1,598,433 1,598,433 1598433 1,598,433 
% Difference between synthesised 
and actual household total  

  -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 

Number of Persons 4,308,248 4,118,543 4,118,660 4,271,266 4,223,172 4,157,035 4,156,469 
% Difference between synthesised 
and actual person total 

  -4.4033 -4.4006 -0.8584 -1.9747 -3.5098 -3.5230 

        

Distribution by Control 
Variable 

Actual 
Distribution 

% Difference between Synthetic and Actual Data 

 % Base Case Scenario 1 Scenario 2 Scenario 3 Bucket Stochastic 

Dwelling Structure        

Separate house 59.71 -0.65 -0.65 0.21 0.07 0.08 0.08 
Semi-detached, row or terrace 
house, town house, etc. 

12.68 0.59 0.59 -0.18 -0.02 -0.03 -0.03 

Flat, unit or apartment 26.96 -0.03 -0.03 0.05 -0.02 -0.05 -0.05 

Other dwelling 0.5 0.06 0.06 -0.04 -0.02 0.00 0.00 

Other 0.14 0.04 0.04 -0.03 -0.01 0.01 0.01 

        

Household Composition        

One family household 67.19 -0.88 -0.88 0.53 0.00 -0.30 -0.30 

Two or more family household 2.3 0.47 0.47 -0.20 -0.03 0.01 0.01 

Non-family household 25.56 0.38 0.38 -0.03 -0.04 0.08 0.08 

Other 4.95 0.03 0.03 -0.29 0.08 0.21 0.21 

        

1 person 21.57 -0.39 -0.39   0.02 0.01 0.01 

2 persons 29.35 -0.47 -0.47   0.02 0.04 0.04 

3 persons 16.4 0.01 0.01   0.01 0.00 0.00 

4 persons 16.73 0.02 0.02   0.00 0.04 0.04 

5 persons 7.42 0.3 0.3   -0.02 -0.03 -0.03 

6 persons 3.51 0.35 0.35   -0.03 -0.05 -0.05 

7 persons 5.01 0.17 0.17   0.00 0.00 0.00 

               

 
1 Based on synthesis results from the previous section. 
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Table 15 Comparison of Experimental Results by Control Variables, Greater Sydney 2011 
(continued) 

 
Actual  Synthesised2  

 
Zero Margin 
Corrections 

Control 
Categories 

Geographic 
Resolution 

Rounding Procedures 
Scenario 4 

  Base Case Scenario 1 Scenario 2 Scenario 3 Bucket Stochastic 

Number of Motor Vehicles        

None 11.60 -0.20 -0.20 0.17 0.19 0.17 0.17 

1 motor vehicle 37.69 0.64 0.64 -0.37 -0.61 -0.56 -0.56 

2 motor vehicles 32.15 0.51 0.51 -0.44 -0.48 -0.47 -0.47 

3 motor vehicles 8.69 -0.17 -0.17 0.10 0.17 0.18 0.18 

4 or more motor vehicles 3.12 -0.45 -0.45 0.32 0.43 0.36 0.36 

Other 6.74 -0.33 -0.33 0.22 0.31 0.33 0.33 

               
Gender        
Male 49.09 -0.06 -0.05 -0.01 0.00 -0.01 0.00 
Female 50.91 0.06 0.05 0.01 0.00 0.01 0.00 
               
Age               
0-4 years 6.93 0.16 0.16 0.02 0.05 0.19 0.17 
5-9 years 6.38 0.08 0.08 0.01 -0.01 0.14 0.13 
0-14 years 6.22 0.12 0.13 -0.01 -0.02 0.13 0.17 
15-19 years 6.31 0.05 0.05 0.03 0.00 0.01 0.01 
20-24 years 7.05 -0.22 -0.24 -0.02 -0.01 0.00 -0.02 
25–29 years 7.84 -0.17 -0.14 0.01 0.02 0.02 0.04 
30–34 years 7.72 -0.01 0.00 0.01 -0.01 0.02 -0.02 
35–39 years 7.66 0.00 0.02 0.02 -0.01 -0.01 0.00 
40–44 years 7.31 0.01 0.00 0.00 -0.04 -0.04 -0.01 
45–49 years 7.05 0.02 0.01 0.04 -0.03 -0.05 -0.06 
50–54 years 6.6 -0.04 -0.02 0.03 -0.02 -0.08 -0.08 
55–59 years 5.76 0.04 0.03 0.03 0.01 -0.02 -0.02 
60–64 years 5.19 0.01 0.01 0.02 0.02 -0.06 -0.06 
65–69 years 3.84 0.00 0.02 -0.01 0.03 -0.04 -0.04 
70–74 years 2.91 -0.02 -0.02 -0.04 0.03 -0.05 -0.05 
75–79 years 2.21 0.00 -0.02 -0.04 0.01 -0.05 -0.05 
80–84 years 1.69 0.00 -0.02 -0.03 0.01 -0.04 -0.04 
85 years and over 1.31 -0.02 -0.03 -0.03 0.00 -0.05 -0.04 
               
