<table>
<thead>
<tr>
<th></th>
<th>$\delta_f = 0.20$</th>
<th></th>
<th>$\delta_f = 0.40$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bus</td>
<td>Rail</td>
<td>All public transport</td>
</tr>
<tr>
<td>Sydney</td>
<td>0.0048</td>
<td>0.0079</td>
<td>0.0128</td>
</tr>
<tr>
<td>Melbourne</td>
<td>0.0025</td>
<td>0.0026</td>
<td>0.0051</td>
</tr>
<tr>
<td>Brisbane</td>
<td>0.0027</td>
<td>0.0027</td>
<td>0.0053</td>
</tr>
<tr>
<td>Adelaide</td>
<td>0.0037</td>
<td>0.0015</td>
<td>0.0052</td>
</tr>
<tr>
<td>Perth</td>
<td>0.0028</td>
<td>0.0006</td>
<td>0.0034</td>
</tr>
<tr>
<td>Hobart</td>
<td>0.0032</td>
<td>..</td>
<td>0.0032</td>
</tr>
<tr>
<td>Canberra</td>
<td>0.0028</td>
<td>..</td>
<td>0.0028</td>
</tr>
</tbody>
</table>

.. not applicable.

Note δ_f is proportion of increase in public transport trips as a result of a fare change that are diverted from private transport (diversion factor).

Source Dodgson (1985, Table 5.11, p. 62).