Labour Force Status               
Employed 47.21 0.65 0.71   -0.03 0.43 0.48 
Unemployed 2.85 -0.39 -0.41   -0.03 -0.35 -0.35 
Not in the labour force 25.39 0.13 0.07   0.02 -0.03 -0.06 
Not stated 24.56 -0.38 -0.38   0.03 -0.06 -0.09 

 

The synthesised results have been relatively consistent under the four scenarios for all cities. 
Although the test results for Greater Melbourne and Brisbane are not included in this paper, the 
following discussion summarises the test results for the three cities to demonstrate the validity and 
consistency of the IPU algorithm. 
 
The reduction in the number of control categories and geographical resolution for Scenario 2 and 
3 have drastically reduced the computational time for all three cities. This is especially true for 
Greater Sydney where the number of synthesised geographical zones was reduced from 10,845 
SA1 to 270 SA2s for Scenario 3.  
 
Generally, Scenario 2 and 3 generated higher number of synthesised persons compare to other 
scenarios. However, Scenario 3 consistently produced the lowest average and more scattered p-
values for the three cities compare to the other scenario. One possible reason for the lower p-
values at SA2 level could be due to the marginal totals used in the synthesis process. These marginal 

 
2 Based on synthesis results from the previous section. 
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totals were amalgamated from marginal totals at SA1 level. Theoretically these derived marginal 
totals should be the same as marginal totals that were extracted directly at SA2 level from the ABS 
table builder, since they are essentially the same source. However, it is possible that the marginal 
totals disseminated by ABS at SA2 contains less perturbations and hence less adjustments are 
required in census balancing. Note that the p-values produced under Scenario 3 are still well within 
the acceptable range.  
 
Figure 17 Comparisons of P-Values Distribution by SA1, Greater Sydney 2011 

 
 
 
The performance results for the base case scenario, Scenario 1 and 4 varied slightly across the 
three cities.  For Greater Sydney, Scenario 4 with bucket rounding procedure has generated the 
highest number of synthetic persons and better matched distributions by control variables when 
compare to the arithmetic rounding procedure used in the base case scenario. However, the 
average p-value at SA1 level is slightly lower comparatively. As for Greater Melbourne, Scenario 4 
with the stochastic rounding procedure has generated the highest number of synthetic persons and 
also exhibits an excellent match for distributions by the control variables. The average p-value for 
this scenario is 0.985, which is marginally lower compared to 0.991 for the base case scenario. 
Lastly, Scenario 4 with bucket rounding procedure generated the highest number of synthetic 
persons for Greater Brisbane. Consistent with Greater Sydney and Greater Melbourne, the 
synthesised distributions by control variables under Scenario 4 are the best among all scenarios 
and the distribution at SA level is marginally less fitted compared to the base case scenario and 
Scenario 1.  
 
Generally, the rounding procedure affects the synthetic estimates in different ways. The estimated 
cell probabilities or decimal values were converted to integer frequencies using the arithmetic 
procedure in the base case scenario. This rounding procedure consistently generated better 
represented distributions by geographical zone. Both Bucket and Stochastic rounding procedures 
under Scenario 4 consistently produced better matched distributions by control variable but 
marginally less represented distributions by geographical zones when compare to the base case 
scenario. For Scenario 1, the pre-adjusted zero marginal totals have not shown any beneficial 
effects on the performance at variable and SA1 level for all three cities.  
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Overall, the synthesised results under each scenario are within an acceptable range. The choice of 
synthesis criteria for creating a synthetic population is very much dependent on its research 
purpose. For a synthetic population built for travel demand modelling, it is always important to 
retain as many demographic and geographical details as possible to provide a robust foundation 
for data linkage to other travel data. This is a critical bridging step for the accuracy of further travel 
demand simulations.  
 
One of the more prominent issues observed in the synthesised results produced through the IPU 
procedure is the discrepancies between the synthesised and actual person counts.  While all person 
control variables retained reasonable distributions of the actual population and the distribution of 
synthesised person at SA1 is within an acceptable range, the number of synthesised persons has 
been consistently underestimated for all three cities.  The number of persons in Greater Sydney, 
Melbourne and Brisbane were under-synthesised by -4.40, -0.47 and -3.86 percent respectively. 
These results are consistent with past research. In the case study conducted by Ye et al. (2009), the 
research group who developed the IPU algorithm, the number of synthetic persons generated for 
the city of Maricopa County region of Arizona using the IPU algorithm differed by 4.6 percent to 
the actual number of persons in the population. Another example of a synthesis result using 
PopGen was by Jain, Ronald and Winter (2016). They obtained a difference of -5.82 percent for 
the number of synthesised persons relative to the actual persons in Melbourne. It is important to 
point out that the basis of comparison of synthesised results from this research study and that 
from the other research studies are not completely parallel. The number of household type 
constraints used in Ye et al. (2009) and Jain, Ronald and Winter (2016) is notably lower than this 
study. In Ye et al.’s case study, the synthesis results were based on three household and three 
person control variables with a total number of household-type and person type constraints of 280 
and 140 respectively.  Jain, Ronald and Winter also used three household and three person control 
variables with 180 household type constraints and 144 person type constraints. The synthesised 
results in this study is based on four household and three person control variables, with 840 
household type constraints and 144 person type constraints.   
 
In the IPU algorithm, the multi fitting problem in IPF is overcome by reallocating weights among 
households, taking into account the person-level distribution as much as possible, without 
compromising the fit to household-level distribution. Therefore, the total number of 
household/person constraints, which is the number of cells in the joint distributions, underpins 
the degree to which the person-level control variables will be matched by IPU algorithm. As the 
level of aggregation increases from stratification by household type only to household-person type, 
the frequency in each cell decreases. The IPU algorithm will function in the presence of sparse 
cells, however there is a trade off in the fit with respect to person-level distributions (Ye et al. 
2009). 
   
Although the percent differences for the under-synthesised persons were relatively substantial, a 
further suggestion or solution for addressing this issue was not found in Ye’s research nor 
subsequent research based on PopGen. This issue is investigated further in next section. 
 

Data Treatment Post Population Synthesis 
This section proposed a heuristic algorithm to compensate for the number of under synthesised 
persons generated from the IPU algorithm. This process rectifies the under synthesised results 
presented in the previous section. Validation measures are used to evaluate the adjusted 
synthesised results. 
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Proposed Person Allocations Algorithm Post Population Synthesis 

The number of persons usually resident in dwelling (Nprd) in the sample data is an important 
household variable in determining the number of persons synthesised in the IPU algorithm.  One 
of the possible reasons for the IPU algorithm to constantly fall short in generating the number of 
synthetic persons could be due to how this control variable is categorised in the sample or seed 
data and marginal data. Under Nprd, any household with six or more persons is assigned into one 
category. Hence, the number of persons is often under synthesised for large families or households. 
The proposed algorithm compensates under synthesised SA1s based on conditional allocations of 
additional persons. At household level, the algorithm will only affect the distribution of one 
variable that is Nprd. As the number of persons randomly allocated into SA1, the number of 
persons in the household changes, unless they are allocated into the category with six or more 
persons. The selection process in the proposed algorithm is conditioned to prioritise allocations 
of person as discussed in the following steps to minimise the adjustment effects on the distribution 
for Nprd. The algorithm will affect the distributions of all person control variables.  All adjusted 
results will be validated again after implementing the algorithm.  
 
Below are the general steps involved in allocating new persons to compensate for the under 
synthesised population: 
 
Stage 1 Setting up 

Four steps of merging are involved in this step: 
 

1 A dataset is created by merging the total number of synthesised and actual persons by SA1. 
This dataset should contain identifiers for SA1 and the merged data is used to calculate the 
difference between the number of actual and synthesised persons for each SA1. The 
number of observations for this data is equal to the number of SA1s synthesised.  

 
2 The dataset from stage 1 is then match-merged with the associated under synthesised 

persons generated by the IPU algorithm.  The under synthesised dataset is a large file 
containing information of the control variables on every synthesised person. Each 
observation in the match-merging data set retained all information read in at SA1 level 
during the merging, which includes the difference between the actual and synthesised 
number of persons for each SA1 level. At this stage, the total observation number for this 
match-merging data set should equal the total number of persons synthesised.  

 
3 The match-merging data set from stage 2 is then merged with the seed data or sample data 

for household to obtain and link information on the number of persons resided in the 
dwelling to each person.   

 
4 Finally, the match-merging data set is merged with the synthesised household dataset to 

obtain and link information on the synthesised number of persons resided in the dwelling 
to each person.  The variable values obtained from step 3 must be the same with those 
obtained from step 4 since the synthesised households were drawn from the household 
seed data in the synthesis process. 

 
After four merges, the dataset should contain geographical identifier at SA1, household identifier, 
person identifier, selected person characteristics (gender/Sexp, age/Agep and labour force 
status/Lfsp) and two household characteristics (Number of persons usually resident in 
dwelling/Nprd from the seed data and from the synthesised household dataset) for all synthesised 
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persons.  The observation number should remain the same after merging. The large dataset is now 
ready for stage 2. 
 
Stage 2 Allocating  

1 At the allocation stage, a subset of data from stage 1 is created for all synthesised persons 
who resided in SA1s that contained less than the actual number of persons. These 
observations are identifiable using the calculated differences between actual and 
synthesised persons for each SA1 attached during merging. These differences are the 
number of under synthesised persons, which also used to set the maximum number of 
synthesised persons allowable to be allocated in each SA1.   

 
2 The next step is to simulate a random number for each observation or synthesised person 

in the dataset created in previous step. These generated random numbers can be either 
uniformly or normally distributed.  They are used to randomise the position of synthesised 
persons within each household by SA1. This dataset must be sorted by geographical zone 
and then household identifier. The sorting process conditions the randomisation to only 
within each household and also ensures that the number of additional persons added to 
each SA1 later does not exceed the discrepancy between the actual and synthesised 
estimates in each SA1. 

 
3 Upon the completion of the randomisation process, a new person is duplicated from the 

last observation within each household for an under synthesised SA1.  This process limits 
the allocation process to only one person per household. At this point, new household and 
person identifiers are created for identifying the first and last person within the household 
and to accommodate the additional new person after the randomisation process.  All newly 
added persons are then output into a new dataset to form a new pool of observations for 
allocating additional persons to under synthesised SA1s. Observations that are identified 
as “Not applicable” in the subcategory of Nprd are deleted. The selection process will 
exclude this category to minimise possible disturbance on the overall distribution of Nprd. 
It is also a category with the least flexibility to accommodate newly generated persons.  

 
4 Before the allocation process begins, two conditions are imposed. The new pool of 

observations is sorted by SA1, then in descending order by a household control variable 
(Nprd) and nested by a person variable (Agep).  This condition imposed on Nprd 
prioritises the selection to the category of six or more people. In this Nprd category, any 
additional person generated does not change the status of Nprd in the household 
population. The person control variable, Agep is ordered from largest to smallest according 
to the gap between the synthesised and actual estimates. This condition prioritises 
allocation of persons into the age category with the largest discrepancies between 
synthesised and actual estimates.  

 
5 During the allocation process, a counter is set up so that the selection of persons for each 

SA1 stops when the number added reaches the maximum number of synthesised persons.  
The maximum number of persons for each SA1 is the difference in number between actual 
and synthesised persons obtained in stage1. 

 
6 At the end of the selection process, the number random of persons added to the initial 

dataset from the IPU process is adjusted accordingly to align with the actual number of 
persons.  
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Performance of Post-treated Synthesised Results 

The analysis of the synthesised results selected to treat the under synthesised persons is based on 
the performance results from testing the IPU algorithm.  As Scenario 2 contains reduced number 
of control variables and Scenario 3 contains coarser geographical zones, the synthetic population 
generated under these scenarios were not considered for post-synthesised data treatment.  
 
Overall, six generated populations have been chosen for testing the regularities of the proposed 
algorithms.  The average p-value is the highest for all cities under the base case scenario and hence 
these three set of synthesised populations are selected for post data treatment. All base case 
scenarios were based on arithmetic rounding. The distributions by control variables for these three 
case studies are consistently aligned with the actual distributions, however the synthetic 
populations generated under Scenario 4 seem to perform relatively better. Particularly for Greater 
Melbourne, the synthetic population generated under Scenario 4 with Stochastic Rounding 
procedure was selected for further data treatment. The dataset has the highest number of 
synthesised persons, average p-value of 0.99 by SA1 and excellent matches in distributions by the 
control variables.  For Greater Sydney and Brisbane, post-synthesised data treatments were carried 
out based the synthetic estimates under Scenario 4 with Bucking rounding procedure. Both 
synthetic populations have marginally higher average p-value compare to Scenario 4 with 
Stochastic rounding procedure. 
 
These case studies test whether the proposed algorithm is able to improve the overall synthesised 
results whilst to retain or improve the synthesised distributions by variables and geographical zones.  
 
Table 16 presents the pre- and post-treated synthesised person results for the three cities. The 
synthesised number of persons was under by 4.4 percent compare to the actual number of persons 
for Greater Sydney under the base case scenario. After the data treatment, the gap is reduced to 
only 0.0065 percent. Note that base case scenario applied arithmetic rounding procedure in the 
synthesis process.   The synthesised results based on bucket rounding procedure further reduced 
the data gap to 0.0007 percent post data treatment, which is a near complete set of synthetic 
persons for Greater Sydney. As for Greater Melbourne, the difference between synthesised and 
actual person is reduced from -4.7084 to 0.0004 percent post data treatment for the synthetic 
population generated under the base case scenario and almost zero percent under Scenario 4 with 
stochastic rounding.  The gap between synthesised and actual person for Greater Brisbane also 
reduced substantially after data treatment.  The discrepancy of synthetic population for base case 
scenario has reduced from -3.8 percent to -0.0044 percent. This is also consistent under Scenario 
4 with Bucket rounding procedure where the discrepancy reduced from -3.1581 percent to merely 
-0.0015 percent. At city level, the number of synthesised persons relative to actual persons have 
improved to near complete synthetic populations for all three cities post data treatment. The 
following two sections investigate how these post-treated results preformed in terms of 
distributions by the control variables and at SA1 level.  
 
Table 16 Comparison of Pre- and Post-Treated Synthesised Person Results  

 Greater Sydney Greater Melbourne Greater Brisbane 

 Persons Difference %  Persons Difference %  Persons Difference %  

Actual 4,308,248   3,912,141   2,155,966   

             

Arithmetic Rounding             

Pre-treated results 4,118,543 -4.4033 3,727,942 -4.7084 2,072,706 -3.8618 

Post-treated results 4,308,526 0.0065 3,912,156 0.0004 2,155,872 -0.0044 
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Table 16 Comparison of Pre- and Post-Treated Synthesised Person Results (continued) 

 Greater Sydney Greater Melbourne Greater Brisbane 

 Persons Difference %  Persons Difference %  Persons Difference %  

Stochastic/Bucket 
Rounding 

Bucket   Stochastic    Bucket   

Pre-treated results 4,157,035 -3.5098 3,761,908 -3.8402 2,087,878 -3.1581 

Post-treated results 4,308,280 0.0007 3,912,140 0.0000 2,155,933 -0.0015 

 
At variable level, the actual data is compared to pre-treated synthesised and post-treated 
synthesised estimates. Figure 18 shows the comparison of treated and untreated synthesised 
number of persons in usual resident for Greater Sydney.  This is the only household variable that 
is affected by the proposed algorithm. Distributions for all other control variables at household 
level remained unchanged.  The top chart shows the aggregate total by Nprd and the bottom chart 
shows the percent difference between the synthesised and actual aggregate total. The post-treated 
base case scenario (post-treated arithmetic) generally displays slightly higher differences of 
percentages in aggregate totals than the pre-treated arithmetic estimates, except for the category 
with six persons or more.  However, the post-treated bucket estimates generally showed greater 
improvements in reducing the percent difference for each category.  Table 17 shows that the 
distribution by Nprd were almost identical between pre- and post-treated arithmetic estimates but 
better matched for post-treated bucket data.  
 
As the proposed algorithm is mostly processed at person level, all distributions of person control 
variables were affected. Figure 19 to 21 show that percent differences of aggregate totals for all 
person control variable have improved for post-treated data compare to pre-treated arithmetic 
estimates. Generally, the post-treated bucket estimates have out-performed the post-treated 
arithmetic estimates in reducing the percent differences between the synthesised and actual data. 
 
Figure 18 Comparison of Household Estimates by Number of Persons Usually Resident in Private 

Dwellings between Benchmark, Adjusted and Unadjusted Synthesised Results, Greater 
Sydney 2011 
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Table 17 Distributions of Actual and Adjusted Synthesised Household Estimates by Number of 
Persons Usually Resident in Private Dwellings, Greater Sydney 2011 

  

Actual 
Distribution 

(%) 

% Difference between Synthetic and 
Actual Data 

Pre-treatment Post-treatment 

Number of Persons Usually Resident in Dwelling  Arithmetic Arithmetic Bucket 

1 person 21.57 0.39 0.39 0.00 

2 persons 29.35 0.47 0.47 0.04 

3 persons 16.40 -0.01 -0.05 -0.01 

4 persons 16.73 -0.02 -0.19 -0.11 

5 persons 7.42 -0.30 -0.32 -0.09 

6 persons 3.51 -0.35 -0.14 0.17 

7 persons 5.01 -0.17 -0.17 0.00 

 

Figure 19 Comparison of Person Estimates by Gender between Actual Data, Adjusted and 
Unadjusted Synthesised Results, Greater Sydney 2011 
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Figure 20 Comparison of Person Estimates by Age between Actual Data Adjusted and Unadjusted 
Synthesised Results, Greater Sydney 2011 

 
 
Figure 21 Comparison of Person Estimates by Labour Force Status between Actual Data Adjusted 

and Unadjusted Synthesised Results, Greater Sydney 2011 

 
 
Table 18 shows that distributions by gender and age were close between pre- and post-treated 
arithmetic estimates but marginally better matched by labour force status for post-treated 
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arithmetic estimates. The post-treated bucket estimates performed better in distributions for 
gender and labour force status but slightly worse off in distribution for age.  
 
Table 18 Distributions of Actual and Adjusted Synthesised Person Estimates, Greater Sydney 2011 

  

Actual 
Distribution 

(%) 

% Difference between Synthetic and Actual Data 

Pre-treatment Post- treatment 
  Arithmetic Arithmetic Bucket 

Gender       

Male 49.09 -0.06 -0.06 -0.03 

Female 50.91 0.06 0.06 0.03 

          

Age         

0-4 years 6.93 0.16 0.16 0.26 

5-9 years 6.38 0.09 0.21 0.35 

10-14 years 6.22 0.12 0.22 0.39 

15-19 years 6.31 0.05 0.17 0.01 

20-24 years 7.05 -0.23 -0.01 -0.06 

25–29 years 7.84 -0.17 -0.14 -0.10 

30–34 years 7.72 0.00 -0.02 0.00 

35–39 years 7.66 0.00 0.09 0.10 

40–44 years 7.31 0.01 0.09 0.15 

45–49 years 7.05 0.02 0.03 -0.08 

50–54 years 6.6 -0.04 -0.04 -0.18 

55–59 years 5.76 0.04 -0.10 -0.12 

60–64 years 5.19 0.01 -0.16 -0.18 

65–69 years 3.84 0.01 -0.13 -0.13 

70–74 years 2.91 -0.02 -0.13 -0.13 

75–79 years 2.21 0.00 -0.09 -0.11 

80–84 years 1.69 0.00 -0.07 -0.09 

85 years and over 1.31 -0.02 -0.07 -0.08 

          

Labour Force Status         

Employed 47.21 0.64 0.68 0.18 

Unemployed 2.85 -0.40 -0.38 -0.36 

Not in the labour force 25.39 0.12 -0.06 -0.23 

Not stated 24.56 -0.38 -0.24 0.40 

 
Figure 22 show differences in percentages between the number of actual and synthetic persons at 
SA1 level for Greater Sydney.  The percent discrepancies in the pre-treated arithmetic estimates 
are the highest. These discrepancies progressively became smaller or distributed closer to zeros in 
the post-treated arithmetic estimates and even smaller in the post-treated bucket or stochastic 
estimates.  
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Figure 22 Comparison of Percent Difference between Adjusted and Unadjusted Synthesised 
Person Estimates at SA1, Greater Sydney 2011 

 

 
 
Detailed validation results for Greater Melbourne and Brisbane can be found in Lim (2019). The 
results are consistent with Greater Sydney. Overall, validation results show that the synthesised 
estimates have improved at all level after the data treatment. At city level, the discrepancy between 
the number of actual and synthesised persons for each city has been reduced to nearly zero. The 
enumeration of the synthetic population in each city is now at least 99.99 percent complete.  
 
At variable level, the distribution of the only household variable (Nprd) affected by the algorithm 
remain almost the same for the pre-treated and post-treated arithmetic estimates and has improved 
in matching the actual aggregate total and distribution by Nprd for post-treated bucket or 
stochastic estimates. As all person control variables are affected by implementing the proposed 
algorithm, synthesised distributions of these variables were re-examined. Generally, the percent 
differences between synthesised and actual aggregate totals have been reduced in the post-treated 
estimates, especial the post-treated bucket or stochastics estimate. That means, after data treatment, 
the aggregate totals by person control variables are now even closer to the actual aggregate totals.  
In terms of distributions, there are some minor gains and loses between the pre-treated arithmetic, 
post-treated arithmetic and post-treated bucket/stochastic estimates.  However, these movements 
in percentages are mostly within than ±  0.01 percent.  Overall, the distributions by control 
variables after data treatments remained closely matched to the actual distributions.  
 
At geographical level, the synthesised distributions after data treatments have clearly reduced the 
percent differences in the number of synthesised and actual persons. All three cities have shown 
prominent improvement in the distributions by SA1 level from pre-treated arithmetic to post-
treated estimates.   
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The proposed algorithm has shown promising results for improving the completeness of 
synthesised estimates generated from the IPU algorithm.  The correction of the synthesised 
persons is important in any subsequent model simulation. Errors carried forward from the 
synthetic population often remerge if not magnified in subsequent model outcomes. The heuristic 
algorithm proposed in this section is a relatively straight forward and time efficient method to 
improve the representation of an under-synthesised population. 
 

Conclusion 
The requirement of spatial microdata has continued to be a barrier to the development of a fully 
operational microsimulation activity-based travel demand model in Australia. Overall, the 
restricted access of detailed geocoded micro data and the demand of specialised computing skills 
for building a synthetic population often hinders the progress of further model development in 
activity-based travel demand modelling.   
 
Numerous population synthesis techniques have been proposed as an alternate approach to 
supplement the inadequacy in readily available microdata for microsimulation analysis. In practice, 
the lack of reusability of existing population synthesisers often impose the need to develop a 
synthesis routine from scratch for a new research project that required comprehensive microdata. 
Many existing population procedures are often concealed in computer codes and shrouded by 
inaccessible language. Some are overcomplicated or, lack implementation details or transparency 
in validations. There is also a fine balance between the ever-increasing complexity and resources 
required to create the synthetic data. Enhanced complexity often increases both costs to build and 
the time required to implement with no clear certainty of better performance results (O’Donoghue 
2018). The challenge is to develop population synthesis techniques that are user friendly and at the 
same time retains sufficient complexity to produce a well-represented synthetic population.  
 
This research study contributes in setting up a replicable population synthesis routine that can be 
included into a standard methodological toolbox for transport researchers and mainstream social 
scientists to produce synthetic population using Australian census data. This research intends to 
alleviate the cumbersome and costly process of building synthetic microdata by presenting a 
practical pathway to building synthetic populations for Australian cities 
 
The synthetic populations generated in this research study for the three major Australian cities 
have been extensively validated. The performance results consistently displayed excellent fit with 
high level of confidence in matching the synthesised to actual data.  Two heuristic procedures were 
formulated to ease the data handling process, specifically for Australian data. The procedure 
proposed for data treatment before the synthesis routine ensures the consistency of the input data 
and the procedure proposed for data treatment after the synthesis routine extends under-
synthesised estimates to a complete synthetic population. Multiple experiments have also been 
conducted to test the efficacy and reliability of the IPU algorithm. The treated post-synthesised 
estimates have been revalidated and proven to further increase the accuracy of the synthesised 
estimates. The approach serves as a practical solution to building the necessary synthetic 
individuals and households in the context of activity based microsimulation modelling in Australia. 
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Abbreviations 
 
ABS Australian Bureau of Statistics 
ABSHID  Dwelling Record Identifier 
ABSPID Person Record Identifier 
ASGS Australian Statistical Geography structure 
ASU Arizona State University 
AUS Australia 
Bg Block group 
BITRE Bureau of Infrastructure, Transport and Regional Economics 
CO Combinatorial Optimisation 
CSF  Census Sample File 
CURF Confidentialised Unit Record File 
GCCSAs Greater Capital Cities Statistical Areas 
IPF Iteration Proportional Fitting 
IPU Iteration Proportional Update 
PUMS Public Use Microdata Sample  
PUMA Public Use Microdata Area  
Pumano Identifier for the Public Use Microdata Area (PUMA) of the corresponding 

geography  
SAS Statistical Analysis System 
Simtravel Simulator of Transport, Routes, Activities, Emissions, and Land model  
SPSS Statistical Package for the Social Sciences 
SR Statistical Region 
S/T State and Territory 
TAZ Traffic Analysis Zone 
TRANSIMS TRansportation ANalysis SIMulation System  

(Los Alamos National Laboratory 2005). 
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Appendix 1 ABS ASGS Structures 

 

Source: ABS 2011 
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Appendix 2 Geographical Correspondence between Population Census and CURF 2011 for 
Greater Sydney, Greater Melbourne and Greater Brisbane 

GCCSA 
Name 

ASGS Statistical 
Region code 
(Based on SA4) 

ASGS Statistical Region Name 
 CURF 

Area 
code   

Greater 
Sydney 102 Central Coast 

 
02  

 
115, 126 

Sydney - Baulkham Hills and Hawkesbury, Sydney - 
Ryde  

 
08 

 116 Sydney - Blacktown  09  
 117 Sydney - City and Inner South  10  
 118 Sydney - Eastern Suburbs  11  
 119 Sydney - Inner South West  12  
 120 Sydney - Inner West   13  
 121, 122 Sydney - North Sydney and Hornsby, Sydney - 

Northern Beaches 
 

14 
 123, 128 Sydney - Outer South West, Sydney - Sutherland  15  
 124 Sydney - Outer West and Blue Mountains  16  
 125 Sydney - Parramatta  17  
 127 Sydney - South West  18  
Greater 
Melbourne 206 Melbourne - Inner 

 
22  

 207 Melbourne - Inner East  23  
 208 Melbourne - Inner South  24  
 209 Melbourne - North East  25  
 210 Melbourne - North West  26  
 211 Melbourne - Outer East  27  
 212 Melbourne - South East  28  
 213 Melbourne - West  29  
 214 Mornington Peninsula  30  
Greater 
Brisbane 301, 302 Brisbane - East, Brisbane - North 

 
32  

 303 Brisbane - South  33  
 304, 305 Brisbane - West, Brisbane Inner City  34  
 310, 317 Ipswich, Toowoomba  38  
 311 Logan - Beaudesert  39  
 313, 314 Moreton Bay - North, Moreton Bay - South  41  
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Appendix 3 Record Linkage for Household Variables between Population and Housing Census 
data and CURF 2011  

Selected Control Variables at Household Level 

Household Composition (HHCD) 

CSF 
Code 

1% Basic CSF Classification Linked Census 
Code 

Census Classification 

1 One family household   HHCD1 1 One family household 

2 Two or more family household HHCD2 2 Multiple family household 

3 Lone person household HHCD3 31 Lone person household 

4 Group household  32 Group household 

5 Visitors only HHCD4 41 Visitors only  

6 Other non-classifiable  42 Other non-classifiable 

7 Not Applicable  @@@ Not Applicable 

Note: HHCD3 = Non family household 

 

Dwelling Structure (STRD) 

1 Separate house STRD1 11 Separate house 

2 Semi-detached, row or terrace 
house, town house, etc. 

STRD2 
21,22 Semi-detached, row or terrace 

house, town house, etc. 

3 Flat, unit or apartment 
STRD3 

31,32,33,
34 

Flat, unit or apartment 

4 Other dwelling STRD4 91,93,94 Other dwelling 

5 Not stated STRD5 && Not stated 

6 Not applicable  @@ Not applicable 

 

Number of Persons Usually Resident in Dwelling (NPRD) 

1 One person NPRD1 1 One person 

2 Two persons NPRD2 2 Two persons 

3 Three persons NPRD3 3 Three persons 

4 Four persons NPRD4 4 Four persons 

5 Five persons NPRD5 5 Five persons 

6 Six or more NPRD6 6 Six  

7 Not applicable NPRD7 7 Seven 

  8 Eight or more 

  @ Not applicable 

 

Number of Motor Vehicles (ranges) VEHRD 

0 No motor vehicles VEHRD0 0 No motor vehicles 

1 1 motor vehicle VEHRD1 1 1 motor vehicle 

2 2 motor vehicles VEHRD2 2 2 motor vehicles 

3 3 motor vehicles VEHRD3 3 3 motor vehicles 

4 4 or more motor VEHRD4 4 4 or more motor 

5 Not stated VEHRD5 & Not stated 

6 Not applicable  @ Not applicable 
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Appendix 4 Record Linkage for Person Variables between Population and Housing Census data 
and CURF 2011  

Selected Control Variables at Person Level 

Age of person (AGEP) 

CSF 
Code 

1% Basic CSF Classification Linked Census Code Census Classification 

0 to 24 0 to 24 year singly 
Regroup to match 5-year age 
groups in census 

   
 

Used by 5-year age 
groups (AGE5P) 

 0‐4 years AGEP1 0‐4 years 0‐4 years 

 5‐9 years AGEP2 5‐9 years 5‐9 years 

 10‐14 years AGEP3 10‐14 years 10‐14 years 

 15‐19 years AGEP4 15‐19 years 15‐19 years 

 20‐24 years AGEP5 20‐24 years 20‐24 years 

25 25-29 years AGEP6 25-29 years 25-29 years 

26 30-34 years AGEP7 30-34 years 30-34 years 

27 35-39 years AGEP8 35-39 years 35-39 years 

28 40-44 years AGEP9 40-44 years 40-44 years 

29 45-49 years AGEP10 45-49 years 45-49 years 

30 50-54 years AGEP11 50-54 years 50-54 years 

31 55-59 years AGEP12 55-59 years 55-59 years 

32 60-64 years AGEP13 60-64 years 60-64 years 

33 65-69 years AGEP14 65-69 years 65-69 years 

34 70-74 years AGEP15 70-74 years 70-74 years 

35 75-79 years AGEP16 75-79 years 75-79 years 

36 80-84 years AGEP17 80-84 years 80-84 years 

37 85 years and over AGEP18 85 - 115 85 - 115 

 

Sex (SEXP) 

1 Male SEXP1 1 Male 

2 Female SEXP2 2 Female 

 

Labour Force Status (LSFP) 

1 Employed LFSP1 1,2,3 Employed 

2 Unemployed LFSP2 4,5 Unemployed 

3 Not in the labour force LFSP3 6 Not in the labour force 

4 Not stated LFSP4 & Not stated 

5 Not applicable  @ Not applicable 

6 Overseas visitor  V Overseas visitor 
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